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1. INTRODUCTION

Consider a network of interacting finite state machines (FSMs), in which a
particular component FSM is the target of some verification effort. The
FSM network can be divided into the target FSM and the composition of all
the other FSMs in the network, the latter being the concrete environment.
Environment modeling refers to the creation of an abstract FSM that
replaces the concrete environment when verification is run. Ideally, this
environment model should

(1) have a much smaller representation than the concrete environment,
and

(2) preserve trace equivalence over the inputs and outputs of the target
FSM, when composed with it.

The need for what we term environment modeling arises often in VLSI
design. While it is not always profitable to model sequential circuits as
FSMs, in many cases it is. In such cases one often needs to find an
abstraction for a concrete FSM network. Examples are the use of abstract
models of circuits in behavioral simulation, the assumption of constraints
on circuit inputs when doing Boolean-equivalence checking, fault-test gen-
eration, or static-timing analysis. Environment modeling is of vital impor-
tance in the formal-verification technique of model-checking as well [Clarke
et al. 1986]. Without an accurate environment model, unreachable states
and unrealizable state transitions may be wrongly incorporated into the
verification, or conversely, reachable states and realizable transitions
deleted. Both can lead to false model-checking results. The recent work of
Martin et al. [1998] discusses this problem, although their focus is on
efficient methods for representing abstracted trace behavior, while our
focus here is on automatically computing an accurate abstraction.

In this paper, we formalize the environment-modeling problem in terms
of language equivalence between concrete and abstract FSMs. We focus on
the subproblem of determining when the safe removal of a FSM is possible
from a FSM network. Safe removal means the substitution, preserving the
desired language equivalence for environment modeling, of a set of free
inputs driving a FSM’s fanout for that FSM. Safe removal is possible only if
a FSM is a universal FSM (UFSM), a FSM that can realize all possible
sequences of all possible output valuations. We offer an algorithm for
UFSM identification and describe how it can be used to determine FSM
input-independence. When FSMs are independent of those of their inputs
connected to outputs of neighboring FSMs, and are UFSMs, then their safe
removal becomes possible. We also discuss the use of simulation relations
for reducing the state space of a FSM. Such reduction, performed prior to
UFSM checking, lowers its computational cost and also creates a smaller
FSM which can serve as an environment model if safe removal is not
possible.

At first, it may seem unlikely that UFSMs would appear very often in
real designs. A UFSM, however, is not a machine that realizes all output
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sequences regardless of input. Such a machine would seldom serve a useful
purpose. Rather, a UFSM is a machine that can realize all output se-
quences, given appropriate input. Often, a trace accurate model for a
component FSM in a network, from the “viewpoint” of a neighboring FSM,
might be a trivial, single-state UFSM able to nondeterministically assert a
signal, or not, on every time step, while executing a self-loop in its initial
state. This would be the case if the signal assertion were independent of
any feedback that may exist between the two FSMs, and if it could occur on
any time step. Our work lays the theoretical foundation for computing such
an abstraction by examining a real, concrete FSM network. At present, in
VLSI design, such abstractions are made by hand, in a time-consuming and
error-prone manner. It is clear that automation would be very useful and
most welcome, and this is our goal.

UFSMs have been cited previously in the literature, but only as artifacts
for computing worst-case complexities of certain problems in automata
theory [Sistla et al. 1987; Meyer and Stockmeyer 1972]. We believe we are
the first to give algorithms for their identification and to claim that their
identification is of practical value. The problem of UFSM identification is
shown to be PSPACE-complete in Meyer and Stockmeyer [1972]. A slightly
different version of the UFSM-detection algorithm of Section 4.4 is given by
two of the present authors in Raimi and Hojati [1997]. Our algorithm is
based on the classical subset construction algorithm described in Hopcroft
and Ullman [1979] for determinizing a nondeterministic finite automaton
(NFA). We, however, add an optimization that ensures that the full
powerset of a set of states will never be manipulated.

Simulation relations, which we also utilize, were introduced in Milner
[1971]. Our use of these for state reduction follows that of Bouaijani et al.
[1990]; Fernandez et al. [1993]; Hojati [1996], and others. The theory
behind this part of our work is not original; but the application is. In
addition, the work of Watanabe and Brayton [1994] and Wang and Brayton
[1993] bears a strong resemblance to ours, in that constraints on the trace
behaviors of FSMs in FSM networks are computed. However, the goal of
their research is to synthesize a concrete FSM rather than to abstract it. In
addition, the methods we use, simulation relations combined with UFSM
detection, are quite different from those they propose.

This paper is organized as follows. In Section 2, we outline a methodology
for automated environment modeling. In Sections 3 and 4, we explain our
basic formalisms, define safe FSM removal, and describe a UFSM-detection
algorithm needed for its determination. In Section 5, we prove the correct-
ness of the algorithm. In Section 6, we discuss state reduction using
simulation relations. In Section 7, we prove that if a concrete FSM network
is deadlock-free, our abstraction techniques do not introduce deadlock. We
conclude, in Section 8, with future research goals.

Environment Modeling • 707

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



2. METHODOLOGY FOR ENVIRONMENT MODELING

A set of interconnected sequential circuits may be represented as a network
of interacting FSMs. Given such a network, the methodology we propose for
environment modeling is to

(1) identify the target FSM, about which we desire to prove properties,
identifying, thereby, its concrete environment;

(2) partition the environment into small, component FSMs;

(3) for each component FSM,
—compute its reachable state set and then reduce it using simulation

relations;
—remove the FSM, if possible, after checking language universality.

Algorithms for partitioning are part of our future research effort, which
we discuss in Section 8.

In practice, some abstraction would likely be performed on a FSM
network before the techniques we describe here would be applied. Digital
hardware can be thought of as comprising three types of circuitry: control,
datapath, and memory. Our abstraction methods are geared towards con-
trol logic: the sequential circuitry that determines when datapath opera-
tions are carried out, upon which operands, and where and when the
results are stored in memory. Datapath and memory circuitry require very
different abstraction techniques, and we assume such abstractions are
carried out beforehand. Various semiautomated [Kurshan 1989; Long 1993]
or automated [Hojati 1996] techniques have been described in the litera-
ture. The problems of datapath and memory abstraction are by no means
solved; but abstraction of control logic, the focus of our efforts, is also very
much needed. We feel the general environment-modeling problem will
ultimately be solved, or alleviated, by bringing together hybrid approaches,
each applicable in different areas.

Portions of real environments may, at times, also be modeled with
hand-created finite state models of protocols they implement, rather than
with FSM models of specific circuits. For example, a bus arbiter in a
multiprocessor system might be modeled by its protocol rather than by a
specific circuit, thereby making a verification more general. Such a protocol
model could, once incorporated into the general environment, then be
further reduced by the techniques we outline here.

3. DEFINITIONS

We use a formalism for a finite state machine (FSM) which we feel is
appropriate for modeling digital hardware.

Definition 1 (FSM). A FSM is a 5-tuple:

E 5 ^S, S0, I, O, T&
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where S is a finite set of states, S0 # S is a set of initial states, I and O are
finite disjoint sets of binary input and output variables, and T~s, i, o, t!
# S 3 SI 3 SO 3 S is the transition relation. SI 5 $0, 1%?I? and SO 5
$0, 1%?O? are the input and output alphabets. We often write either T~s, i, o, t!

or s OB
i/o

T t in place of ~s, i, o, t! [ T.

Definition 2 (Deadlock). A deadlock-free FSM is a FSM where every
reachable state has a defined successor state and output valuation on each
input i [ SI.

Note that this corresponds to the behavior of digital sequential circuits,
which always do respond to their inputs.1

FSM interactions are modeled by set intersection, which we term an
overlap among sets of input and output variables. Thus, a connection
between two FSMs, A and B, such that (some of) the outputs of the A drive
and (some of) the inputs of B are denoted OA ù IB Þ À, where OA and IB

are the outputs of A and the inputs of B, respectively.

3.1 FSM Composition

Consider FSMs E 5 ^S, S0, I, O, T& and M 5 ^S9, S90, I9, O9, T9&. The
composition of E and M, denoted E \ M, can be defined by a partition I
5 I0 ø I1 of the inputs of the first machine E and a partition O9 5 O90 ø

O91 of the outputs of the second machine M, such that I1 5 O91 and O 5 I9.
Additionally, I0 must be disjoint from O9. The new FSM, E \ M, can be
defined as follows:

—set of states, S 3 S9;

—input variables, I0,

—output variables O ø O9,

—initial states, S0 3 S90,

—transition relation T\, where

~s, u!OB
i/~k, m, j!

T\~t, v! [ sOB
~i, j!/k

T t ∧ uOB
k/~m, j!

T9 v,

where a tuple, for example, ~m, j!, indicates the partition of M ’s outputs
into O90 ø O91; see Figure 1 for an illustration.

The above definition does not refer to inputs of M that do not overlap
with outputs of E or to outputs of E that do not overlap with inputs of M.

1In actuality, digital hardware is deadlock-free even in unreachable states. However, we
restrict our attention to the reachable states because this simplifies some of our proofs, such
as those in Section 7.
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These were deleted for brevity. However, when they are included, the
definition of composition becomes symmetrical.

We assume that the concrete FSM networks we abstract are deadlock-
free. This is in no way a limitation, as this accurately models digital
hardware. There is a problem, though, in that the class of deadlock-free
FSMs is not closed under composition, i.e., it is possible that the composi-
tion of two deadlock-free FSMs may exhibit deadlock.2 Therefore, we prove
that our abstraction methods do not introduce deadlock (in Section 7,
Theorems 5 and 6).

3.2 Free and Constrained Inputs

Definition 3 (Input types). Given a network of interacting FSMs, i.e., a
composite FSM:

(1) A free input of a component FSM is one that has no overlap with any
output of any other component FSM.

(2) A constrained input is one that does have such overlap.

Herein, we assume that the set of inputs I of a FSM E is divided into
disjoint sets of free and constrained inputs I 5 Ic ø If, such that Ic ù If 5 À.
Ic and If are, respectively, the constrained and free inputs.

2As an example, consider the FSMs M and N defined below:
(1) M has a single state s, single input and single output variables, and transitions s OB

0/0
M s,

s OB
1/1

M s;

(2) N has a single state t, single input and single output variables, and transitions t OB
0/1

N t,

t OB
1/0

N t.

It is easy to check that M and N are deadlock-free. In the composition M \ N, however, where
the input of M is the output of N and vice-versa, there is no transition out of the initial state
~s, t!, since the input-output pairs do not match. Thus, M \ N exhibits deadlock.

FSM E FSM M

O

I’

O = I’I = I 0 U I1

O’1 1
 = I

O’1

O’
0I0

I1

O’ = O’  U O’0 1

Fig. 1. FSM composition E \ M.
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We also assume that FSM networks are partitioned such that the outputs
and free inputs of each component FSM are disjoint from like sets of other
component FSMs. This restriction may be removed in practice; however, in
this paper it allows us to state theorems without resort to arguments about
special cases.

3.3 FSM Languages

Definition 4 (Path). A path through a FSM E is a finite or infinite
sequence of states s0, s1, · · ·, sj, · · ·, such that ?ij?oj@T~sj, ij, oj, sj11!#
holds for all j.

Definition 5 (Run). Given a finite or infinite sequence t of pairs ~ij, oj!
from the input and output alphabets, there is a run of t in E iff there is a
path s in E such that s0 [ S0, and for all j, T~sj, ij, oj, sj11! holds.

Definition 6 (Projection). Given a finite or infinite sequence t, defined
over valuations of a set of variables A, the projection of t onto A9 , A,
written tA9

, is the sequence formed by omitting the valuation of variables
not in A9 along t.

We say a finite or infinite sequence t is realized by a FSM E when t

either has a run in E or is a projection of a sequence that has a run. We
stipulate when sequences are finite; otherwise, they are assumed to be
infinite.

Given a set of variables A and an associated alphabet SA 5 $0, 1%?A?, SA
v

denotes the set of all possible infinite sequences of elements in SA, and SA
, ,

the set of all possible finite sequences.

Definition 7 (FSM language). The language of a FSM E, denoted +~E!,
is the set of all infinite input-output sequences that have a run in E.

We use the term trace to mean an input-output sequence of a FSM, and
use the terms trace equivalence and language equivalence synonymously.

Definition 8 (Output language). The output language, +O~E!, of a FSM
E is the projection of +~E! onto the set of E ’s output variables O.

Definition 9 (UFSM). A FSM E is a universal finite state machine
(UFSM) iff its output language is SO

v .

3.4 The Environment-Modeling Problem

Given the composition of two FSMs, E \ M, the environment modeling
problem is that of finding a FSM EM much smaller than E in terms of
number of states, such that

+I93O9
~E \ M ! 5 +I93O9

~EM \ M !

where I9 and O9 are the input and output variables of M, respectively.
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Intuitively, consider M the target FSM, E its concrete environment, and
EM its environment model. All three may, themselves, be composite FSMs.

4. SAFE REMOVAL AND UFSMS

4.1 FSM Removal

Definition 10 (FSM removal). A FSM E is removed from a network of
interacting FSMs as follows:

(1) for every input i of a neighboring FSM M, if i overlaps with an output of
E, replace i with a newly created free input i9, and substitute i9 for i in
the transition relation of M;

(2) remove any output o9 from any neighboring FSM M9 if o9 overlaps with
inputs of E, and with no other FSM in the network;

(3) remove any FSM M99 by the same process, if removal of E results in M99
have an empty set of outputs.

Definition 11 (Safe removal). Given a network of interacting FSMs N
and a set of input or output variables Q of component FSMs in the network,
component FSM E is safe to remove, relative to Q, if removal does not
change +Q~N !, the language of the network, projected onto Q.

The language of a FSM network, +~N !, is the language of the composi-
tion of all FSMs in N.

We assume that any FSM being removed is not the target FSM of the
verification. Thus, the recursive removal process outlined in step 3 would
halt if the FSM being removed were the target FSM.

4.2 Input Independence

Safe removal of a FSM is predicated upon input independence from its
constrained inputs, if any. Intuitively, a FSM has input independence if
each sequence in its output language is realizable regardless of the valua-
tion of its constrained inputs.

Definition 12 (Input independence). A FSM E has the property of input
independence from a subset of its inputs Ic, iff for all to [ +O~E! and for
all t ic [ SIc

v , where to 5 o0, o1, · · ·, oj, oj11, · · · and t ic 5 ic0, ic1, · · ·,
icj, icj11, · · ·, the combined sequence t 5 ~ic0, o0!, ~ic1, o1!, · · ·, ~icj, oj!,
~icj11, oj11!, · · ·, is in +Ic 3 O~E!.

Input independence can be framed as a language-containment problem.
Consider FSM E with disjoint constrained and free inputs, Ic and If.
Consider FSMs E1 and E2, derived from E, as follows:

T1~s, ic, o, t! 5 ?if @T~s, ~ic, if!, o, t!#

712 • R. Raimi et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



T2~s, ic, o, t! 5 ?if?ic@T~s, ~ic, if!, o, t!#

E1 5 ^S, S0, Ic, O, T1&

E2 5 ^S, S0, Ic, O, T2&

where ic [ Ic and if [ If. Note that the languages of E1 and E2 are defined
over SIc3O.

THEOREM 1. E has input independence from Ic iff +~E1! $ +~E2!.

PROOF. +~E1! is easily seen to be +Ic 3 O~E!. The input-independence
criterion can now be stated as SIc

v 3 +O~E! # +Ic 3 O~E!. Hence, we need to
show that +~E2! is SIc

v 3 +O~E! in order to complete the proof.
Consider any pair ~s, d! in SIc

v 3 +O~E!. By definition, d is a realizable
output sequence for E. Thus, there is an input sequence g such that ~g, d!
has a run in E. The definition of T2 adds an edge for each element of SIc

between any consecutive states in this run. Hence, ~s, d! has a run in E2.
In the other direction, consider any pair ~s, d! that has a run in E2.

From the definition of T2, the quantified-out inputs on each transition of
this run define an input sequence g such that ~g, d! has a run in E. Hence,
d is in +O~E!, as desired. e

The intuition behind the proof is that E1’s traces are restricted by its con-
strained inputs, while E2’s are not. If, in spite of this, we have +~E1! $ +~E2!,
then E1’s output traces must be independent of its constrained inputs.

4.3 CUFSMs: “Controlled” UFSMs

Component FSMs in a FSM network will, in general, be in complicated
feedback and feedforward relationships to each other. Safe removal is
possible for such FSMs if they are CUFSMs.

Definition 13 (CUFSM). A FSM E is a controlled universal finite state
machine (CUFSM) iff (a) E has input independence from its constrained
inputs Ic, and (b) E is a UFSM.

A CUFSM, then, is “controlled” by its free inputs.

THEOREM 2. If E is a component in a network of interacting FSMs N,
and is a CUFSM, then E is safe to remove from N.

PROOF. Safe FSM removal is relative to a set Q of input or output
variables of component FSMs in a FSM network. Let us choose Q to be the
set union of the inputs and outputs of E. By Definition 11, removal of E
may entail (a) substituting free inputs for inputs of other FSMs that
overlap with its outputs; and (b) eliminating overlap between outputs of
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neighboring FSMs and inputs of E. With respect to (a), the set of possible
traces over inputs of neighboring FSMs driven by outputs of E can only
increase, not decrease, when E is removed. Since E is assumed to be a
UFSM, however, no increase is possible.

Considering case (b), the overlap of neighboring FSM outputs with inputs
of E can only constrain E ’s inputs. Since E is assumed to be a CUFSM, E
can realize all pairings of constrained input sequences and output se-
quences. Therefore, E ’s removal could not change sequences over its
outputs, and thus not over Q.

We have shown that trace equivalence is preserved over any inputs of
neighboring FSMs with E ’s removal. By the definition of a FSM, the trace
set at its inputs determines the trace set it can realize at its outputs. Thus,
given that removal of E cannot alter sequences over Q when Q is the set of
input and output variables of E, removal of E cannot alter sequences over
the union of Q with any other input or output variables of any component
FSM in the network. e

THEOREM 3. E is a CUFSM iff it is universal over the alphabet SIc3O.

PROOF. From the definition, E is a CUFSM iff (a) it has the property of
input independence from its constrained inputs, which condition is equiva-
lent to SIc

v 3 +O~E! # +Ic 3 O~E!; and (b) it is a UFSM, i.e., +O~E! 5 SO
v .

Hence, if E is a CUFSM, then +Ic 3 O~E! 5 SIc

v 3 SO
v , so E is universal

over SIc3O. The proof in the other direction is trivial. e

4.4 UFSM Detection

We present our UFSM-identification algorithm in Figure 2. In the algo-
rithm, the underlying FSM E is as defined in Section 3. The algorithm is
based on the classical subset construction algorithm described in Hopcroft
and Ullman [1979], for creating a DFA (deterministic finite automaton)
from a NFA (nondeterministic finite automaton). Out algorithm differs,
however, in that a set of states is discarded if it is a superset of another set
already encountered. In this lies our optimization, as this insures we will
never enumerate the entire powerset of E, something which could happen
in the worst case in the classical subset construction.

As the algorithm runs, DFA_MetaStates is populated with all incompa-
rable sets of E ’s states from which partial images have been taken, while
NFA_Statesets consists of sets of states held for future partial image
generation. The partial image under output valuation o [ SO of a set of
states 4 [ S is

Image~t! 5 ?s?i@T~s, i, o, t! ∧ 4~s!#

where o is a fixed valuation.
Figure 2 (lower part) illustrates the algorithm. On the left, the state

transition graphs of two FSMs are depicted, each having a single, binary
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output. They differ only in the existence of a self-loop in the initial state.
The upper machine is a UFSM, the lower one is not. To the right of each
FSM’s state graph, the workings of the algorithm are depicted as another
graph. Nodes are labeled with the metastates (i.e., sets of states encoun-
tered as the algorithm runs) and arcs are labeled with the output symbols
by which these metastates are reached. A cross through a node indicates a
metastate that is discarded as a superset of another. The algorithm ends
with success for the upper FSM after taking images from just the initial
state, since each partial image is a superset of the singleton initial state

A

B

C

D

E

F

G

{0,1}

{0,1}

{0,1}

0

0

{0,1}
1

1 1

{0,1}

{A}

0

1

{A,B
C,D}

{A,B
C,D}

A

B

C

D

E

F

G

{0,1}

{0,1}

{0,1}

0

0

{0,1}
1

1 1

{A}

0

1

{E}
0

{  }

{E,F}

0

1

{B,
C,D}

{B,
C,D}

Fig. 2. UFSM Identification: Algorithm and illustration.
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set. The algorithm ends with rejection for the lower FSM when an empty
partial image is encountered.

The algorithm in Figure 2 can be altered to check if E is universal over
SIc3O, and thus, by Theorem 3, is a CUFSM. The loop beginning on line 7
would iterate over all ic and o in SIc3O, and the partial image operation on
line 8 would then become

Image~t! 5 ?s?if @T~s, ~ic, if!, o, t! ∧ 4~s!#

where o [ SO and ic [ SIc are fixed and if [ SIf is a variable.
Theorem 1 of Section 4.2 provides a means of determining input indepen-

dence via language containment. Simulation relations, discussed in Section
6, provide a polynomial time approximation to language containment. If by
using simulation relations one can determine that a FSM has input
independence from its constrained inputs, then one can run the UFSM-
detection algorithm of Figure 2 over the outputs of the FSM only, as
opposed to outputs plus constrained inputs. This could considerably reduce
the computational resources needed.

5. CORRECTNESS PROOF FOR UFSM-IDENTIFICATION ALGORITHM

We prove here that the UFSM-identification algorithm of Figure 2 correctly
detects whether a FSM is a UFSM or not. For brevity, we omit a necessary
proof that the procedure terminates. Informally, the termination condition
is that NFA_Statesets must eventually become empty, since the powerset
of a FSM is finite.

Below, we consider a FSM E, defined over an alphabet of action symbols
SO, where SO

, signifies the set of all finite sequences over SO and SO
v the set

of all infinite sequences over SO. We first describe how the UFSM-detection
algorithm of Figure 2 builds, implicitly, a DFA derived from E.

The FSM E will, in general, become a NFA in the algorithm, since on line
8 all inputs are quantified away. Let $% be the implicit DFA derived from
E by the algorithm. States of $% are sets of states of E, and we refer to
these as metastates, to differentiate them from single states of E. The
initial metastate of $% is the set of initial states of E, which, on line 1 of
the algorithm, is put into NFA_Statesets. As the algorithm runs, the
metastates of $% are all the members NFA_Statesets ø

DFA_MetaStates, which set union, for convenience, we call SD. New
metastates and transitions are added to SD in the loop starting at line 7, in
which partial images are taken. Consider an arbitrary partial image Q9,
generated from metastate Q on action symbol o, on line 8. If Q9 is not a
superset of any metastate in SD, the algorithm behaves as the classical
subset construction algorithm described in Hopcroft and Ullman [1979]. Q9
becomes a metastate in $% (it is put into NFA_Statesets), and a transition
is added to $% from Q to Q9 on action symbol o. Generation of Q9, however,
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may result in discarding of a set of states, which is a departure from the
classical algorithm. Q9 itself may be discarded if it is a superset of an
existing metastate D [ SD. In this case, a transition is created in E from Q
to D, on action symbol o. It is also possible that some existing D9 [ SD is
discarded (line 13) if D9 . Q9. In this case, Q9 is kept, a transition from Q
to Q9 on action symbol o is added, and, additionally, existing transitions
going into D9 are routed into Q9. The loop beginning at line 7 then has four
possible outcomes for each partial image Q9 that is generated:

(1) Q9 is kept, nothing is discarded,

(2) Q9 is kept, another metastate D9 is discarded,

(3) Q9 is discarded, or

(4) Q9 is empty, and the algorithm exits on line 10.

In the last case, Q will not have a transition on at least one o [ SO, and all
metastates that may have been in NFA_Statesets at the time of exit will
be dead-end metastates, i.e., they will have no outgoing transitions at all.

Let dfa~E! be the DFA derived from E by the classical determination
construction. We prove, below, that dfa~E! can realize all finite sequences
that $% can realize, and therefore that the language of dfa~E! is a superset
of that of $%. We prove that when the algorithm exits on line 3 the
language of $% is SO

, . We exploit the known fact, proven in Hopcroft and
Ullman [1979] and elsewhere, that the languages of dfa~E! and E are the
same, to infer that the language of E is SO

, . We then extend this to a proof
that E ’s language is SO

v , and E is, therefore, a UFSM.
We also prove that if the algorithm is exited on line 10, E is not a UFSM.

We cannot use a language containment argument in this case, since the
language of dfa~E! could still be SO

, even when the language of $% is not.
We, therefore, prove directly that when the algorithm is exited on line 10,
dfa~E! ’s language is not SO

, , and thus E cannot be a UFSM. Exiting on
lines 3 or 10 are the only two possibilities for the algorithm.

PROOF. We construct the proof using the following lemmas.

LEMMA 1. All metastates in $% have outgoing transitions on all o [ SO

iff the algorithm is exited on line 3.

PROOF. NFA_Statesets is initialized on line 1 to hold the initial state
set of E. The algorithm is exited on line 3 if NFA_Statesets is empty.
There must, then, be at least one pass through the main while loop starting
at line 3. DFA_MetaStates is initialized as empty (line 2).

By the construction of $% recounted above, metastates in
NFA_Statesets have no outgoing transitions at all. In each pass through
the main while loop of line 3, a new member Q of NFA_Statesets is chosen
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for partial image generation. By the construction of $%, each iteration
through the main while loop either discards such a Q or adds outgoing
edges to it for all o [ SO and transfers it to DFA_MetaStates, from which
it can never return to NFA_Statesets (this can be verified by inspection).
It is the termination condition of the algorithm that NFA_Statesets must
eventually become empty, since the powerset of E is finite. When it does
become empty, all former members of NFA_Statesets will either have
been discarded or have had outgoing transitions added on all o [ SO and
be in DFA_MetaStates. By inspection of the algorithm, it can also be
verified that metastates come into DFA_MetaStates only by transfer from
NFA_Statesets.

An existing metastate may be discarded from DFA_MetaStates (line
13) on each pass through the main while loop; but, as detailed above, no
outgoing transitions of any remaining metastates are deleted, but are
simply rerouted. Thus, if the algorithm is exited on line 3, all metastates in
$% have transitions on all o [ SO.

For the proof in the other direction, if the algorithm is not exited on line
3 it must be exited on line 10. This occurs only when there is no transition
on some o [ SO from the metastate Q chosen for partial image
generation. e

LEMMA 2. For every finite sequence tn [ SO
, , if tn is realized in $% it is

realized in dfa~E!, and the terminal metastate X of the state sequence
realizing it in $% is a subset of the terminal metastate R of the state
sequence realizing it in dfa~E!.

PROOF. This is trivially true for sequences of length 0, since the initial
states of $% and dfa~E! are the same.

Assume the claim is true for all sequences tn [ SO
, of length n. Let us

consider an arbitrary tn that $% can realize. Assume the terminal met-
astates of the state sequences realizing it in $% and dfa~E! are X and R,
respectively. Consider any sequence tn11 5 tn;o for any o [ SO, and
assume $% can realize tn11. Then there is a metastate X9 that is a successor
to X on o in $%. Now there are three ways in which X9 could have become
the successor to X on o when $% was constructed. Below, let Imageo~Q!
denote the partial image under o of set of states Q.

(1) X9 5 Imageo~ X !, i.e., X9 was generated on line 8, and the transition X
to X9 on o was added without any set of states being discarded;

(2) Imageo~ X ! was discarded on line 11 of the algorithm, and X9, an
existing metastate of $%, became the successor of X on o;

(3) on some iteration of the algorithm, X was in DFA_MetaStates with
successor Z on action symbol o, X9 was generated as the partial image
of some metastate Y on some action symbol (it doesn’t matter which), Z
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was discarded (line 13) as a superset of X9, and the transition X to X9
on o was added.

In cases 2 and 3, by the construction of $%, detailed above, X9 #

Imageo~ X !. Since by the induction hypothesis, X # R, Imageo~ X ! #

Imageo~R!, and thus X9 # Imageo~R!. In the classical subset construction
algorithm, R9 5 Imageo~R!, and so X9 # R9. Since X9 is not empty, neither
is R9 5 Image~R!, and therefore R9, by the classical subset construction, is
a metastate in dfa~E! and dfa~E! can realize tn11. e

LEMMA 3. A DFA defined over a set of action symbols SO can realize all
sequences in SO

, iff in every state there is a transition on every o [ SO.

PROOF. Let us assume the above is false for some DFA D. Then D can
either realize all of SO

, , but cannot transition in some state s on some o [ SO,
or D can transition in every state s on every o [ SO, but cannot realize
some sequence in SO

, . Considering the first case, assume D can realize
finite sequence t. Being a DFA, there is only one sequence of states
realizing t ending in, say, state s. But if D cannot transition on o from s,
then t;o cannot be generated, and so D cannot realize all of SO

, . Regarding
the second case, assume D cannot realize the sequence of length n, tn.
There must be some longest finite prefix t j where 0 # j , n that D can
realize. Being a DFA, there is only one sequence of states that realizes t j,
and one state s terminating this sequence. Since s can transition on each
o [ SO, the DFA must be able to realize each t j;o, and thus t j cannot be
the longest finite prefix of tn. e

We need the lemma below to extend our proofs on finite sequences to
infinite ones.

LEMMA 4. For any FSM E, if E can produce all sequences in SO
, , then E

can produce all sequences in SO
v .

PROOF. Let E be a FSM that can produce all sequences in SO
, .

Let t be an infinite sequence from SO
v . By the hypothesis, E can produce

all finite prefixes of t. For each integer i there is a sequence of alternating
states and transitions through E that produces the finite prefix of t of
length i, t i. We can arrange all such sequences for all t i in the form of a
directed acyclic graph, where the nodes are states and the arcs are
transitions labeled with symbols from SO. This graph is rooted at the
possibly multiple initial states of E from which the infinite sequence t, can
be realized. Counting the root as the 1st level, nodes at the ith level of the
graph represent states reachable on t i21, the finite prefix of t of length
i 2 1. From each of these states, we construct the graph as follows. We
extend arcs labeled with the ith symbol in t, oi, from each such state s to
states reachable from s on oi. We create two such arcs for each transition.
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From one of the (duplicate) end nodes on these arcs, we repeat this pattern
and extend the graph further, and from the other we do not, leaving it as a
dead-end node. All such dead-end nodes at the ith level of the graph form
the termination points for all sequences of length i 2 1 that realize the
finite prefix of t, t i21.

E is finite-state, and, as such, each level of the graph will have finitely
many states. Thus, this graph has finite branching. Since successively
longer prefixes of t are produced, the graph is infinite. By König’s Lemma
[König 1936], the graph must contain an infinite path tv. However, by
construction, the path tv agrees with every finite prefix of t, and hence
must equal t. Thus, t is produced by E as well. e

LEMMA 5. If the algorithm exits on line 10, the language of dfa~E! is a
proper subset of SO

, .

PROOF. The classical subset construction algorithm, described in
Hopcroft and Ullman [1979] and elsewhere, creates a metastate for each
subset of the reachable states of the underlying NFA. By the construction
of $% described above, any metastate Q from which partial images are
generated on line 8 is a subset of the reachable states of E and is,
therefore, in both $% and dfa~E!. If the algorithm exits on line 10, Q does
not have a transition on some o [ SO, and by Lemma 3, the language of
dfa~E! must be a proper subset of SO

, . e

We can now easily form our proof. Recall that lines 3 and 10 are the only
two exit lines in the algorithm.

By Lemma 1, if the algorithm exits on line 3, the implicit DFA, $%, has a
transition on each o [ SO in each of its metastates. By Lemma 3, $% can
realize all sequences in SO

, and, by Lemma 2, so can dfa~E!. By the known
fact that the languages of dfa~E! and E are the same, so can E. By Lemma
4, E is therefore a UFSM.

If the algorithm exits on line 10, by Lemma 5 there is at least one
sequence in SO

, which dfa~E! cannot realize, and by Lemma 4, E is
therefore not a UFSM. e

6. SIMULATION RELATIONS

A simulation relation is a relation over a set of states and a set of action
symbols associated with the states or with state transitions. When a pair of
states ~s, t! are related, the meaning is that all sequences of action
symbols realizable from state s are realizable from state t, and additional
sequences may be realizable from t as well. We wish to compute simulation
relations over the states of a FSM, E, with the set of action symbols being
the alphabet SIc3O, as defined above. We then create a new abstract FSM
E9 by choosing representative states from the state pairs related by this
simulation relation. This type of state reduction can be both a prelude to
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UFSM detection, which will be easier to carry out on a reduced state space,
or an end in itself. That is, if E is not a UFSM, then E9 may still be a
reduced replacement for it. Computation of a simulation relation is polyno-
mial in the number of states, and the UFSM-detection algorithm in Section
4.4 is exponential in the number of states. This greatly motivates our use of
simulation relations.

6.1 Simulation, Simulation Equivalence, and Bisimulation

A simulation relation R may be computed over the state set S of a FSM E,
as below, where T~s, i, o, t! is the transition relation of E:

R0~s, t! :5 S 3 S

Ri11~s, t! :5 Ri~s, t! ∧ @i@o@s9@T~s, i, o, s9! 3 ~?t9T~t, i, o, t9! ∧ Ri~s9, t9!!#

A simulation equivalence relation Rse may then be formed from R,

Rse~s, t! :5 R~s, t! ∧ R~t, s!

and a state reduced transition relation, T9, computed:

T9~s, i, o, t! :5 Rep~s! ∧ Rep~t! ∧ ?u, v@Rse~u, s! ∧ Rse~v, t! ∧ T~u, i, o, v!# (1)

In practice, the above computations would be performed after reachabil-
ity analysis, as convergence is likely to occur much quicker when the
computations are confined to reachable states.

The simulation equivalence relation Rse forms a symmetrical relation by
deleting, after convergence, all ~s, t! [ R such that ~t, s! [y R. We could
delete such assymetrical pairs on every iteration of the algorithm, in which
case R would become a bisimulation relation. In both cases (bisimulation
and simulation equivalence), related pairs are trace-equivalent; however,
we choose to utilize the simulation-equivalence relation because it is
weaker, and may, therefore, include more trace-equivalent state pairs.

6.2 State Reduction

Simulation equivalence defines a partition of a state set into equivalence
classes. We may choose lexicographically least elements from each equiva-
lence class to represent the class in a state-reduced FSM. This may be done
using ROBDDs (reduced ordered binary decision diagrams), as per Lin and
Newton [1991]. Let Rse~s, t! be the characteristic function of the simulation
equivalence relation, and Rep~t! the characteristic function of the set of
representative states. We may then form a new transition relation T9 from
the original transition relation E, as per formula 1 of Section 6.1. In T9,
transitions are only among representative states. It is a theorem that this
computation preserves trace-equivalence. In stating and proving this theo-
rem, we refer to state reduction via computation of a simulation relation as
SRSR.
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THEOREM 4. If a FSM E9 is derived from another FSM E, via SRSR
computed with respect to a set of action symbols A, then +A~E! 5 +A~E9!.

PROOF. E can realize some set of infinite sequences, SE
v # SA

v. To make
the proof most relevant, we write an element of a sequence as ~ic, o!, where
ic is a valuation of the constrained inputs of E. By Lemma 4 of Section 5, if
E9 can realize all finite prefixes of each t [ SE

v, then E9 can realize all t

[ SE
v. We show, by induction, that if E9 is derived from E via SRSR, this

must be the case.
The induction hypothesis is that E9 can realize all finite prefixes of

length n of each t [ SE
v. For proving the base case, assume E9 cannot

realize some finite prefix of length 1, ~ic, o!, but E can. We show that this
is impossible. If E can realize ~ic, o!, there must be an initial state E, u,
such that u transitions on ~ic, o! to some state v. States u and v have
representatives, call them s and t, and therefore Rep~s! and Rep~t! hold.
Note that it is a property of the simulation-equivalence relation that each
member of the set of states over which the relation is computed has a
representative.

If there is a transition from u to v on ~ic, o!, then there is some if, i.e.,
some valuation of free inputs, that effects this transition, and T~u, i, o, v!
holds, where i is a valuation over both ic and if. Thus, formula 1 of Section
6.1 must hold, and there is a transition in E9 from initial state s to state t
on ~ic, o!, which contradicts our original assumption.

For the induction step, let us choose some finite prefix of length n 1 1,
tn11, which E realizes, and let us assume E9 cannot realize it. The sequence
tn11 can be decomposed into a sequence of length n, tn, and a next action
symbol ~ic, o!n11. By the induction hypothesis, E9 can realize tn. Therefore,
it must be the case that E9 cannot add the next action symbol, ~ic, o!n11,
onto tn, while E can.

Pick any state u in E that is reachable on tn. It must have a representa-
tive s. We show that s must be reachable in E9 on tn. The sequence tn can
be decomposed into sequence tn21 and next action symbol ~ic, o!n. Let us
assume that s is not reachable in E9 because from all states in E9 reachable
on tn21, there is no transition to s on ~ic, o!n. However, there is some state
u9 that is a predecessor of u in E such that there is a transition to u from
u9 on action symbol ~ic, o!n in E. Thus, T~u9, ~i, o!n, u! holds in E, where
the input component i, of ~i, o!n consists of the constrained input valuation
ic, in ~ic, o!n, coupled with any appropriate free input valuation if, which
will effect the transition. There is a representative for u9 in E9, s9. Thus,
Rep~s9! holds. Since s is also a representative state, Rep~s! holds. The
following form of formula 1 of Section 6.1 must, therefore, hold:

T9~s9, ~i, o!n, s! :5 Rep~s! ∧ Rep~s9! ∧ ?u9, u@Rse~u9, s9! ∧ Rse~u, s! ∧ T~u9, ~i, o!n, u!#
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Thus, contrary to our assumption, there must be a transition to s on ~ic, o!n

from state s9, in E9. We can make a similar argument for any two
successive states reached along tn, back to initial states.

To summarize, we have proven that for any state u reachable on tn in E,
the representative of u in E9, s must likewise be reachable on tn in E9.
Given this, we can argue, as we did for the base case of the induction, that
if u can transition on action symbol ~ic, o!n11, so can s, and therefore E9
realizes tn11. e

7. DEADLOCK

In this section we show that our abstraction techniques do not introduce
any deadlock. As discussed in Section 3, it is possible for the composition of
deadlock-free FSMs to deadlock.

7.1 Freedom from Deadlock

THEOREM 5. Let E and M be machines such that E \ M is deadlock-free.
If E is removed via CUFSM removal, then M will not deadlock.

PROOF. CUFSM removal results in replacement of M ’s inputs by a set of
free primary inputs. As E \ M is deadlock-free, there cannot be a deadlock
state in M. e

Next we show that the simulation-based state reduction of Section 6
cannot introduce deadlock. Note that the definition of deadlock (see Section
3) applies only to the reachable states of a FSM. This is not an important
restriction, since we assume SRSR would be performed after reachability
analysis.

THEOREM 6. Let E and M be FSMs such that E \ M is deadlock-free. If
E9 is derived from E via SRSR, then E9 \ M is also deadlock-free.

PROOF. Let S and S9 be the state sets of E and E9, respectively. S9 #

S if E9 is derived from E via SRSR. Assume there is a deadlock state ~s9, u! in
E9 \ M, where s9 is an internal state of E9 and u is an internal state of M.
Since E \ M is assumed deadlock-free (it is a concrete machine), then
~s9, u! cannot be a state in E \ M. Thus, in order for ~s9, u! to be a
deadlock state, it must have been created when SRSR was applied to E.

When SRSR was applied to E, s9, a state that existed in E became a
representative state. It cannot represent only itself because in that case
~s9, u!, a deadlock state, would be in E \ M. So s9 must represent at least
one other state in E, say, s, such that ~s, u! is a state in E \ M. To see
this, recall that O, the output of both E and E9, overlaps the inputs of M.
The state s is reached in E upon some set of finite sequences of states,
corresponding to a set of finite sequences over SIc3O. This defines a set of
input sequences to M, at least one of which leads to state u. If s9 represents
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s after SRSR, then every sequence of action symbols leading into s in E leads
into s9 in E9. This is not because each such sequence led into s9 in E, but
because in the reduced transition relation, T9 of E9, all transitions going into s
are routed into s9 (see Section 6.1). To summarize, at this point we know

(1) there is a state ~s, u! in E \ M that does not deadlock;

(2) there is a state ~s9, u! in E9 \ M that we assume does deadlock; and

(3) the same sequences of action symbols leading into ~s, u! in E \ M lead
into ~s9, u! in E9 \ M.

The possible input valuations to M, while E \ M is in state ~s, u!, is
some set valm 5 $i0, i1, · · ·, in%, where each ij denotes a value for all the
input variables of M. This set of input valuations, valm, must also be the
set of input valuations possible in state ~s9, u! in E9 \ M. This is because
the inputs of M all overlap with outputs of E, and s9 and s are trace-
equivalent over these outputs (otherwise s9 would not be a representative
state for s). If the set of inputs and the internal state of a FSM, such as M,
are specified, its outputs are likewise specified. These, for M, determine the
valuation on the constrained inputs of E9 in state ~s9, u! of E9 \ M. These
valuations over constrained inputs must be the same as those of E in E
\ M in state ~s, u!, since the constrained inputs of E and E9 are the same.
Thus, a mismatch in input-output pairs leading to deadlock is impossible in
E9 \ M in state ~s9, u!, since otherwise it would lead to deadlock in E \ M
in state ~s, u!. e

8. FUTURE WORK

This work is very new. We have formulated the theory, but have not yet
implemented the algorithms described here. Implementing them, and refin-
ing the implementations on examples, is our first goal.

We know UFSM detection will not be tractable for large FSMs, since it is
a PSPACE-complete problem. The limitation will likely be storing and
manipulating the exponential number of sets of states that may be gener-
ated. However, if the UFSM-detection algorithm in Figure 2 can be run on
sufficiently small FSMs, this may not be a barrier. Thus its utility will
depend upon formulating heuristics for partitioning, so that large FSM
networks can be divided into many small FSMs, some of which can then be
proven to be CUFSMs and safely removed. Developing structural analysis
techniques, at the sequential circuit level, to determine good partition
points, will be a high priority.

In this paper we have not discussed FSMs that exhibit universality over
their outputs for certain sequences of their constrained inputs only or that
exhibit universality over a proper subset of their output alphabets. We
intend to find suitable abstractions, which we expect will be a common
occurance, for these cases. We also intend to expand our use of simulation
relations, specifically by utilizing nontrace-equivalent state pairs. Under
some circumstances, it is possible for a state to represent other states to
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which it is not trace-equivalent, and yet to have trace-equivalence pre-
served between the original and the reduced machines. We are developing
algorithms to find and utilize such representative states.
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