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Abstract. We study two closely related problems: (a) showing that
a program transformation is correct and (b) propagating an invariant
through a program transformation. The second problem is motivated by
an application which utilizes program invariants to improve the quality of
compiler optimizations. We show that both problems can be addressed
by augmenting a transformation with an auxiliary witness generation
procedure. For every application of the transformation, the witness gen-
erator constructs a relation which guarantees the correctness of that
instance. We show that stuttering simulation is a sound and complete
witness format. Completeness means that, under mild conditions, every
correct transformation induces a stuttering simulation witness which is
strong enough to prove that the transformation is correct. A witness is
self-contained, in that its correctness is independent of the optimization
procedure which generates it. Any invariant of a source program can be
turned into an invariant of the target of a transformation by suitably
composing it with its witness. Stuttering simulations readily compose,
forming a single witness for a sequence of transformations. Witness gen-
eration is simpler than a formal proof of correctness, and it is compre-
hensive, unlike the heuristics used for translation validation. We define
witnesses for a number of standard compiler optimizations; this exercise
shows that witness generators can be implemented quite easily.

1 Introduction

An optimizing compiler is commonly structured as a sequence of passes. Each
pass has a source program, which is analyzed and transformed to a target pro-
gram, which then becomes the source for the next pass in the sequence. By
augmenting the analysis phase of an optimization pass with information from
externally supplied program invariants, it is possible to significantly enhance the
quality and the effectiveness of the optimization.

To illustrate this point, consider a program which uses McCarthy’s 91 func-
tion [12], which we write as M91(x). The original function is doubly recursive,
but has the simple property that the result is 91, if x ≤ 100, and is (x − 10)
otherwise. Suppose that a programmer supplies this invariant, perhaps as part
of a larger correctness proof. A compiler may then replace an invocation of
this function, say M91(a), with the substantially simpler conditional statement:
if (a <= 100) then 91 else (a-10).



Program invariants that enable new and improved optimization may arise
from multiple sources: they may be computed by a static program analysis, be
supplied as part of a correctness proof, or be generated by the analysis phase
of an earlier optimization pass. The key technical challenge is to accurately
propagate an invariant through multiple optimization passes. The difficulty arises
because an optimization may alter program structure in arbitrary ways. For
instance, a dead-code elimination removes portions of the program, expression
simplification may add fresh variables and statements, and loop optimization
reorders statement executions. Therefore, an invariant cannot simply be copied
over unchanged from the source to the target of an optimization.

Moreover, one would like a generic and systematic propagation procedure
which works for all optimizations. The questions of correctness and propagation
are closely related: if there is no assurance that an optimization is correct, a
target program invariant cannot be derived from an invariant for its source
program, but must be computed afresh.

In this work we suggest a methodology which resolves both questions. We
propose that every optimization3 procedure is augmented with an auxiliary wit-
ness generator. For each instance of optimization, the generator constructs a
witness relation between the target and source programs which guarantees cor-
rectness for that instance. We show that a stuttering simulation relation forms
a sound and complete witness format. Stuttering simulation has several advan-
tages. First, checking if a relation is a stuttering simulation can be done by
considering only single program steps (even if stuttering is unbounded), result-
ing in a generic, easily implemented, and independent procedure to check for
the correctness of a transformation. Second, stuttering simulation is closed un-
der composition; thus, a sequence of witnesses, corresponding to a sequence of
transformations, can be collapsed into a single witness for the entire sequence.
Third, we show that a source program invariant can be propagated to the target
program simply by computing its pre-image with respect to the witness relation.
And, finally, we show that this format is complete: under mild conditions, a valid
stuttering simulation relation can be defined for every correct transformation.

Unlike witness propagation, witness generation is not expected to be per-
formed automatically. It assumes accesss to the optimization code and familiar-
ity with the procedure. The additional effort required is compensated for with
a better optimization that can utilize externally supplied invariants, and whose
correctness can be proved independently with theorem provers.

Witness generation differs in crucial respects from the known alternatives to
showing correctness of compiler optimizations. Formally proving the correctness
of a transformation over all legal inputs is a daunting task4. Moreover, a cor-
rectness proof does not directly result in a method for propagating invariants.

3 In this paper, we use “transformation” and “optimization” interchangeably.
4 The remarkable effort described in [10] shows how much work is needed to construct

correctness proofs for an optimizing compiler. As another estimate of the difficulty,
the implementation of sparse conditional constant propagation requires over 2000
lines of C++ code in LLVM [9].
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Translation validation (TV) (cf. [24]) employs heuristics to guess a witness rela-
tion for every instance of an unknown transformation. The heuristics, however,
may fail to produce a witness for some instances.

Witness generation falls in-between these two options. Crucially, we assume
full knowledge of the optimization procedure, as for formal correctness proofs,
but define a generator to construct a witness for every run of the optimizer, as
with TV. Full knowledge of the optimization procedure eliminates the need for
heuristics, while generating a witness for each run is significantly simpler than
constructing a correctness proof. The possible drawback is in the overhead of
witness generation and the need to check a witness for correctness.

L1: y := 3;

L2: x := 10;

L3: x := 20;

L4: y := 2*x + y;

(a) source

L1: y := 3;

L3: x := 20;

L4: y := 2*x + y;

(b) target

Fig. 1. Dead-code elimination.

The use of stuttering simulation is a departure from the common method
of showing refinement, which is to establish a simulation relation from the tar-
get to the source program. Simulation is, however, incomplete: for instance, the
dead-code elimination transformation shown in Figure 1 cannot be shown correct
with a standard simulation relation, as the target has fewer instructions than
the source. Our proof that stuttering simulation is complete is a specialization
of results [1, 14] on the completeness of refinement mappings; the details of this
connection are laid out in Section 2. The witness relations defined in the com-
pleteness proof are necessarily complex. As we show in Section 3, however, many
common optimizations may be witnessed with simple relations. This is because
the complexity lies in the analysis phase which is used to determine whether
a transformation is feasible, rather than in the transformation itself. A witness
generator can re-use the information gathered in the analysis to define a witness.

To summarize, our contributions in this work are as follows:

– We propose augmenting each optimization pass with a witness generator,
which creates a witness relation for every run of the optimizer.

– We show that stuttering simulation is a sound and (under mild conditions)
complete witness format. As a consequence, witness checking can be made
independent of the optimizations being considered.

– We show how to propagate program invariants using a stuttering simulation
witness. The construction preserves inductiveness: an inductive invariant for
the source turns into an inductive invariant for the target program;

– We show how to define witnesses generators for several standard compiler
optimizations. The generator procedure freely uses analysis information that
has been gathered for the optimization.
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2 Transformations and Witnesses

We define the notion of correctness for a program transformation, and show that
establishing a stuttering simulation relation from target to source is a sound and
complete method for establishing correctness. We also show how to propagate
invariants across a transformation using witnesses.

2.1 Background and Notation

Following Dijkstra and Scholten[8], the notation [ϕ] for a formula ϕ represents
that ϕ is a validity. For clarity, we often omit displaying the variables that a
predicate depends on; thus, for instance, we may write [f ⇒ g] instead of
[f(x, y) ⇒ g(y)] or the even more verbose (∀x, y : f(x, y) ⇒ g(y)).

The inverse of a binary relation R is written as R−1. The composition of
relations R and S, written R;S, is the relation {(u,w) | (∃v : (u, v) ∈ R ∧
(v, w) ∈ S)}. For a relation R on D × E and a predicate θ on E, the notation
〈R〉θ defines the set {d ∈ D | (∃e : e ∈ E : (d, e) ∈ R ∧ e ∈ θ)}. Its negation
dual, denoted [R]θ, defines the set {d ∈ D | (∀e : e ∈ E ∧ (d, e) ∈ R : e ∈ θ)}.

For a program A and predicate ϕ, wlp(A,ϕ) is the weakest liberal precondi-
tion operator, and wp(A,ϕ) is the weakest precondition operator, both defined
in [7].

2.2 Programs and Transformations

Example programs in this paper are written in a C-like notation. For the formal
framework, it is simpler to consider a program as a symbolic transition system.

Definition 1 (Program) A program is described as a tuple (V,Θ, T ), where

– V is a finite set of (typed) state variables, including a distinguished program
location variable, π,

– Θ is an initial condition characterizing the initial states of the program,
– T is a transition relation, relating a state to its possible successors.

A program state is a type-consistent interpretation of its variables. For a
state s and a variable v ∈ V , we denote by s[v] the value that s assigns to v. The
transition relation is denoted syntactically as a predicate on V and V ′, which is
a primed copy of V . For every variable x in V , its primed version x′ refers to
the value of x in the successor state.

There is a unique initial program location, S, such that [Θ → (π = S)], and a
unique terminal program location, F, such that [T ∧ (π = F)→ false]. An initial
state is one where the location is S; a final state is one where the location is F;
all other states are intermediate states. We assume that a program has no direct
transition from an initial to a final state, and that there are no transitions to an
initial state.

We assume that the transition relation of a program is complete; that is, for
every non-final state s, there is a state s′ such that T (s, s′) holds, and that a final
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state has no successor. We also assume that the transition relation is location-
deterministic, in that there is a unique transition between any two locations.
Formally, [(T (s, t) ∧ T (s, v) ∧ t[π] = v[π]) ⇒ t = v]. This allows non-
determinism in the sense of Dijkstra’s if -fi and do-od constructs where multiple
guards may be true at a state, since the successor states have different locations.

A computation of a program is a maximal finite or infinite sequence of states
σ : s0, s1, . . ., where s0 is an initial state and every two consecutive states on σ
are related by the transition relation. Maximality implies that the last state of
σ (if any) is a final state.

The notion of correct implementation (“program B implements program A”)
is parameterized with respect to a compatibility relation from the state space of
B to the state space of A. Intuitively, this suggests how the initial and final
states of a B-computation correspond to similar states of A.

We give some examples of compatibility relations. A renaming transformation
maps every variable of program A, say xi, to a corresponding variable, say yi, and
replaces all occurrences of the x-variables with their corresponding y-variables.
The compatibility relation is simply the conjunction of terms (xi = yi), for all i.
A different transformation may replace one variable, x0, of A with a bit-vector
b0, . . . , b31 in B, while renaming all other variables x1, x2, . . . to corresponding
variables y1, y2, . . . as in the renaming transformation. The compatibility relation
is the conjunction of (x0 =

∑31
k=0 bk · 2k) with the terms (xi = yi) for i ≥ 1.

Definition 2 (Computation Matching) Let A and B be programs, and σB

and σA be maximal computations of B and A respectively. Then σB is matched
by σA up to a compatibility relation α if the following all hold:

– The initial states of σB and σA are related by α,
– If σB is terminating, so is σA and their final states are related by α, and
– If σB is infinite then so is σA.

The definition does not require that intermediate states of σB and σA are
compatible. We make this simplifying choice for this work because, typically, an
optimizing transformation preserves sequential semantics, which depends only
on initial and final states. It is straightforward to modify this definition to require
matching of intermediate states.

Definition 3 (Implementation) Given programs A and B and a compatibility
relation α, we say that B implements A up to α if for every maximal computation
of B, there is a maximal computation in A that matches it up to α.

Requiring non-terminating computations ofB to be matched to non-terminating
computations of A rules out pathological “implementations” where B does not
terminate on any input.

Theorem 1 The implementation formulation has the following properties.

1. (Composition) If B implements A up to α, and C implements B up to β,
then C implements A up to β;α.
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2. (Preservation) If B implements A up to α, then for any predicates pre and
post, if [〈α−1〉pre ⇒ wlp(A, [α−1]post)] then [pre ⇒ wlp(B, post)], and
[〈α−1〉pre ⇒ wp(A, [α−1]post)] then [pre ⇒ wp(B, post)].

Proof. (Sketch)The composition property follows directly from the definitions.
We sketch a proof of the preservation property for wlp. Suppose there is an
initial state u of B which satisfies pre and a terminating computation of B from
u which ends in a final state v. As B implements A up to α, there is a terminating
computation of A starting from an initial state s and ending in a final state t;
these states match u and v, respectively, by α. As (u, s) ∈ α, the state s satisfies
〈α−1〉pre. Therefore, the state t satisfies [α−1]post . As (v, t) ∈ α, it follows that
v satisfies post .

The proof for wp uses the identity [wp(S, q) ≡ wlp(S, q) ∧ wp(S, true)]
from [7]. It remains to prove that [pre ⇒ wp(B, true)] under the assumption
[〈α−1〉pre ⇒ wp(A, true)]. Consider state u and s as before. If wp(B, true)
does not hold at u, there is an infinite computation from u in B, which must be
matched by an infinite computation from s in A. As s satisfies 〈α−1〉pre, this
leads to a contradiction. ut

A transformation is a partial function on the set of programs. A transfor-
mation τ is correct up to a parametric compatibility function α if for every
program A in its domain, B = τ(A) implements A up to α(A). In practical
terms, a transformation is partial because it need not apply to all programs.
Indeed, much of the effort in compiler optimization is on the analysis required
to determine whether a particular transformation can be applied.

2.3 Stuttering Simulation

The definition of implementation requires matching computations of unbounded
length, which is difficult to verify. A more directly verifiable formulation is in
terms of simulation, which matches single transitions.

It is simpler to define simulation in terms of a transition system, given by
a tuple (S, I,R), where S is a set of states, I is the subset of initial states and
R ⊆ S × S is a transition relation. A program (V,Θ, T ) induces the transition
system where the states are interpretations of V , the initial states are those
satisfying Θ, and the relation R is that defined symbolically by T .

Definition 4 (Step Simulation) Given transition systems B and A, a rela-
tion X ⊆ SB × SA is a step simulation if (a) every state in IB is related by
X to some state in IA, and (b) for every u, s and v such that (u, s) ∈ X and
(u, v) ∈ RB, there is some t ∈ SA such that (s, t) ∈ RA and (v, t) ∈ X.

The following theorem is immediate.

Theorem 2 (Step Soundness) For programs B and A and a compatibility
relation α, the program B implements A up to α if there is a step simulation
X from B to A, such that (1) for every initial state sB of B, there is an initial
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state sA of A such that (sB , sA) is in both X and α, and (2) for every final state
tB of B, if (tB , tA) ∈ X then tA is a final state of A and (tB , tA) ∈ α.

Thus, checking the single-transition conditions of step simulation, together
with the two additional conditions of Theorem 2, suffices to show that B is an
implementation of A up to α. These checks can be encoded as validity questions
and (possibly) resolved with a decision procedure.

Step simulation implies that matching finite computations have the same
length. As pointed out in the introduction, this requirement makes it impossible
to show the correctness of certain transformations using step simulation. Stutter-
ing simulation [6] relaxes this condition to allow successive non-empty segments
of the two computations to match by X, as is illustrated in Figure 2(a). However,
these segments may be of arbitrary length, which makes it difficult to check a
candidate relation.

For this reason, we use an equivalent single-step definition of stuttering sim-
ulation, formulated in [16] and refined in [14]. This requires, in addition to the
state relation, a ranking function whose value decreases strictly at each stut-
tering step, ensuring that every maximal stuttering segment is finite. We use a
simpler form of the definition, which is illustrated in Figure 2(b).

(a)

t

u s

v

u s

v

<
u s

v t

<

(b)

Fig. 2. Stuttering Simulation. Part (a) shows matching computations; states related
by X are connected with a dashed line. Part(b) illustrates the single-step formulation.

Definition 5 (Stuttering Simulation with Ranking) Consider transition sys-
tems B and A, a relation X ⊆ SB × SA, a well-founded domain (D,≺), and a
partial ranking function, rank : SB × SA → D. The relation X is a stuttering
simulation if (a) every state in IB is related by X to some state in IA, and (b)
for every u, v ∈ SB and s ∈ SA such that (u, s) ∈ X and (u, v) ∈ RB, one of the
following holds:

– There is t such that (s, t) ∈ RA and (v, t) ∈ X, or
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– There is t such that (s, t) ∈ RA and (u, t) ∈ X and rank(u, t) ≺ rank(u, s)
(stuttering in A), or

– (v, s) ∈ X and rank(v, s) ≺ rank(u, s) (stuttering in B)

The strict decrease in rank on every stuttering step ensures that any stuttering
sequence must be of finite length.

2.4 Soundness and Completeness of Stuttering Simulations

Definition 6 (Witness) Let A and B be programs with α as a compatibility
relation from B to A. An α-witness for (A,B) is a relation X from the state space
of B to that of A which is a stuttering simulation and satisfies the additional
conditions

– For every initial state u of B, there is an initial state s of A such that (u, s)
is in X and α, and

– For every final B-state v, and any A-state t, if (v, t) ∈ X, then t is final for
A and (v, t) ∈ α.

It is a well known fact that stuttering simulations are closed under composi-
tion and union (see [13] for a proof). It is straightforward to show that the union
and the composition of witnesses satisfies the two additional conditions. Hence,
we obtain the following theorem.

Theorem 3 [Closure Properties] The union of witness relations is a witness. If
X is an α-witness for (A,B) and Y is a β-witness for (B,C), then Y ;X is a
β;α-witness for (A,C).

Theorem 4 [Soundness] If X is an α-witness for the program pair (A,B), then
B implements A up to α.

Proof. Suppose that σB is a maximal computation of B with start state u. By the
first condition of Definition 6, there is an initial state s of A that is related to u
by both X and α. As X is a stuttering simulation, one can inductively construct
a maximal computation σA of A from s which matches σB . Formally, matching
requires that that σA and σB can be partitioned into corresponding non-empty
segments where any pair of states in corresponding segments are related by X.
A full proof showing the inductive construction can be found in [16].

Matching implies that the first condition of Definition 2 is met by the choice
of initial state for σA. We now show the second condition. Suppose σB is finite,
so its last state, say v, is final for B. This state is X-related to some state,
say t, on σA. By condition (2) of the witness definition, t is final for A, and
therefore the last state of σA, and (v, t) is in α. This meets the second condition
of Definition 2. On the other hand, if σB is infinite, so is σA, by construction.
This meets the third condition of Definition 2.

Thus, every maximal computation of B has a matching computation in A,
so that B implements A up to α by Definition 3. ut
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In [1], Abadi and Lamport showed that establishing a simulation is com-
plete for showing language containment after the two transition systems are aug-
mented with history and prophecy variables. Prophecy variables are needed to
account for stuttering and branching. In [14], Manolios sketches a proof that stut-
tering simulation is complete when augmented with history and prophecy vari-
ables, where prophecy variables are used only to account for non-determinism.
We prove in Theorem 5 that stuttering simulation is complete for programs with
deterministic transitions, where unbounded non-determinism is allowed in the
choice of initial state. The proof shows that prophecy variables are unnecessary
in this situation, while history can be folded into the definition of stuttering
simulation. As compiler optimizations are performed on deterministic internal
representations, the assumptions made are valid in practice.

Theorem 5 [Completeness] Consider programs B and A both of which have a
deterministic transition relation. If B implements A up to α, there is an αh-
witness for the pair (Ah, Bh). Here, Ph and αh are augmentations of program
P and relation α with respect to a history variable h.

We first sketch out the idea of the proof. By the definition of implementation,
every computation σ of B has a matching computation δ of A. As A and B are
deterministic, the computations are non-branching. The stuttering simulation
relation connects initial states of the two computations, final states (if any),
and every pair of intermediate states. A history variable is used to differentiate
occurrences of the same program state on different computations; as there is no
branching, it suffices to record the initial state of a computation.

Proof. (of Theorem 5) Given a program P = (V,Θ, T ), construct Ph, an ex-
tension of P with a history variable h. The history variable is an array that
records a value for every program variable. The new program has variable set
V h = V ∪ {h}, transition relation T h = T ∧ (h′ = h), and initial condition
Θh = Θ ∧ ( ∧ x : x ∈ V : h(x) = x). The new initial condition ensures that the
initial values of all program variables are recorded in the history variable.

For a state s of an extended program, the initial state corresponding to it is
denoted init(s). In this state, the location is S, every program variable x has the
value stored for it in the history h, i.e., init(s)[x] = (s[h])(x), and the history
variable has the value stored in the history; i.e., init(s)[h] = s[h]. The state of
the original program which state s corresponds to is called orig(s). In this state,
the location is the location of s, and every program variable has the value it has
in s, i.e., orig(s)[x] = s[x] for all x ∈ V .

Suppose that programs B and A have been extended in this manner to Bh

and Ah respectively. Determinism and completeness of transitions ensures that
there is a single computation from every initial state. The relation X between
Bh and Ah is defined as follows. For a state u of Bh and a state v of Ah, the
pair (u, v) is in X iff the following conditions hold:

– (Reachability) u is on the computation from initB(u) in Bh and v is on the
computation from initA(v) in Ah,
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– (Matching) The computation in B starting at origB(initB(u)) is matched
(as in Definition 2) by the computation in A starting at origA(initA(v)).

– (Position) u and v are either both initial states, both final states, or both
intermediate states.

The function rank(u, v) is defined only if (u, v) ∈ X and u and v are both on
a path to a final state. It has the value (m,n) where m is the number of steps
to the final state from u and n is the number of steps to the final state from v.
(By determinism, at most one final state can be reached from any state.) The
comparison function compares rank values point-wise.

We claim that X is a stuttering simulation relation. Consider a pair (u, v)
in X. The definition of X implies that for any descendant u′ of u (including
u′ = u) and descendant v′ of v (including v′ = v), the pair (u′, v′) satisfies the
reachability and matching conditions. This follows as the definition of the history
variable and its update imply that initB(u) = initB(u′) and initA(v) = initA(v′).
Hence, in the following, we focus on re-establishing the Position condition for
successor states.

(1) If u is on a path to a final state, so must v by the Matching constraint.
Consider a transition (u, u′). By the definitions, u′ must be either an intermediate
or a final state.

Suppose u′ is a intermediate state. If v is a intermediate state, then (u′, v) ∈
X; moreover, rank(u′, v) ≺ rank(u, v) as u′ is closer to its final state than u. If
v is an initial state, its unique successor v′ must be an intermediate state, so
(u′, v′) ∈ X. It is not possible for v to be final state, as u would also have to be
a final state by the definition of X, and would not have a successor.

Suppose u′ is a final state. Then u (and therefore v) must be an intermediate
state. If v has a final successor v′, then (u′, v′) ∈ X. If not, then v has a successor
v′ that is an intermediate state. Then (u, v′) ∈ X; moreover, rank(u, v′) ≺
rank(u, v) as v′ is closer to its final state than v.

(2) If u has no path to a final state, neither can v by the path matching
condition. Consider a transition (u, u′). If u is an initial state, so is v, by the
definition ofX, so there is an intermediate successor v′ of v such that (u′, v′) ∈ X.
If u is an intermediate state, so are v and u′; hence, by completeness of the
transition relation, v has an intermediate successor v′, and (u′, v′) ∈ X.

This proof establishes that X is a stuttering simulation. We now establish
the two additional conditions that are required for X to be a witness. Define αh

so that (u, v) ∈ αh iff (origB(u), origA(v)) ∈ α.
Consider an initial state u of Bh. Then s = origB(u) is an initial state of

B which, as B implements A up to α, is related to an initial state t of A such
that (s, t) ∈ α. Consider the initial state v of Ah formed by extending t with the
initial value of the history variable. Then origA(v) = t, so that (u, v) ∈ αh.

Suppose u, v are states such that (u, v) ∈ X and u is final. From the Position
condition, v must also be final. As the history variable is purely auxiliary, the
computation from initB(u) to u has a corresponding computation in B from
origB(initB(u)) to origB(u). Similarly, the computation from initA(v) to v has
a corresponding computation in A from origA(initA(v)) to origA(v). By the
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Matching condition, these computations match, so that (origB(u), origA(v)) is
in α, as origB(u) is a final state of B. Hence, (u, v) ∈ αh. ut

2.5 Invariant Propagation

Program invariants may arise from multiple sources: for instance, they may be
supplied externally via a correctness proof or a static analysis of the source
program, or computed internally as part of the analysis phase of an optimization
pass. Having a witness relation helps to propagate both types of invariants for
use in later stages of optimization. Note that the propagated invariant does not
depend on the ranking function used to show that W is a stuttering simulation.

Theorem 6 Let W be a stuttering simulation witness for a transformation from
program A to program B. If θ is an invariant for A, the set 〈W 〉θ is an invariant
for B. Moreover, if θ is inductive, so is 〈W 〉θ.

Proof. Let σ be a computation of B. From the stuttering simulation definition,
there is a computation δ of A such that every state on σ is related to some state
on δ. As δ is a computation of A, every state along it satisfies θ. It follows that
every state on σ satisfies 〈W 〉θ. Hence, the assertion 〈W 〉θ is an invariant for B.

Now assume that θ is inductive; we show that 〈W 〉θ is inductive as well. The
base case, that every initial state of B satisfies 〈W 〉θ, holds as all such states
are related to some initial state of A. Consider any state u of B which satisfies
〈W 〉θ. Therefore, there is a state s of A such that (u, s) ∈ W and s satisfies θ.
Consider a transition in B from u to v. By the stuttering simulation definition,
v corresponds by W to a state t that is reachable by a finite (possibly empty)
path in A from s. As θ is inductive, every state on this path, including t, satisfies
θ; hence, v satisfies 〈W 〉θ. ut

2.6 Computational Questions

Consider a sequence of transformations, with respective witnessesW1,W2, . . . ,Wk.
An invariant θ for the source program may be transferred in stages to the invari-
ant 〈WK〉(〈WK−1〉(. . . 〈W2〉(〈W1〉θ) . . .)) for the target. As the pre-image opera-
tor distributes over composition, this is equivalent to 〈WK ; . . . ;W2;W1〉θ. Wit-
nesses are closed under composition by Theorem 3, so lettingX = WK ; . . . ;W2;W1

be the witness for the entire transformation sequence, this expression can be
written succinctly as 〈X〉θ.

An interesting question is whether to perform invariant propagation in an
eager or lazy manner. Eager propagation transfers the invariant for each stage.
Since not all stages necessarily use the transferred invariant, an alternative is to
transfer an invariant only when needed.

We expect that the primary use of a transferred invariant will be to check
the validity of Hoare-triples under the invariant. The checks, therefore, have the
shape [(〈W 〉θ ∧ pre) ⇒ wlp(S, post)]. This can be written equivalently as
[(W ∧ θ ∧ pre ∧ S) ⇒ post ], which eliminates the existential quantification
in 〈W 〉. The quantifier-removal is important as, for many logics, efficient decision
procedures are known only for their quantifier-free fragments.
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3 Witnesses for Common Optimizations

In this section we define witnesses for several standard optimizations. The opti-
mizations are chosen for their commonality and in order to illustrate features of
the witness generation. We consider conditional constant propagation, dead-code
elimination, control-flow graph compression, and a number of loop optimizations.
For constant propagation, the witness is a step simulation; however, dead-code
elimination and control-flow graph compression requires stuttering simulation,
as the target code is shorter than the original. Loop optimizations, such as in-
terchange, tiling, and reversal require more complex witnesses which maintain
invariants about the loop. In each case, witness generation makes explicit the
implicit invariants gathered during the analysis.

3.1 Conditional Constant Propagation

In conditional constant propagation, the analysis algorithm does not propagate
constants through conditional branches which can be derived to be “dead”; i.e.,
those which have a guard which evaluates to false. This produces more accurate
results. For instance, in the example of Figure 3, determining that the “then”
branch of the conditional is dead allows y to be a constant after the conditional.

L1: x := 10;

L2: y := x*x;

L3: z := 2*x + 30;

L4: if(3*z < y){

L5: y := y+1;

L6: }else{

L7: y := y+2;

L8: }

L9: z := y+10;

L10:

(a) source

L1: x := 10;

L2: y := 100;

L3: z := 50;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(b) target

Fig. 3. Conditional Constant Propagation.

Constant propagation determines a set of variables that are known to be
constant at each location, along with their values. This set can be represented as
an assertion. For instance, at L3, the assertion is π = L3 ∧ x = 10 ∧ y = 100.
The set of such assertions forms an inductive invariant of the source program.

We use a symbolic representation to specify the relation between target and
source programs. For a source variable x, we use x to represent the same variable
in the target program. The general shape of the witness relation for constant
propagation is the following. A target state t is related to a source state s iff (a)
program locations of s and t correspond, (b) all variables have identical values
in s and t, and (c) the inductive invariant representing constant values holds of
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the source program. In our example, for simplicity, we rename locations in the
target so that the correspondence is obvious (e.g., L3 in the source corresponds
to L3 in the target) but such renaming is not required.

The witness relation for the example program includes the following clause.
Note that the invariant for the source program has been “folded-in” to the
relation through the assertions x = 10 ∧ y = 100 ∧ z = 50.

(π = L4) ∧ (π = L4) ∧ (x = x) ∧ (y = y) ∧ (z = z) ∧ x = 10 ∧ y = 100 ∧ z = 50

Carrying the invariants in the relation is necessary to match transitions as
required for a step simulation. For instance, the unconditional transition from
the target location L4 to L7 can be matched by the conditional source transition
from L4 to L7 only because the values of y and z are known to be the constant
values. We obtain the following theorem.

Theorem 7 For any correct constant propagation, the defined relation is a step
simulation witness which preserves all variables.

3.2 Dead Code Elimination (DCE)

Dead code elimination is based on an analysis of “live” variables. A variable is
live at a program point if there is program path starting at that point where the
variable is used before it is redefined. (All variables are considered live at S and
F nodes.) If the transition from location m to location n assigns a value to a
variable v that is dead (i.e., not live) at n, the assignment is replaced with a skip
statement. This is illustrated in Figure 4 which performs dead-code detection
for the output of the conditional analysis.

L1: x := 10;

L2: y := 100;

L3: z := 50;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(a) source

L1: x := 10;

L2: skip;

L3: skip;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(b) target

Fig. 4. Dead code elimination.

The result of the liveness analysis is a set, denoted live(l), for each location
l of the source program. The witness relation for DCE is the following. A target
state t is related to a source state s if (a) the program locations are identical for s
and t, and (b) every variable that is live at the source location has the same value
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in target and source states – i.e., for every variable v such that v ∈ live(s[π)]):
s[v] = t[v]. For the example programs, the relation includes the clause

(π = L3) ∧ (π = L3) ∧ (x = x)

as only the variable x is live at L3.

Theorem 8 For any correct dead code elimination, the defined relation is a step
simulation witness which preserves all variables.

Proof. Every initial state of the target is an initial state of the source. Consider
a pair of related states (t, s). Let m be the common location in s and t. Now
consider a transition from t to t′. There is a corresponding transition from s to
s′ where s′ and t′ have the same location, as the control flow of the program
is unchanged. The transition from t to t′ is either a skip that is a result of
eliminating an assignment of a dead variable at l, or corresponds to an identical
transition in the source. Note that the transition in the source must be based
only on variables live at m. In the latter case, as s and t agree on the values of
live variables, the result of the transition is identical in both source and target.

In the first case, the source transition from s must have the form y := e for
some variable y that is dead at the successor location m′. Consider a variable
x that is live at m′. Hence, x 6= y, so that s′[x] = s[x]. By the skip transition,
t′[x] = t[x]. Variable x must also be live at m, thus, s[x] = t[x] by the witness
relation, so that s′[x] = t′[x], as desired. Finally, as all variables are considered
live at S and F nodes, the two additional conditions in the witness definition
hold for the compatibility relation which preserves all program variables. ut

3.3 Control-Flow Graph Compression (CFG)

The output of the dead code elimination has several unnecessary skip statements.
These may be removed using the rewrite rule which replaces skip;S by S, for
any statement S. This compresses the control flow graph of the program. Other
instances of compression may occur in the following situations: (1) a sequence
such as goto L1; L1:S is replaced with L1:S, or (2) the sequence S1;S2 replaces
the sequence S1;if (C) skip else skip;S2. In each case, the target program
is shorter than the source. There cannot, therefore, be a step simulation witness;
it is necessary to introduce stuttering.

The general witness definition relates a target state t to a source state s if for
all v 6= π, s[v] = t[v] and either s[π] = t[π] or s[π] lies on a linear chain of skip
statements starting from s[π] in the source graph. For our example, the witness
relation connects L1 in the target to {L1, L2, L3, L4} in the source, and L7 to
{L7, L8}, while L9 and L10 are connected to L9 and L10, respectively.

As for the ranking, note that every skip-sequence occurs in the same basic
block. Hence, we can assign a rank to each stuttering pair that measures its
distance from the end of the source skip-sequence, while non-stuttering pairs
are given a sufficiently high rank. Thus, one possible ranking is (L1, L1) 7→
3, (L1, L2) 7→ 2, (L1, L3) 7→ 1, (L1, L4) 7→ 0, (L7, L7) 7→ 3, (L7, L8) 7→ 2,
(L9, L9) 7→ 3, and (L10, L10) 7→ 3.
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L1: x := 10;

L2: skip;

L3: skip;

L4: skip;

L7: y := 102;

L8: skip;

L9: z := 112;

L10:

(a) source

L1: x := 10;

L7: y := 102;

L9: z := 112;

L10:

(b) target

Fig. 5. Control-Flow-Graph compression.

Theorem 9 For a correct control-flow graph compression, the defined relation
is a stuttering simulation witness which preserves all variables.

Proof. (Sketch)Suppose that target state t is related to source state s. Then
location s[π] is on a linear chain of skip statements from t[π] in the source
graph. This chain must be of bounded length; the distance to the end of the
chain provides the rank function needed for the stuttering simulation proof. A
transition from t is matched either by a transition from s, or by a stuttering skip
transition from s to s′, where s′ and t are matched by the witness while the rank
decreases along the step. The two additional conditions of the witness definition
hold for the compatibility relation which preserves all program variables. ut

As stuttering simulations are closed under composition, the witnesses for
constant propagation, dead-code elimination, and control-flow graph compres-
sion can be composed to form a single witness for the transformation from the
program in Figure 3(a) to the program in Figure 5(b).

4 Reordering Transformations

A reordering transformation is a program transformation that merely changes
the order of execution of the code, without adding or deleting any executions of
any statement [2]. It preserves a dependence if it preserves the relative execution
order of the source and target of that dependence, and thus preserves the mean-
ing of the program. Reordering transformations include many loop optimizations
including fusion, distribution, interchange, and tiling.

A generic loop can be described by the statement “for i ∈ I by ≺I do B(i)”
where i is the loop induction variable and I is the set of the values assumed
by i through the different iterations of the loop. The set I can typically be
characterized by a set of linear inequalities.

4.1 Loop Invariant Code Motion

This is a simple reordering transformation, also referred to as “hoisting” or
“scalar promotion”. In it, a statement (or a group of statements) in the loop
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body B(i) that does not depend on any of the loop iterations is taken out of the
loop body. See for example Fig. 6, which is a simplified version of an example
from [15]. The assignments to a and c are not dependent on any statement in the
loop body. Moreover, the loop body is executed at least once. These facts can
be established by a static dependency analysis. Therefore, the two assignments
may be moved before the loop without changing the overall semantics.

The stuttering simulation maps the first few statements of the target program
(L1, L12, L13) and the first iteration of the target loop into the first iteration of
the source loop. This requires stuttering, as there are more instructions in the
target program segment than in the source program segment. The corresponding
symbolic (stuttering simulation) matching may thus include (π = L5) ∧ (π =
L5) ∧ (i = i) ∧ (a = a) ∧ (b = b) ∧ (c = c) ∧ (i = 1) ∧ (a = 3) ∧ (b = 2) ∧
(c = 2). From the second iteration onwards, the two loops are linked in a step
simulation as, by that stage, the values of a, b, and c are established as identical
constants in both programs. This pattern, of matching up the first iterations
of the loops using a stuttering simulation, while subsequent iterations are in a
step simulation, applies to the general instance of loop invariant code motion. For
these iterations, the matching may include (π = L5) ∧ (π = L5) ∧ (i = i) ∧ (a =
a) ∧ (b = b) ∧ (c = c) ∧ (d = d) ∧ (i > 1) ∧ (a = 3) ∧ (b = 2) ∧ (c = 2).
An alternative treatment of this transformation can be found in [23].

L1: b := 2;

L2: for i=1 to 100 do{

L3: a := b + 1;

L4: c := 2;

L5: d := (i mod 2) * c;}

L6:

(a) source

L1: b := 2;

L12: a := 3;

L13: c := 2;

L2: for i=1 to 100 do{

L5: d := (i mod 2) * 2;}

L6:

(b) target

Fig. 6. Loop Invariant Code Motion.

4.2 Loop Reordering Transformations

“Loop transformations” usually refer to a group of transformations that reorder
the loop bodies themselves, rather than the statements inside the loop body, and
have the generic form:

for i ∈ I by ≺I do B(i) =⇒ for j ∈ J by ≺J do B(F (j)) (1)

In such a transformation, we may possibly change the domain of the loop indices
from I to J , the names of loop indices from i to j, and possibly introduce an
additional linear transformation in the loop’s body, changing it from the source
B(i) to the target body B(F (j)). An example of such a transformation is loop
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reversal, that can be described as

for i = 1 to N do B(i) =⇒ for j = N to 1 (by −1) do B(j)

Here I = J = [1..N ], the transformation F is the identity, and the two orders
are given by i1 ≺I i2 ⇐⇒ i1 < i2 and j1 ≺J j2 ⇐⇒ j1 > j2, respectively.
Since we expect the source and target programs to execute the same instances
of the loop’s body (possibly in a different order), the mapping F : J 7→ I is a
bijection from J to I.

The work in [24] includes a comprehensive table of common loop transfor-
mations expressed in this form. There, “structure preserving” and “reordering”
transformations are treated differently, here we claim that witnesses allow for
uniform treatment of the two types of transformations. There, it is shown that
the following commutation conditions suffice for a correct loop transformation:

1. The mapping F is a bijection from J onto I.
2. For every i1 ≺I i2 such that F−1(i2) ≺J F−1(i1), B(i1); B(i2) ∼ B(i2); B(i1).

Establishing simulation iteration by iteration may be difficult (perhaps even
useless at times); the commutation conditions are sufficient to establish stutter-
ing simulation for states before and after the loop body. Propagation of inner loop
invariants, however, may be beneficial to perform further optimizations. While a
general scheme for establishing such a transformation may require complex logics
and reasoning, in many cases the obvious scheme — of replacing a source invari-
ant ϕ(i) by its counterpart F−1(ϕ(i)) — is correct. For example, consider the

programs in Fig. 7 and let AssertionA be the assertion ϕA(i) : sum =
∑i−1

k=1 a[i].
Since for every i = 1, . . . , N , F−1(i) = N − j + 1, we replace k = 1 with
k = N − 1 + 1 = N , i− 1 with F−1(i− 1) = N − j, and a[i] with a[j] to obtain

ϕB(j) : sum =
∑N

k=N−j a[k] for AssertionB.

B0

L1: sum := 0;

B1 {sum = 0}

L2: for i=1 to N do{

****AssertionA

L3: sum := sum + a[i];}

B2

L4:

(a) source

B0

L1: sum := 0;

B1 {sum = 0}

L2: for j=N to 1 by (-1) do{

****AssertionB

L3: sum := sum + a[j];}

B2

L4:

(b) target

Fig. 7. Vector summation reversal.

5 Discussion, Conclusions, and Related Work

Ensuring the correctness of program transformations – in particular, compiler
optimizations – is a long-standing research problem. In [11], Leroy gives a nice
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technical and historical view of approaches to this question. A primary approach
is to formally prove each transformation correct, over all legal input programs.
This is done, for example, in the CompCert project [10], and in [5], which derives
and proves correct optimizations using denotational semantics and a relational
version of Hoare’s logic. However, formal verification of a full-fledged optimizing
compiler, as one would verify any other large program, is often infeasible, due to
its size, evolution over time, and, possibly, proprietary considerations. Transla-
tion Validation offers an alternative to full verification. The idea is to construct
a validating tool which, after every run of the compiler, formally confirms that
the target code produced is a correct translation of the source program. (Proof-
carrying code [19] is related but certifies specific properties of programs.) A
primary assumption of this approach is that the validator has limited knowledge
of the transformation process. Hence, a variety of methods for translation valida-
tion arise (cf. [20, 18, 21, 23, 24, 22]), each making choices between the flexibility
of the program syntax and the set of possible optimizations that are handled. As
details of the optimization are assumed to be unknown, each method employs
heuristics to set up an inductive correctness proof for a run of the optimizer.
This approach is, therefore, naturally limited in its reach by the heuristics that
are used to compute a correctness proof.

More recently, [4] study certificate translation, which transforms a correctness
proof of a source program into a correctness proof of the program’s transforma-
tion, and certificate analysis, which transforms a proof of correctness from one
formalism into another. In [3], a method for proving semantic equivalence pro-
grams based on relational Hoare logic is presented. While there are similarities
to our use of stuttering simulation relations as witnesses, the general thrust is
closer to translation validation rather than witness generation, and has similar
limitations.

Our approach, while close to translation validation, differs crucially in that
it supposes that the optimization procedure is known and can be examined and
augmented. Hence, we suppose that the optimization procedure can be aug-
mented with a witness generator which produces witnesses which are checked
– as in the translation validation – at run-time. As the optimization process is
visible to the witness generator, the generator is able to make use of auxiliary
invariants derived by the optimizer in order to produce a witness. This implies
that witness generation is, in principle, applicable to any optimization. The par-
ticular form of witness that is considered here ensures that it is complete; hence,
a witness checker may be written once and reused for the witnesses produced
by a variety of transformations. The completeness result applies to deterministic
programs. This may seem like a limitation; however, program optimizations are,
for the most part, applied to deterministic sections of code, although the full
program may have non-determinism from inputs and thread-level scheduling.

In practice, limits may arise from the complexity of the witness relation that
must be produced. For instance, the logics needed to express the witness may
not have decision procedures, so that fully automated witness checking is not
possible. However, in several cases – a selection of which is presented in Section
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3 – witnesses can be expressed in terms of simple logics which are solvable using
current SMT solvers. An interesting question, which we plan to address in future
work, is the extent to which specialized forms of witnesses may be generated for
efficient checking.

We also state and provide a solution for the problem of invariant propagation.
This is prompted by recent (ongoing) work to crowd-sourced formal verification,
which will enable an application to use manually generated invariants to en-
hance and extend compiler optimizations. However, one need not rely solely on
crowd-sourcing or expert intervention for invariants; sound static analysis tools
often produce deep invariants for program code, especially loops, which are not
uncovered by the quick analysis carried out inside a compiler.

Invariant propagation is a special case of the proof propagation that is dis-
cussed in [17]; however, that work considers only propagation of inductive in-
variants through a step simulation. Theorem 6 extends the propagation result
to general invariants and stuttering simulation. While invariant propagation of
a kind is standard in optimizing compilers (e.g., the results of a points-to analy-
sis on the source program may be used in several subsequent optimizations), to
the best of our knowledge, the problem of invariant propagation had not been
addressed in the general form discussed here. An interesting practical issue with
invariant propagation is whether it should be performed in an eager or lazy
manner, as discussed briefly in Section 2.5.

In this paper, we have considered a simple, procedure-free model of programs.
A large number of standard optimizations fit this model. Extending witness
generation and checking to inter-procedural optimizations is a topic of ongoing
work. In current work, we are developing witness generators for several of the
commonly applied optimization routines in LLVM [9], using SMT solvers to
check the correctness of the generated witnesses.
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