
Witnessing An SSA Transformation

Kedar S. Namjoshi
Bell Labs, Alcatel-Lucent

kedar@research.bell-labs.com

ABSTRACT
The correctness of program compilation is important to as-
suring the correctness of an overall software system. In this
work, we describe an effort to verify the compiler transfor-
mation which turns memory references into corresponding
register references. It is one of the most important transfor-
mations in modern compilers, which rely heavily on the SSA
(static single assignment) form produced by this transfor-
mation. Formally verifying the algorithm behind this trans-
formation is thought to be a difficult task. Verifying the
actual code, as implemented in a production compiler, is
currently infeasible. We describe our experience with an al-
ternative verification strategy, which is based on generating
and checking“witnesses” for each instance of the transforma-
tion. This approach enormously simplifies the verification
task, primarily because it does not require showing that the
transformation code is correct.

1. INTRODUCTION
In modern compilers, optimizations are carried out on pro-
grams in the SSA (static single assignment) format. It is
usually easier for the front-end of a compiler to produce code
that is trivially in SSA form, which must be transformed
to replace memory references (i.e., load, store) with corre-
sponding register references (i.e., read, write) before further
optimizations can be applied. In the LLVM compiler [5],
this crucial transformation is called mem2reg, and it can ac-
count for more than half of the optimization speedup on
typical programs, as shown in [17]. In that paper, which
is primarily concerned with verification, the authors sug-
gest that formally verifying the algorithms behind mem2reg

(from [4, 16]) would be difficult, as the algorithms break SSA
constraints at intermediate stages. (The authors define and
verify their own algorithm for memory-to-register transfor-
mation.) Verifying the actual implementation of mem2reg

is currently infeasible: it would require a formalization of
C++ semantics and proofs of correctness of much more than
the approximately 1500 lines of C++ code which implements
mem2reg. In a nutshell, formally establishing the correctness

of the mem2reg implementation is an open question and a
challenge for proof methods.

In this paper, we report on our experience with an alterna-
tive verification strategy, which is based on generating and
checking “witnesses” for the correctness of each instance of
a transformation [10]. I.e., this strategy proves the correct-
ness of mem2reg on a single program at a time; a conventional
proof would show correctness over all programs at once. We
add auxiliary code to the mem2reg implementation, so that
when it is invoked on a program S, the code emits hints as to
why the transformation from S to the result program, T , is
correct. The hints are gathered and processed into a logical
refinement relation which links the state space of T with that
of S. This candidate refinement relation is checked using a
general-purpose refinement checker. If it is correct, we have
shown correctness for this instance of the transformation,
and have a concrete “witness” to justify that claim.

In our experience, this approach enormously simplifies the
human effort required to show correctness. We need only
about 160 lines of auxiliary C++ code to produce hints, and
500 lines of OCaml code to process the hints into a logical
refinement relation. Contrast this with the proof described
in [17] (for a different algorithm, as noted earlier), which
is based on about 10,000 lines of Coq proof script. The
refinement checker is about 850 lines of OCaml code, and
relies on SMT solvers to carry out the validity checks. The
checker can, of course, be used to check witnesses produced
by other optimizations. The flip side of our approach is that
it may require a significant amount of computation to check
a witness relation. In essence, one substitutes a huge, one-
time, human effort with a recurring computational effort.

Hint and witness generation requires a good understand-
ing of the mem2reg implementation as well as the underlying
algorithm. The LLVM implementation does not directly fol-
low the original algorithms: it handles several special cases
separately before applying an optimized form of the origi-
nal algorithm. In this short paper, we sketch the process of
witness generation, describing the hints that arise, and how
they are processed into a logical refinement relation. The de-
scription is deliberately kept informal, in order to give a feel
for the process to be followed in writing a witness generator.
We conclude with some initial experimental results.



2. WITNESS GENERATION
An example of the general transformation is given in Fig-
ure 2. (The program syntax in this and other figures is a
simplification of the LLVM intermediate format, omitting
types and other attributes. Our implementation handles
the full LLVM syntax.) For this example, the transforma-
tion replaces loads and stores on the allocated memory rep-
resented by x with reads and writes to the newly defined
register variable x.0. The “phi” function in the while.cond

block is a device added during the transformation to ensure
that x.0 obtains the correct value based on control flow: if
block while.cond is reached from block entry, this value is
0; otherwise, it is the value in register add.

In its essence, mem2reg is a renaming of memory locations to
registers. The memory locations to which the transforma-
tion is applied hold addresses of dynamically allocated stack
memory. In the intermediate representation, such a location
is identified by the target x of an instruction x = alloca.
The SSA constraint implies that the renaming is, in general,
a one-to-many relation: i.e., a single memory location in the
source may be mapped to different register names at differ-
ent points in the target program. The control-flow structure
of the source program is unchanged.

As mem2reg is a renaming, we expect its refinement map
to be a conjunction of assertions of the form “the value at
memory address x in the source program equals the value
of register r in the target program”. More fully, the map is
given by a set of relations, We(CT , CS), where e is an edge
of the control flow graph, S is the source program, and T is
the result of transformation. The notation CS = (MS , RS)
represents the configuration (or state) of program S: its
memory map is given by MS and its register map by RS .
Precisely which (x, r) relationships are included in We is
determined by the transformation. The process of witness
generation is one of extracting those relationships from the
algorithm and the implementation code. To illustrate this
process, we consider one of the special cases of the transfor-
mation, as well as the general case. A full technical report
with an account of all cases is under preparation.

2.1 Special Case: single store
The special case we consider is one where there is only a
single store to an allocated memory location (in LLVM, the
RewriteSingleStoreAlloca pass), illustrated by the exam-
ple in Figure 1. Notice that the transformation only deletes
loads and stores to x from the source program, and removes
the registers which hold the values obtained from loads. No
registers are added to the target program.

There are two important aspects to the transformation.

• A register that is the target of a load from x is re-
moved and every use of that register is replaced with
the (symbolic) value that it would have obtained from
the load. For instance, t6 in block b2 is removed, and
its use in block bfinal is replaced with the value it
should have, which is p.

In order to ensure that block bfinal in the target is
a refinement of block bfinal in the source, it is neces-
sary to have the refinement assertion RS [t6] = RS [p]

associated with the edge (b2, bfinal). The witness
generator produces the hint that t6 is replaced with p

at b2, and that this information should be propagated
to all CFG edges which are dominated by b2, i.e., the
edge (b2, bfinal).

• The value stored into the alloca is also propagated
down the control flow graph. For instance, one can-
not show that b0 in the target is a proper refinement
of b0 in the source without knowing that the value that
will be loaded from x in the source block is p. Hence,
the witness generator produces the hint MS [RS [x]] =
RS [p], which says that p is the value given to memory
location x in block init, and that that this informa-
tion should be propagated to all CFG edges which are
dominated by init, in particular, the edge (init, b0).

Notice that the hints constrain only the source program
state, which is also true for the other special cases.

2.2 The general transformation
If none of the special cases apply, one obtains the general
case where new registers are introduced in the target. This is
called the RenamePass case in LLVM. An example is shown
in Figure 2. The algorithm from [16] is used (with improve-
ments) to determine the minimal number of phi-nodes and
registers that are necessary. The RenamePass procedure then
fills in the new phi-node entries with a dataflow calculation:
for each block and source address x, the values correspond-
ing to x flow in to a phi-node from all previous nodes and a
new value for x flows out to all successor nodes.

The witness generator tracks this flow of values. For the
example, the value 0 flows into the phi-node from the edge
(entry, while.cond). For the refinement relation to hold, it
is necessary that the value of x is known to be 0 along this
edge in the source (otherwise, the value loaded from x in
block while.cond of the source program is unconstrained).
The generator produces the assertion MS [Rs[x]] = 0 for
this edge. Similarly, it produces the assertion MS [RS [x]] =
RT [add] for the other edge, (while.body, while.cond). The
dataflow propagation ensures that x.0 is the value asso-
ciated with x on exit from while.cond, so the generator
produces the assertion MS [RS [x]] = RT [x.0] for the edge
(while.cond, while.body).

2.3 Constructing the full refinement relation
The hints described previously are not enough in themselves
to show refinement; we must augment them with the asser-
tions below.

• (memory equality) (MS =A MT ). In LLVM, the mem-
ory locations that are turned into SSA registers are
called “promotable allocas”. The notation =A says
that the source and target program memories are iden-
tical except at the addresses of the promoted allocas.

• (register equality) RS [r] = RT [r], for all registers r
which are common to the source and target.



int foo(int p) {
init:

x = alloca;
store p x;
cmp = lt p 1;
br cmp b0 b1;

b0:
t2 = p+1;
t3 = load x;
t4 = t2 + t3;
br bfinal;

b1:
t5 = p+2;
br b2;

b2:
t6 = load x;
br bfinal;

bfinal:
t7 = phi (b0,t4) (b2,t6);
return t7;

int foo(int p) {
init:

cmp = lt p 1;
br cmp b0 b1;

b0:
t2 = p+1;
t4 = t2 + p;
br bfinal;

b1:
t5 = p+2;
br b2;

b2:
br bfinal;

bfinal:
t7 = phi (b0,t4) (b2,p);
return t7;

}

Figure 1: Special Case: Single Store. Source on left, target on right.

function foo(){
entry:
x = alloca;
store 0 x;
branch while.cond;

while.cond:
tmp = load x;
cmp = le tmp 100;
branch cmp while.end while.body;

while.body:
tmp1 = load x;
add = add tmp1 1;
store add x;
branch while.cond;

while.end:
tmp2 = load x;
return tmp2;

}

function foo(){
entry:
branch while.cond;

while.cond:
x.0 = phi (entry 0) (while.body add);
cmp = le x.0 100;
branch cmp while.end while.body;

while.body:
add = add x.0 1;
branch while.cond;

while.end:
return x.0;

}

Figure 2: General Transformation. Source on left, target on right. The example is from [17].

2.4 Witness checking
In our implementation, the hints are generated by auxil-
iary C++ code added to the LLVM mem2reg implementa-
tion. The propagation of hints and the construction of the
full refinement relation is carried out by a separate proce-
dure, programmed in OCaml. This procedure reads in the
source and target programs, constructs the dominance rela-
tion for the source CFG, and uses this information to prop-
agate hints. The separation of work between languages is
mostly a matter of programming convenience: one could also
use the dominance relations computed by LLVM to handle
propagation.

Witness checking is carried out by a general refinement checker
which has no knowledge of mem2reg. This checker receives
as input the source (S) and target (T ) programs, and a wit-
ness relation (W ). The witness relation is (conceptually)
specified as a collection of triples (e, f, w) where e is a tar-
get CFG edge, f is a source CFG edge, and w is a relation
between the configurations of S and T . (For mem2reg, it is
the case that e = f for all witness triples.)

The refinement check is essentially a check that the witness
relation is a simulation relation from T to S. It operates as

follows. For a witness triple (e, f, w), where e = (u, v) and
f = (m,n):

1. For each transition from block v to v′, the check de-
termines a successor block n′ of n and ensures that
the witness w′ associated with the new pair of edges,
e′ = (v, v′) and f ′ = (n, n′), holds after the transi-
tions of blocks v and n. I.e., letting btrans(b) be the
transition relation of block b, the following implication
should be valid:

[w(CT , CS) ∧ btrans(v)(CT , C
′
T ) ∧ btrans(n)(CS , C

′
S)

⇒ w′(C′
T , C

′
S)]

This is a simplification of the standard simulation con-
dition assuming that btrans is deterministic, which elim-
inates the existential quantifier on C′

S . In general, one
may also need to add auxiliary history variables and
allow stuttering [10].

2. If v′ is an exit node, the check also ensures that the
return values from v and n are identical.

The simulation check is encoded in SMT in a rather straight-
forward manner. M and R are defined as Int → Int arrays;



register names are distinct integer constants; and all oper-
ators are uninterpreted. This default suffices for mem2reg;
for other transformations such as constant propagation, one
must interpret some of the operators.

2.5 Early Experiments
The prototype implementation has been tested on several
small-to-medium size C programs. Two representative ex-
amples are the GNU library microhttpd (about 8K lines of
C) and the model checker SPIN (about 20K lines of C). For
microhttpd, the witness checker issues 4603 queries which
take 1760 seconds. Some queries (114, or 2.4%) do not suc-
ceed: they either time out (the limit is set to 5 seconds per
query) or are invalid. The timeout cases we have examined
are all valid. The invalid cases appear to be corner-case
situations where incomplete witness relations are created,
rather than representing failures of the mem2reg implementa-
tion. For SPIN, the checker issues 21,908 queries which take
3.5 hours to discharge. The number of incomplete checks is
small (146, or 0.66%). A couple of files could not be pro-
cessed; they contain variants of LLVM instructions which
are not currently handled by the checker. The checker is
a work in progress, so we expect to make improvements in
speed as well as in overall accuracy.

3. RELATED WORK
Full correctness proofs of compiler transformation (e.g., [8,
3, 6, 17] and related work) are complex. The primary source
of the difficulty is that one has to formulate the right invari-
ants which which to connect the state of the transforma-
tion code to the state and the semantics of the (unspeci-
fied) program that is being transformed. As an example,
the proof of a dead-code-elimination transformation must
include a sub-proof which shows the correctness of the fix-
point algorithm used to compute liveness information. The
witnessing approach avoids such proofs: one need not know
whether the live variable computation is correct for all pro-
grams, it suffices to check whether its results for the given
program produce the expected refinement relation. In the
mem2reg analysis, one similarly avoids the need to show that
the computation of phi-node placement is correct. Neither
the transformation code nor the witness generator are re-
quired to be correct.

This generate-and-check approach to correctness builds on
and has strong connections to Proof-carrying Code [12], Cred-
ible Compilation [14], and Translation Validation [13, 11].
We discuss each in turn. Proof-carrying code is a way of
ensuring that a single program satisfies a correctness prop-
erty. As we consider program transformations, the proof
is not fixed, but rather is created by a proof generator for
each input program. The witnessing approach is a form of
translation validation in the broad sense. However, existing
methods for translation validation use heuristics to (implic-
itly) compute a refinement relation between programs. We
believe that the witness generation method is a better and
simpler option when the code of the translator is available
and can be modified. Credible Compilation and witness gen-
eration are, conceptually, broadly similar, but differ in tech-
nical detail – credible compilation uses a restricted refine-
ment relation which does not allow for stuttering or history.
Implementations of credible computation (cf. [15, 7]) have
not tackled transformations of the complexity of mem2reg.

In [2, 1], the authors describe a related approach to verifying
memory-to-register transformation. They provide a verified
checker for the CompCert compiler [6] which (in our nota-
tion), given S and T , decides whether T is a valid SSA-form
of S. A significant difference in the approach described here
is that our (trusted) checker does a general refinement check:
the presence of the witness relation allows the checker to be
written in a form that is not specialized for the memory-to-
register transformation. In [9], we described a much earlier
version of the checker, which handled only a small subset of
the LLVM syntax.

Compiler transformations appear to be in a “sweet spot” for
a generate-and-check approach to verification. While a com-
piler optimization algorithm and its implementation can be
quite complicated, the effect of the transformation (i.e., the
refinement relation) is, in most cases, easy to describe with a
combination of equality, uninterpreted functions, arithmetic
and arrays – which happen to be theories that are well sup-
ported by SMT solvers.

Acknowledgements. This material is based on research spon-
sored by DARPA under agreement number FA8750-12-C-
0166. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

I would like to thank my collaborators on the broader project
of constructing self-certifying compilers for encouragement
and many helpful comments during the course of this work:
Lenore Zuck, V. N. Venkatakrishnan, Jens Palsberg, Liana
Hadarean, Tim King, and Oswaldo Olivo.

4. REFERENCES
[1] G. Barthe, D. Demange, and D. Pichardie. A Formally

Verified SSA-Based Middle-End - Static Single
Assignment Meets CompCert. In H. Seidl, editor,
ESOP, volume 7211 of Lecture Notes in Computer
Science, pages 47–66. Springer, 2012.

[2] G. Barthe, D. Demange, and D. Pichardie. Formal
Verification of an SSA-Based Middle-End for
CompCert. ACM Trans. Program. Lang. Syst.,
36(1):4, 2014.

[3] W. R. Bevier, W. A. Hunt, J. S. Moore, and W. D.
Young. An approach to systems verification. J.
Autom. Reasoning, 5(4):411–428, 1989.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.

[5] C. Lattner and V. S. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In CGO, pages 75–88, 2004. Webpage
at llvm.org.

[6] X. Leroy. Formal certification of a compiler back-end
or: programming a compiler with a proof assistant. In



POPL, pages 42–54. ACM, 2006.

[7] D. Marinov. Credible compilation. Master’s thesis,
MIT, 2000.

[8] J. McCarthy and J. Painter. Correctness of a compiler
for arithmetic expressions. pages 33–41. American
Mathematical Society, 1967.

[9] K. S. Namjoshi, G. Tagliabue, and L. D. Zuck. A
witnessing compiler: A proof of concept. In A. Legay
and S. Bensalem, editors, RV, volume 8174 of Lecture
Notes in Computer Science, pages 340–345. Springer,
2013.

[10] K. S. Namjoshi and L. D. Zuck. Witnessing program
transformations. In F. Logozzo and M. Fähndrich,
editors, SAS, volume 7935 of Lecture Notes in
Computer Science, pages 304–323. Springer, 2013.

[11] G. Necula. Translation validation of an optimizing
compiler. In Proceedings of the ACM SIGPLAN
Conference on Principles of Programming Languages
Design and Implementation (PLDI) 2000, pages
83–95, 2000.

[12] G. Necula and P. Lee. Safe kernel extensions without
run-time checking. In OSDI, 1996.

[13] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In B. Steffen, editor, TACAS, volume 1384
of Lecture Notes in Computer Science, pages 151–166.
Springer, 1998.

[14] M. Rinard. Credible compilation. Technical Report
MIT-LCS-TR-776, MIT, 1999.

[15] M. Rinard and D. Marinov. Credible compilation with
pointers. In Proceedings of the Run-Time Result
Verification Workshop, July 2000.

[16] V. C. Sreedhar and G. R. Gao. A linear time
algorithm for placing phi-nodes. In R. K. Cytron and
P. Lee, editors, POPL, pages 62–73. ACM Press, 1995.

[17] J. Zhao, S. Nagarakatte, M. M. K. Martin, and
S. Zdancewic. Formal verification of SSA-based
optimizations for LLVM. In H.-J. Boehm and
C. Flanagan, editors, PLDI, pages 175–186. ACM,
2013.


