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Abstract. Parameterized systems (e.g., network protocols) are compo-
sitions of a number of isomorphic, finite-state processes. While correct-
ness is decidable for any fixed-size instance, correctness over all instances
is undecidable in general. Typical proof methods, such as those based on
process invariants or cutoffs, rely on summarizing the behavior of a pa-
rameterized system by a finite-state process. While these methods have
been applied successfully to particular protocols, it is unknown whether
such summarization is always possible.
In this paper, it is shown that—after essential modifications—the cut-
off method (which has the most stringent requirements) is complete for
safety properties. The proof also shows that cutoff proofs are equivalent
to determining inductive invariants. The paper studies this question next,
presenting a new algorithm to construct universally quantified inductive
invariants. The algorithm computes the strongest invariant of a given
shape, and is therefore complete. The key to this result is a previously
unnoticed connection between inductiveness, small model theorems, and
compositional analysis, which is interesting in its own right.

1 Introduction

Parameterization is ubiquitous in programming: most programs are parameter-
ized in some manner (e.g., the size of buffers, or the number of threads.). A
particularly fascinating case is that of network protocols which, typically, are
composed of a variable number of isomorphic processes that are finite-state.
Any particular instance is, therefore, finite-state, and its correctness can be de-
termined automatically through model checking. But the real goal is to verify
all—i.e., an infinite number of—instances.

In this regard, a common experience is that the correctness proofs of small in-
stances of a protocol include all the case analysis required for full correctness.
It is tempting to conjecture that there is a small bound such that the correct-
ness of instances up to that bound suffices to establish correctness in general.
Unfortunately, this conjecture is incorrect. Apt and Kozen [2] showed that the
parameterized verification question—showing correctness of all instances—is un-
decidable, even if the component processes are finite-state and isomorphic (cf.
[42]). This negative result has led naturally to two forms of analyses: (i) showing



decidability for restricted classes of protocols (cf. [21, 17, 15]), and (ii) generally
applicable, semi-automated proof principles based on induction and abstraction.

This article focuses on the general, type (ii) methods. The proof principles ex-
ploit the symmetry of the problem to reduce or simplify proof obligations. Let
Pn represent the parameterized system P1||P2||...||Pn, produced by asynchronous
composition of n isomorphic copies of a process P . A central concept is that the
behavior of arbitrary instances of a protocol can be summarized by a finite-state
process. The closure process, introduced in [9, 7], is precisely such a summary.
The process invariant method, introduced in [32, 43], requires that the summa-
rizing process, I, is also invariant, in the sense that the behavior of both P and
P ||I is simulated by I — the stronger requirement makes it easier to show that
I is a closure. The cutoff method, implicit in [32, 21] and made explicit in [17],
goes further and requires that the process invariant be a union of instances up
to a (typically small) cutoff bound K. (i.e., I = P 1 +P 2 + . . .+PK). The cutoff
method formalizes the verifier’s intuition that all interesting patterns of behavior
are already present in instances of a small size.

These proof methods have been applied successfully to several protocols, but it
is not immediately apparent whether they are universally applicable. Does every
correct protocol have a cutoff proof? If so, can the cutoff be bounded in terms
of process structure1?

1.1 Contributions

The first part of the paper analyzes completeness for safety (invariance) prop-
erties. It shows that a correct invariance property (e.g., “the protocol ensures
mutual exclusion”) can always be proved with a cutoff of 1 — I.e., by show-
ing that the smallest instance simulates instances of arbitrary size. This implies
completeness for the other two methods. Earlier definitions of cutoffs were de-
pendent on the property (cf. [32, 17, 15]), or exponentially large in the process
description [21, 16]. The cutoff of 1 holds also for arbitrary linear-time properties,
and for multi-parameter systems. These results provide formal justification to
the intuition regarding small instances. The proof also shows a tight connection
between the existence of cutoffs and the existence of an inductive invariant —
the problems are essentially equivalent.

The second part of the paper, therefore, focuses on automatic methods of com-
puting inductive invariants for parameterized protocols. The starting point is a
method of “invisible invariants”, proposed by Pnueli, Ruah, and Zuck in [39].
The central idea is to generalize from the reachable states of a small instance
into an inductive assertion of the shape (∀i : ϕ(i)). Remarkably, this fairly simple
heuristic succeeds in constructing an induction-based proof for several protocols.
On the other hand, it is known to be incomplete: for some protocols, it fails to
construct an inductive invariant, even though one is known to exist.
1 It is easy to construct incorrect protocols which fail only for large instances, whose

size is independent of the individual process structure.

2



This paper demonstrates a previously unnoticed connection between the induc-
tiveness of quantified assertions and compositional reasoning. This helps both
to explain the incompleteness, and to create a new, complete method. The key
observation is that the only inductive assertions (∀i : ϕ(i)) are those where ac-
tions of process P (j) do not “interfere” 2 with the inductiveness of ϕ(i). This
connection gives rise to an algorithm, called the “split-invariant method”, for
the generation of quantified inductive invariants. The algorithm constructs the
strongest assertion ϕ (in a restricted logic) such that (∀i : ϕ(i)) is inductive for
all instances. This fact, combined with a small model theorem from [39], en-
sures completeness. As pleasing side-effects, non-interference explains why the
inductive invariant method is incomplete (reachable states are not always non-
interfering), and also explains a puzzling aspect, the occasional need to introduce
auxiliary variables in order to generate an inductive assertion — it is known from
Owicki and Gries’ work (cf. Lamport [35]) that this can be necessary in order
to obtain non-interference. The method has been implemented with TLV [40];
initial results show that completeness is not achieved at the cost of efficiency.

2 Completeness of the Cutoff Method

Definition 0 A transition system over a set of atomic propositions AP is a
tuple (I, S,R, L), where S is a set of states, I is a subset of S, the initial states,
R is a subset of S × S, the transition relation, and L : S × 2AP is a labeling
function that assigns a subset of propositions to each state.

If (s, s′) is a tuple in R, s′ is a successor of s, and there is a transition from s
to s′. A state s is reachable if there is a finite sequence s0, s1, . . . sk where s0 is
in I, si+1 (where defined) is a successor of si for each i, and sk = s. Transition
systems are assumed to be left-total, i.e., every state has a successor. A state
predicate is a Boolean combination of atomic propositions. The satisfaction of
a predicate p at a state, written s |= p or p(s), is defined in the usual way by
induction on formula structure. A state predicate ϕ is invariant of M if it holds
at all reachable states of M .

Definition 1 For transition systems M and N , and a set of state predicates
SP , a relation X : X ⊆ SM × SN is a simulation respecting SP if:

– (initiality) for every initial state s of M , there is an initial state t of N such
that (s, t) is in X,

– (step) for every (s, t) in X, and every successor s′ of s, there is a successor
t′ of t such that (s′, t′) is in X,

2 Non-interference was formulated by Owicki and Gries in [38] in their seminal work
on compositional reasoning for concurrent programs. It is surprising (to the author,
at least) to see this close connection to quantified invariants.
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– (label) for every pair (s, t) in X, and every predicate p in SP , pM (s) ≡ pN (t)

Definition 2 For transition systems M and N , and state predicates SP , a re-
lation X : SM × SN is a bisimulation respecting SP if both X and its inverse
are simulations respecting SP .

Two transition systems are “(bi)simular upto SP” if there exists a (bi)simulation
relation respecting SP between the transition systems. The usual definition of
bisimulation between Kripke structures can be recovered by setting SP = AP .

Inductiveness and Invariance A state assertion ξ is inductive forM if it is implied
by the initial condition for M and preserved by every transition of M . This is
formalized by the conditions (1) (initiality) and (2) (inductiveness) below. Here,
wlp is the weakest liberal precondition transformer introduced by Dijkstra [13].
The notation [ψ], from Dijkstra and Scholten [14], indicates that ψ is valid.

[IM ⇒ ξ] (1)
[ξ ⇒ wlp(M, ξ)] (2)

An inductive assertion is adequate to show the invariance of a state property ϕ
if it implies ϕ (condition (3)).

[ξ ⇒ ϕ] (3)

Applying the duality (the Galois connection) between wlp and the strongest
post-condition operator, sp, condition (2) is equivalent to

[sp(M, ξ) ⇒ ξ] (4)

Theorem 0 (Knaster-Tarski) For a monotonic function f on a complete lattice,
the least fixpoint exists, and is the strongest solution to X : [f(X) ⇒ X]; the
greatest fixpoint exists, and is the weakest solution to X : [X ⇒ f(X)].

For finite lattices, the least fixpoint can be computed as the limit of the sequence
X0 = ⊥;Xi+1 = f(Xi). The greatest fixpoint can be computed as the limit of
the sequence X0 = >;Xi+1 = f(Xi), where > and ⊥ denote the top and bottom
elements of the lattice, respectively.

Conjoining (1) and (4) gives [(IM ∨ sp(M, ξ)) ⇒ ξ]. As function f(ξ) = IM ∨
sp(M, ξ) is monotonic, by the Knaster-Tarski theorem, it has a least fixpoint,
which is the set of reachable states of M . Conjoining (2) and (3) gives [ξ ⇒
(ϕ ∧ wlp(M, ξ))]. The function g(ξ) = ϕ ∧ wlp(M, ξ) is monotonic, hence there
is a greatest solution in ξ. This is expressed in CTL as AG(ϕ). If ϕ is invariant for
M , the reachable states of M additionally satisfies (3), and AG(ϕ) additionally
satisfies (1).
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2.1 Completeness

Lemma 0 Any pair of transition systems M,N which satisfy the invariance
property AG(ϕ) are bisimular upto {ϕ}.
Proof. Define the relation X between states of M and N by (s, t) ∈ X iff
M, s |= AG(ϕ) and N, t |= AG(ϕ). We have to show that X and its inverse are
simulation relations respecting {ϕ}.
(initiality) consider initial states s and t of M and N respectively. By the as-
sumption, both s and t satisfy AG(ϕ), and are therefore related by X.

(step) Let s, t be such that (s, t) ∈ X, and let s′ be a successor of s. As s satisfies
AG(ϕ), by the fixpoint formulation, all of its successors also satisfy AG(ϕ). For the
same reason, all successors of t satisfy AG(ϕ), and t has at least one successor,
say t′, as N is left-total. Thus, (s′, t′) is a pair in X. A symmetric argument
establishes the step property for the inverse of X.

(label) Let s, t be such that (s, t) ∈ X. As s and t satisfy AG(ϕ), by the fixpoint
formulation, they satisfy ϕ. As ϕ is a state predicate, ϕM (s) ≡ ϕN (t). �

The cutoff method is defined below for arbitrary parameterized programs—not
just those arising from a composition of processes. A parameterized program is a
family of transition systems {M(n)}, indexed by a parameter n. The property is
also parameterized by n; for instance, mutual exclusion between critical sections,
identified by C, can be specified as AG(∀i, j : i, j ∈ [0..n−1]∧ i 6= j : ¬(Ci ∧Cj)).

Definition 3 [Cutoff Method] To show that a parameterized program M(n)
satisfies a similarly parameterized invariance property AG(ϕ(n)) for all n, find
a cutoff bound K such that:

– For every n : n > K, there is j : j ≤ K such that M(n) is simulated upto ϕ
by M(j), and

– For every j : j ≤ K, M(j) satisfies AG(ϕ(j)).

Theorem 1 The cutoff method is complete for invariance properties: i.e., if
M(n) satisfies AG(ϕ(n)) for all n, there is a cutoff bound K such that the con-
ditions are met. In particular, K = 1 suffices.

Proof. Let K = 1. As M(n) satisfies AG(ϕ(n)) for all n, the second condition
is met: M(1) satisfies AG(ϕ(1)).

Consider M(n), for any n : n > 1. As M(n) satisfies AG(ϕ(n)), and M(1)
satisfies AG(ϕ(1)), a proof on the lines of that for Lemma 0 shows that M(1)
and M(n) are bisimular upto ϕ. The only modification to the previous proof is
in the definition of X. A pair (s, t) is in X (where s is a state of M(1) and t
is a state of M(n)) if M(1), s satisfies AG(ϕ(1)) and M(n), t satisfies AG(ϕ(n)).
This proves the first condition. �

This theorem may seem counter-intuitive at first: why should the smallest in-
stance be bisimular to every other instance? The key is that the definition of
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bisimulation only requires equivalence for the correctness predicate: i.e., the
bisimulation is relativized to the property being verified. (It may be interest-
ing to note that a similar relativization strategy is the basis for completeness
proofs for program abstraction methods [29, 11].) It should be clear, though,
that even if every correct protocol has a cutoff of 1, determining an appropriate
simulation relation, and finding a proof of a candidate relation, are both difficult
questions, which are undecidable in general. Similarly, determining whether a
protocol has a particular cutoff bound is also undecidable, in general.

var x: boolean /* semaphore */

initially x=true

process P(i) ::

var st: {I,T,C,E}

initially st=I

do

| (st=I) -> st := T

| (st=T) and x -> st,x := C,false

| (st=C) -> st := E

| (st=E) -> st,x := I,true

od

Fig. 1. Mutual Exclusion Protocol

To illustrate the workings of this theorem by an example, consider the simple
mutual exclusion protocol3 described in Figure 1. The desired invariant predicate
ϕ(n) is (∀i, j : i, j ∈ [n] ∧ i 6= j : ¬(Ci ∧ Cj)), where Ci is shorthand for (st(i) =
C). It is easily checked that this predicate is not inductive. The completeness
proof works with any predicate that is inductive and is stronger than ϕ. One such
predicate is ξ(n) = (∀i, j : i, j ∈ [n] ∧ i 6= j : (Ci ∨ Ei) ⇒ (x ∧ ¬(Cj ∨ Ej))).
The bisimulation relation defined in the completeness proof relates state s of Pn

with t of P 1 if they agree on ξ. As ξ(1) = true, every state of Pn is bisimular
(in the new sense) to any state of P 1!

The completeness proof constructs a bisimulation from AG(ϕ(n)). In fact, any
inductive invariant stronger than ϕ will do: AG(ϕ) is simply the weakest such
assertion. The following theorem establishes the converse.

Theorem 2 A cutoff proof of invariance for program M(n) and property ϕ(n)
induces an assertion ξ(n) that is inductive for M(n), and implies ϕ(n).

3 Parameterized Invariants and Non-interference

The discussion in Section 2 showed that the existence of cutoffs for invariance
properties is equivalent to the existence of parameterized inductive invariants.
3 This protocol is taken from [39] but with a change of notation.
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The “invisible invariant” method of [39] computes inductive predicates of the
shape (∀i : θ(i)), where θ is a limited assertion. It consists of two steps: in the
first step, a candidate for θ is constructed from the set of reachable states of a
small instance; in the second step, the generated candidate, (∀i : θ(i)), is checked
for inductiveness for arbitrary N . Both steps are fully automated.

In the first step, the reachable state set, ρ, of an instance of size N0 (the size is
chosen arbitrarily) is computed as a BDD; the expression for ρ is projected on to
index 0, by existentially quantifying all other indices, to obtain θ(0); propositions
indexed by 0 are re-indexed by i in θ(0) to obtain θ(i). The second step checks
that the generated assertion (∀i : θ(i)) is inductive, and that it implies the
correctness property, ϕ(n), for arbitrary instances. This is done automatically
by applying a small model theorem, which shows that these properties need to
be checked only up to a second cutoff N1.

In the original paper and in subsequent work [3, 4], the authors showed, re-
markably, that this fairly simple heuristic suffices to show correctness of a num-
ber of parameterized protocols, by generating sufficiently strong invariants. On
the other hand, the authors point out that this method is not guaranteed to
succeed—even if a suitable invariant exists, the generalization from the reach-
able states may fail. This is not merely a theoretical possibility, it does occur for
some protocols [4].

To understand the source of incompleteness, it is helpful to reason in reverse from
the goal: how does an assumption of inductive invariance for (∀i : θ(i)) constrain
θ? A first consequence is that θ(0) must be inductive for process 0 in an instance
of size 1. Thus, it suffices to enumerate every inductive invariant for process 0
in M(1), and check inductiveness for all N by applying the small model theo-
rem. (The set of inductive assertions forms a lattice with top element AG(ϕ(1))
and bottom element the reachable states.) While complete, the procedure is ex-
tremely inefficient, as there could be exponentially many inductive invariants for
process 0. (If a process state is described by k Boolean variables, there are 22k

distinct Boolean expressions to consider.) One consequence of this discussion,
though, is that it points out that there is no reason, a priori, to suppose that the
reachable states—just one out of many candidates—can always be generalized
to a quantified inductive invariant. On the other hand, the invisible invariant
method, as explained above, is typically applied to the reachable states of larger
instances. Does this increase the possibility of creating an inductive assertion?
This question is deferred to Section 3.5.

Let us continue by analyzing the case N = 2. Parameterized inductiveness of
(∀i : θ(i)) implies the following inductiveness conditions for N = 2. (The nota-
tion P0(2) represents process 0 in a 2-process composition M(2) = P0||P1. The
symmetric condition for P1(2) is not shown.)

[IM(2) ⇒ (θ(0) ∧ θ(1))] (5)
[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(0) ∧ θ(1))] (6)
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As wlp distributes over conjunction, (6) is equivalent to

[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(0))] (7)
[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(1))] (8)

The first is expected: it says (roughly) that θ(0) is preserved by transitions of
process P0. The second is quite different in nature: it says that θ(1) is also
preserved by transitions of process P0—i.e., process P0 does not interfere with
the invariance of θ(1). Non-interference is introduced by Owicki and Gries in
their seminal work on compositional reasoning for concurrent programs [38].
This discussion may be summarized as follows.

Proposition 0 For a parameterized system M(n) composed of n copies of a
process P , for any parameterized inductive assertion of the shape (∀i : θ(i)), the
predicates (θ(0), θ(1)) form a non-interfering pair for M(2).

It is possible to construct the strongest, symmetric non-interfering pair of asser-
tions for M(2), if P is finite-state, by a simple fixpoint procedure. The converse
to Prop. 0 is a consequence of the small model theorem from [39], and estab-
lishes that the non-interfering invariant defined for an instance of the small model
bound is the strongest assertion of the shape (∀i : θ(i)) that is inductive for all
N . This ensures completeness. The rest of this section explores these ideas.

3.1 Background

The class of parameterized programs to which the invisible invariant method is
applied is called bounded-data discrete systems (BDS’s) [39, 3]. Program variables
can be Boolean and finite-domain variables (type T0), variables with ranges
[0..Ni − 1], for a parameter Ni (types Ti), and arrays with domain Ti and
elements from Tj for some i, j (types Ti 7→ Tj). A BDS is stratified if in the
type of an array, Ti 7→ Tj , it is the case that i < j. Many parameterized
protocols fall into the stratified (T0,T1,T2 7→ T1) category.

Atomic formulas can only compare for inequality basic expressions of the same
type. Basic expressions are limited to variables x, or 1-level indexed entries Z[x]
(not Z[Z[x]]). Formulas are built up from atomic formulas by Boolean combi-
nation, and quantification. The transition relation of a parameterized system
is constrained to the shape (∃h1, h2, . . . , hk : (∀t1, t2, . . . , tm : R(h, t))), where
hi, ti are vectors of variables of Ti, for all i. Intuitively, the h-variables iden-
tify the process that makes a transition, the t-variables are used to express the
constraint that a transition by one process leaves the local state of all other
processes unchanged. The expression defining the initial condition is assumed
to be symmetric (i.e., left unchanged by arbitrary permutations of indices). For
example, the initial state of the mutual exclusion protocol described in Figure 1
can be written as the expression x ∧ (∀i : state(i) = I). The types are: x : T0

and state : T1 7→ T0.
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Candidate invariant assertions have the shape (∀i1, i2, . . . , ik : θ(i1, i2, . . . , ik)),
where im is a vector of variables of type Tm, for each m, and the variables of
any given type are given distinct values. An example is the mutual exclusion
property: (∀i, j : i 6= j : ¬(Ci ∧ Cj)), where i, j : T1.

3.2 Non-interference and Split invariants

Consider a program, A||B, formed by the asynchronous composition of two pro-
cesses A and B, and a correctness property ϕ. Let A and B have state defined by
sets of variables VA and VB respectively. A local assertion for A is an assertion
that is only in terms of VA; variables local to A are denoted by LA = VA \VB ,
while the global (shared) variables are those in VA ∩ VB . Symmetric definitions
apply to B.

A pair of assertions (θA, θB), which are local over A and B, respectively, is called
a split assertion. A split assertion (θA, θB) is a split invariant if θA ∧ θB is an
inductive invariant for A||B. Recall that the invariance conditions are as follows
for asynchronous composition.

[IA||B ⇒ (θA ∧ θB)] (9)
[(θA ∧ θB) ⇒ wlp(A, (θA ∧ θB))] (10)
[(θA ∧ θB) ⇒ wlp(B, (θA ∧ θB))] (11)

A split invariant satisfies a property ϕ if

[(θA ∧ θB) ⇒ ϕ] (12)

A k-split assertion over k processes P0||P1 . . . ||Pk−1 (these are not necessarily
isomorphic) is a k-vector of the form (θ0, . . . , θk−1) where each θi is defined over
the variables of Pi. It is a k-split invariant if (∀i : θi) is an inductive invariant of
the k-process system.

Computing the strongest split invariant Applying the Galois connection between
wlp and sp, conditions (10) and (11) can be written as

[sp(A, θA ∧ θB) ⇒ (θA ∧ θB)] (13)
[sp(B, θA ∧ θB) ⇒ (θA ∧ θB)] (14)

Re-arranging these in terms of θA and θB , in combination with the initial con-
dition gives the following implications, which are equivalent to the original. The
existential quantification over the local variables of B, LB , does not lose equiv-
alence, as these are irrelevant to θA by the syntactic restriction (symmetrically
for θB).

[(∃LB : sp(A, θA ∧ θB) ∨ sp(B, θA ∧ θB) ∨ I) ⇒ θA] (15)
[(∃LA : sp(A, θA ∧ θB) ∨ sp(B, θA ∧ θB) ∨ I) ⇒ θB ] (16)
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Implications (15) and (16), in turn, can be written as the pre-fixpoint formula-
tion: [F(θA, θB) � (θA, θB)], where F is the pair function formed by the left-
hand expressions in the implication, and � denotes pair-wise implication. Since
F is monotone over (θA, θB) according to � (sp is a monotone function), by
the Knaster-Tarski theorem, F has a least fixpoint, which, by construction, is
also the least solution to conditions (9)-(11). The standard Knaster-Tarski algo-
rithm for computing the least fixpoint by successive approximation defines the
solution (θ∗A, θ

∗
B), which is, by definition, the strongest inductive split assertion.

The operations required to evaluate F (the computation of sp, and existential
quantification) can be carried out though BDD’s for finite variable domains.

Theorem 3 (Completeness of the procedure) There exists an inductive split-
invariant that implies ϕ if, and only if [(θ∗A ∧ θ∗B) ⇒ ϕ].

This method is easily extended to compute the strongest k-split invariants over
a k-process instance. The general form of F is represented as Fk, which is a
vector of functions over a k-split assertion θ = (θ0, . . . , θk−1). For each i ∈ [k],
the ith component of θ′ = Fk(θ) is given below, where L = (∪ i : Li)) is the set
of local variables.

θ′i = (∃L \Li : init(k) ∨ (∃j : sp(Pj(k), (∀m : θm)))) (17)

For a parameterized system, the symmetry in its definition ensures that, during
the fixpoint calculation, it is necessary only to compute the new value for a single
component, say θ(0); θ(i) is constructed by applying the substitution 0 7→ i.

Theorem 4 (Symmetric split invariant) For a parameterized instance, P k, with
a symmetric initial condition, there is an assertion θ∗(Vi) such that the least
fixpoint of Fk is given by (∀i : θ∗(Vi)).

3.3 Quantified inductive invariants

The previous discussion showed that (i) for any inductive quantified assertion
(∀i : θ(i)), (θ(0), . . . , θ(k−1)) is a k-split invariant for all k; and (ii) for any k, the
strongest k-split invariant can be computed through a least fixpoint procedure.
In this section, we close the loop by showing that, given a small model property
with bound k, the strongest k-split invariant θ∗ induces the quantified assertion
(∀i : θ∗(i)) which is k−inductive (defined below).

Definition 4 (“Near-inductive” invariant) A quantified assertion (e.g., (∀i :
θ(i))) is K-inductive if it is inductive for all instances of size at least K. An
assertion is near-inductive if it is K-inductive for some K.
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The small model property is required for the inductiveness checks ((9)-(12)), ap-
plied to assertions from a logic L which restricts the class of inductive assertions.
In the invisible invariant paper, the logic restricts relations between variables of
type T1 and T2 7→ T1 to simple inequalities (e.g., x = y or x = z[w], but not
x = z[z[v]]). The small model bound should have the property below.

Definition 5 (Small Model Property) For any θ in L, checks of the form (9)-
(12) are valid for all N if, and only if, there exists K such that they are valid for
all instances of size up to K. The bound K may depend on the quantification,
but should be independent of θ.

A strong small model property holds if validity need be checked only for the
instance of size K—i.e., if an error is present in an instance of smaller size, there
is an error in the K-instance. In [3], the small model property is shown for BDS’s
with variables of type T0,T1, and T1 7→ T2. The proof can be strengthened to
show the stronger form of this property.

In what follows, Vi is the set of variables accessed by process i (local as well
as global). The computation of K-split invariants on general BDS’s does not
necessarily produce assertions that are expressible in the logic L. In order to
ensure this, let αi be the closure operator, defined as follows: αK

i (S), for an
index i ∈ [K] and a set of states S in M(K), is the smallest superset of S that is
expressible in the logic L together with the assertion y = i for each T1 variable
y (this is well-defined if L is closed under arbitrary intersection). The closure
operator can be computed using BDD’s if L is based on a finite set of predicates4.

The condition [αK
i (θ(Vi)) ⇒ θ(Vi)] is added to the fixpoint formulation given

by F .. This defines a new monotonic operator, written FK
α,i(θ) = αK

i (θ(Vi)) ∨
FK

i (θ). Not only is any pre-fixpoint θ(Vi) of this operator a pre-fixpoint of FK
i

(which is desired for inductiveness), it is also a pre-fixpoint of αK
i , which ensures

that [αK
i (θ(Vi)) ≡ θ(Vi)]. This condition says that θ(Vi) is expressible in L.

Theorem 5 (Completeness) For a BDS with a strong small model property and
bound K, and assertions of the type (∀i : θ(Vi)), let θ∗(Vi) describe the symmetric
K-split invariant computed as the strongest fixpoint of FK

α . Then, (∀i : θ∗(Vi))
is K-inductive, and this is the strongest such assertion.

Proof. By the preceding discussion, any fixpoint of FK
α is expressible in the

logic L and is a K-split invariant.

We need to show K-inductiveness, i.e., that (∀i : θ∗(Vi)) is inductive for all
N : N ≥ K. The proof is by contradiction. If the assertion is non-inductive for
some N , the strong form of the small model property implies that it is non-
inductive for the instance of size K, which contradicts the assumption that it is

4 Given a set of predicates P1, . . . , Pm, α(S)(x) is given by (∃y : (
V

i : Pi(x) ≡
Pi(y)) ∧ S(y)).
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a K-split invariant. Note that it is important that the bound K is independent
of the particular θ∗.

Any K-inductive assertion of the shape (∀i : θ(Vi)) that is expressible in L is
a K-split invariant. This implies that θ is a pre-fixpoint of FK

α . As θ∗ is the
strongest pre-fixpoint, [θ∗(Vi) ⇒ θ(Vi)]; hence, [(∀i : θ∗(Vi)) ⇒ (∀i : θ(Vi))].
�

The strong form of the small model property can be dispensed with, at the
cost of computing a weaker inductive assertion. For a simpler notation, this is
explained for FK , not FK

α , but the same principle applies for the more general
operator. The fixpoint computation of θ∗ is set up so that it is a k-split invariant,
for every k : k ≤ K. Recall, from the discussion following Theorem 4, that the
computation of a k-split invariant can be carried out by computing θ(V0) using
Fk

0 (θ), deriving the others by substitution. Thus, consider the assertion that
[(Fk

0 (θ))(V0) ⇒ θ(V0)] for all k : k < K. This is equivalent to

[(∃k : k < K : (Fk
0 (θ))(V0)) ⇒ θ(V0)] (18)

The left-hand side of the implication defines a new monotonic expression in
V0: GK

0 (θ) = (∃k : k < K : Fk
0 (θ))]. This operator is used in place of FK

α

in Theorem 5. While this ensures inductiveness for all N , the additional F
computations that are required could cause computational difficulty in practice.
Moreover, as GK is weaker than FK , the fixpoint that is produced is also a weaker
assertion. This makes it less likely to satisfy the correctness condition. From
these considerations, it appears that the weaker K-inductiveness requirement is
preferable to inductiveness for all N .

3.4 Simple BDS’s

The simplest case of a BDS is one where all global variables are non-parameterized
(i.e., of type T0), and the local variables are expressed by an array of type
T1 7→ T0. This simple case is important, as it describes, for instance, the mu-
tual exclusion protocol from Figure 1, and many multi-threaded programs, where
the data structures that the threads operate on have a structure that is inde-
pendent of the number of threads. For a simple BDS, the small model bounds
are very small: 2 processes for a singly-quantified assertion (∀i : θ(i)), and 3
processes for a doubly-quantified assertion (∀i, j : i < j : θ(i, j)).

3.5 Near-completeness of the inductive invariant method

We return to a question about the inductive invariants method that was raised
in Section 3: does starting from the reachable states of larger instances increase
the possibility of generating an inductive assertion? A partial answer to this
question is provided below. For an easier notation, we consider simple BDS’s,
but the results extend to the general case.
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Once again, we reason in reverse: suppose that (∀i : θ(Vi)) is inductive for all N ,
then [reach(N) ⇒ θ(Vi)] must hold for all i ∈ N . This is equivalent—as θ(Vi) is
defined over Vi—to [(∃L \Li : reach(N)) ⇒ θ(Vi)]. The alert reader must have
noticed that the left-hand side of this implication is precisely the generalization
step of the inductive invariant method. Define R(i) = (∃L \Li : reach(N)). The
following theorem shows that the projection R(i) used by the inductive invari-
ant method is the first—but not necessarily final—step in a different fixpoint
calculation of the strongest k-split invariant (Proofs are in the Appendix.)

Theorem 6 The fixpoint of the iteration of the inflationary operator F̂ = F(x)∨
x from (R(0), R(1)) produces the strongest split invariants (R∗(0), R∗(1)) for
M(2). Moreover, all successors of (R(0) ∧ R(1)) are in R∗(0) and R∗(1).

4 Experiments

Program Invariant type Time(sec) Instance size Bdd nodes θ(1) or θ(1, 2) Max. bdd allocation

mutex 2-∀ 0.01 4 9 1327
mutex+ 1-∀ 0.01 3 8 1007

szymanski 2-∀ 0.03 4 18 9956
token-ring 2-∀ 0.01 4 177 18341

enter-pme+ 1-∀ 1.66 3 2793 353220

Fig. 2. Results on the IIV examples (+ indicates introduction of auxiliary variables)

This method has been implemented with TLV [40]. This implementation proves
mutual exclusion, and other properties, for several of the examples (including
the more difficult ones) from [4]. Preliminary results are shown in Figure 2;
details are at http://www.cs.bell-labs.com/who/kedar/split-invariance .
The implementation generates quantified inductive assertions of the shape (∀i :
θ(i)) and (∀i, j : i 6= j : θ(i, j)), denoted by 1-∀ and 2-∀, respectively. Even
though the current implementation is unoptimized, the results show that com-
pleteness is not being achieved at the cost of efficiency.

The completeness of the split invariant calculation, especially the fact that it
computes the strongest assertion, can be used to advantage. If a split invariant
calculation for some instance fails to prove correctness then, as the θ computed is
the strongest such, there can be no other θ′ for which (∀i : θ′(i)) is an inductive
invariant for all N . Thus, a failure indicates that there is no inductive invariant
of the particular shape.

Some of the more difficult properties proved by the IIV tool require inductive
assertions that are boolean combinations of universal and existential properties.
(This can be shown by failures to prove purely universal or existential invariants,
as discussed above.) IIV uses a heuristic method (which may fail) to construct an
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assertion of this type. It is not clear whether there is a systematic (complete and
efficient) way to construct such mixed assertions, and our current implementation
fails to prove these properties automatically. It is possible to replace (Skolemize)
the existential quantifications with auxiliary program variables, leaving purely
universal quantification that can be handled by the split-invariant method, but
this requires a guess at the definition of the auxiliary variable.

For instance, the bounded-overtaking property of the enter-pme example can
be shown with a universally quantified assertion after a standard “counting”
abstraction that adds auxiliary variables checking whether a process is in a
particular local state (i.e., (∃i : location[i] = 3) is replaced with a boolean
state variable at3.) On the enter-pme example, auxiliary variables reduce the
computed invariant from a 9-quantifier mixed universal-existential assertion [4]
to a 1-quantifier universal assertion that requires 2 seconds to compute vs. the
210 seconds required by IIV. Devising a systematic procedure for introducing
such variables is still an important open question, the “environment abstraction”
ideas from [10] may be of help here.

5 Related Work

There is a large body of work on parameterized verification and compositional
analysis, the two subjects most closely connected with the topic of this paper.

The parameterized verification question is decidable for some classes: [21, 17, 15]
are representative. These results are based on small model theorems for tem-
poral properties. General methods for parameterized verification include those
discussed in the introduction and others based on process summaries (cf. [36, 31,
41]) and acceleration methods based on automata-theory (cf. [30, 1]). This earlier
work does not consider completeness: the results on cutoffs, and the connection
to inductive invariance are new contributions.

Compositional reasoning about concurrency has a long history, going back (at
least) to the seminal work on non-interference by Owicki and Gries [38], extended
to assume-guarantee reasoning by Chandy and Misra, and Jones [8, 27, 28]. (The
book by de Roever et. al. [12] has the history and technical relationships.) Flana-
gan and Qadeer apply the assume-guarantee approach to the verification of fixed
instances of multi-threaded programs [20, 18]. Assume-guarantee reasoning is
combined with program abstraction in the BLAST tool [24]. These verification
procedures are formulated for fixed-size instances, and do not, in general, lead to
a correctness proof of a full parameterized system. The relationship between pa-
rameterized invariance, small model theorems, and compositional reasoning that
forms the basis of the split-invariant method has not been noticed previously;
however, it naturally draws upon ideas from earlier work.

Predicate abstraction [22] has been quite successful in deriving inductive invari-
ants for non-parameterized programs [5, 23]. Predicate abstraction is extended

14



to derive quantified indexed predicates (typically for parameterized data struc-
tures) in [19, 33]. This method is analyzed, and shown to be complete in [34],
provided an appropriate indexed predicate set is given. The papers [19, 33] give
heuristics to determine this set, but the heuristics are not known to be complete.

It is worthwhile to compare the approaches based on predicate abstraction with
indexed predicates and invisible/split invariants in a little more detail. Both
have a common goal: to construct universally quantified invariants for parame-
terized programs. The indexed predicate method approaches this problem from
“above”, exploring a succession of abstract transition systems, all of which over-
approximate the entire parameterized system. On the other hand, the invisi-
ble/split invariant method approaches this from “below”, exploring successively
larger instances of the parameterized system. Thus, split invariants always define
states that are necessarily part of any inductive invariant, while indexed pred-
icate exploration requires removal of non-inductive states. It is unclear which
method performs better in practice; but there may be fruitful ways of combin-
ing these different approximation approaches — this is the subject of ongoing
work. Another interesting question for future work is whether the small model
theorems in the BDS framework can be extended to apply to two examples
identified in [33] that are outside the current class of BDS’s; new results in [6]
on array properties, and completeness results for (non-parameterized) predicate
abstraction from [37, 25, 26] may apply here.
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6 Appendix

Theorem 2 A cutoff proof of invariance for program M(n) and property ϕ(n)
induces an assertion ξ(n) that is inductive for M(n), and implies ϕ(n).

Proof. Let K be the cutoff bound in a successful cutoff-based proof of invari-
ance. Define ξ(n) as follows.

– for j : j ≤ K, let ξ(j) = reach(j),
– for n : n > K, let j be the index for which M(n) is simulated by M(j)

through a simulation relation Xn,j . Let ξ(n) = {s : (∃t : t ∈ SM(j) : (s, t) ∈
Xn,j ∧ t ∈ reach(j))}

By inductiveness of reach, ξ(j) is inductive for j : j ≤ K. For n : n > K,
inductiveness follows from the simulation definition. The set of initial states for
M(n) is a subset of ξ(n), as each such state is simulated by an initial state in
M(j). For a state s in ξ(n), let t be the state witnessing its inclusion in ξ. A
successor s′ of s is simulated by a successor t′ of t; hence, all successors of s are
in ξ(n), as well. Finally, ξ(n) implies ϕ(n) as the simulation respects ϕ, and all
states in reach(j) : j ≤ K satisfy ϕ. �

Theorem 4 (Symmetric split invariant) For a parameterized instance, P0||P1,
with a symmetric initial condition, there is an assertion θ∗(Vi) such that the
least fixpoint of F is given by (θ∗(V0), θ∗(V1)).

Proof. For the parameterized instance, we divide the variables into non-indexed
global variables, G, and indexed local variables, Li.

The proof is by induction on the number of stages required for the fixpoint
computation. The induction hypothesis is that the condition is met at each stage.
This is clearly true for the initial stage, where the value X0 = (false, false).
Assuming the hypothesis at stage k, the first component of Xk+1 is given by
(∃L1 : sp(P0, θ(G,L0) ∧ θ(G,L1)) ∨ sp(P1, θ(G,L0) ∧ θ(G,L1)) ∨ I(G,L0, L1)).
This may be written as Xk+1(0) = (∃L1 : ψ(L0, G, L1)). The expression in
the body, ψ(L0, G, L1), is symmetric under a permutation that maps L0 to L1.
I.e., [ψ(L0, G, L1) ≡ ψ(L1, G, L0)]. This is so as the set of initial states is
symmetric under such permutation, and sp(P0) is symmetric with sp(P1), as
they are based on isomorphic copies of P . The second component, Xk+1(1),
is given by (∃L0 : ψ(L0, G, L1)). These expressions are symmetric under the
permutation π that maps L0 to L1.

π(Xk+1(0))
≡ { definition }

π(∃x : ψ(L0, G, x))
≡ { applying π }

(∃x : ψ(L1, G, x))
≡ { ψ is symmetric }
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(∃x : ψ(x,G,L1))
≡ { definition }

Xk+1(1)

�

6.1 Split Invariants from Reachable States

Lemma 1 Let b be a pre-fixpoint of f , and let a be such that [a ⇒ b]. If a∗

is the fixpoint of the iteration of f̂ from a, then a∗ is a pre-fixpoint of f , and
[a∗ ⇒ b].

Proof Sketch. The advantage of f̂ over f is that, by the inflationary property,
the sequence of applications X0 = a,Xi+1 = f̂(Xi) produces an monotonically
increasing chain, for any a. It is easy to show by induction that [Xi ⇒ b] for
each i, in particular for the least fixpoint a∗. Moreover, as f(a∗) implies f̂(a∗),
and a∗ is a fixpoint for f̂ , [f(a∗) ⇒ a∗]; i.e., a∗ is a pre-fixpoint for f . �

For simplicity, let N = 2 in the calculation of R(i). The next theorem shows
that a fixpoint process from R(i) is an alternative way to compute the strongest
split invariant for M(2), showing that the invisible invariant definition is a good
starting point for an inductive invariant.

Theorem 6 The fixpoint of the iteration of F̂ from (R(0), R(1)) produces the
strongest split invariant for M(2).

Proof. Let θ∗ be the strongest split invariant for M(2). By the definition of
R(i), (R(0), R(1)) � (θ∗(0), θ∗(1)). As θ∗ is a pre-fixpoint of F , by Lemma 1,
the iteration of F̂ from (R(0), R(1)) produces a fixpoint, say (R∗(0), R∗(1)) that
is a pre-fixpoint of F , and is below θ∗. But θ∗ is the least pre-fixpoint of F ; thus,
R∗(i) is equivalent to θ∗(i). �

Corollary 0 Every state that is reachable from a state in (R(0) ∧R(1)) in M(2)
is in R∗(0) and R∗(1).

Proof. The proof is by induction on the length of the path witnessing reacha-
bility. The induction hypothesis is that states reachable in at most k steps are
included in both Rk(0) and Rk(1), where Rk(i) is the kth-stage value of R in the
fixpoint calculation for R∗. The basis (length=0) is immediate. Assuming this
is true for all states reachable in at most k steps, consider a state s reachable in
k + 1 steps. Then s is a successor of a state t that is reachable within k steps;
thus, t is in (Rk(0) ∧ Rk(1)). From the definition of F̂ , all successors (by either
P0 or P1) of states in (Rk(0) ∧ Rk(1)) are included in Rk+1(i). Thus, s is in
Rk+1(i) for both values of i. The claim follows as [Rk(i) ⇒ R∗(i)] for all k. �
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6.2 Analyzing the Mutual Exclusion example

In this section, we work through the mutual exclusion protocol of Figure 1, first
as a simple BDS; then, by adding an auxiliary variable, as a general BDS. This
example is taken from [39], but its treatment is different—we show how the
theorems and algorithms defined in the previous sections can be brought to bear
to fully analyze the example.

As the mutex program is a simple BDS, it suffices to compute the strongest
split invariant for M(2) in order to obtain the strongest singly indexed invariant
assertion. It is easiest to do this with the definition of R(i) and Theorem 6. Define
nc(i) (non-critical local states) as (Ii ∨ Ti). The set of reachable states is defined
by the assertion (x ∧ nc(0) ∧ nc(1)) ∨ (¬(x) ∧ ¬(nc(0) ≡ nc(1))). Then R(0) is
defined by ¬(x) ∨ nc(0), and (R(0) ∧ R(1)) is given by ¬(x) ∨ (nc(0) ∧ nc(1)).

The state (¬(x), E0, C1), which is unreachable in M(2), is in (R(0) ∧ R(1)).
From this state, it is possible to reach the “bad” state (¬(x), C0, C1) (which
violates mutual exclusion), through the path (¬(x), E0, C1)

P0−→ (x, I0, C1)
P0−→

(x, T0, C1)
P0−→ (¬(x), C0, C1). By Corollary 0, therefore, the bad state is in the

strongest split invariant. As the small model bound is 2, there is no inductive
assertion of the shape (∀i : θ(Vi)) adequate to prove mutual exclusion. This is a
considerably stronger statement than the conclusion in [39] that the computed
R(i) is non-inductive.

There are two ways around this problem. One is to look for inductive assertions
with a quantification (∀i, j : i 6= j). In [39], the authors show that the generalizing
from the reachable states of the 3-process instance produces the assertion (∀i, j :
i 6= j : ¬(nc(i)) ⇒ ((¬x)∧ nc(j))), which is inductive. An extension of Theorem
6 shows that this is the strongest such assertion.

The other approach, also followed in the paper, is to introduce an auxiliary
variable to help form a stronger (∀i) inductive invariant. The variable introduced
in this case is last entered, used to keep track of the last process to enter the
critical region. This has type T1, so the modified program is no longer a simple
BDS. On the other hand, the bound from the small model theorem for this
program is 3, so analyzing M(3) suffices. As before, we start with the reachable
states, which can be defined by

(x ∧ nc(0) ∧ nc(1) ∧ nc(2))∨
(¬(x) ∧ ¬(nc(0)) ∧ nc(1) ∧ nc(2) ∧ last entered = 0)∨
... symmetric clauses for 1 and 2 ...

Quantifying out the local variables for 1 and 2, and applying the abstrac-
tion function α0 which replaces last entered = 1 and last entered = 2 by
last entered 6= 0, theR(0) obtained simplifies to nc(0) ≡ (x∨ last entered 6=
0). The conjunction R(0) ∧ R(1) ∧ R(2) is inductive for M(3), so the induced
assertion (∀i : nc(i) ≡ (x ∨ last entered 6= i)) is invariant for all N ≥ 3.
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