
Lifting Temporal Proofs through Abstractions

Kedar S. Namjoshi

Bell Labs, Lucent Technologies
kedar@research.bell-labs.com

Abstract. Model checking is often performed by checking a transformed
property on a suitable finite-state abstraction of the source program.
Examples include abstractions resulting from symmetry reduction, data
independence, and predicate abstraction. The two programs are linked
by a structural relationship, such as simulation or bisimulation, guaran-
teeing that if the transformed property holds on the abstract program,
the property holds on the original program.
Recently, several algorithms have been developed to automatically gen-
erate a deductive proof of correctness from a model checker. A natural
question, therefore, is how to ‘lift’ a deductive proof that is generated
for an abstract program back into the original program domain. In this
paper, we show how this can be done for general temporal properties,
relative to several types of abstraction relationships between the two
programs. We develop simplifications of the lifting scheme for common
types of abstractions, such as predicate abstraction. We also show how
one may generate easily checkable lifted proofs, which find use in appli-
cations such as proof-carrying code, and in the use of model checkers as
decision procedures in theorem proving.

1 Introduction

Model Checking, introduced in [CE81,QS82], has enabled routine automatic ver-
ification of programs, especially in hardware and, more recently, in software. A
key component of the application of model checking is the use of abstraction
methods, which reduce the problem of checking programs with large (possibly
infinite) state-spaces to checking a transformed property on a suitable small,
finite-state abstraction of the original program. Typically, the two programs are
related by a structural relationship, such as simulation [Mil71], or bisimulation
[Par81]. This guarantees that if the transformed property holds on the abstract
program, then the original property holds on the concrete program. Common
examples of abstraction are those resulting from symmetry reduction [ES93,
CFJ93], data independence [Wol86], and predicate abstraction [GS97].

Recently, several algorithms [RRR00,Nam01,PPZ01,TC02] have been devel-
oped that automatically generate a deductive proof of correctness from a model
checker; such proofs have many applications, which are mentioned in these pa-
pers. In the context of model checking with abstraction, however, there remains
a missing link: how to ‘lift’ a deductive proof generated automatically for the
abstract program back to the concrete program domain. While it is well-known

L. Zuck et al. (Eds.): VMCAI 2003, LNCS 2575, pp. 174–188, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Lifting Temporal Proofs through Abstractions 175

that property satisfaction can be lifted back through abstraction [HM85,BCG88],
these results rely on the set-based semantics of properties, and do not indicate
how to lift deductive proofs of satisfaction.

In this paper, we tackle this question for temporal properties in the Mu-
calculus [Koz82], and several types of abstractions. The Mu-calculus is a very
expressive temporal logic, which subsumes commonly used logics such as CTL,
CTL∗, and linear temporal logic. We use a deductive proof system developed
in [Nam01] to represent proofs of correctness for mu-calculus properties. This
proof system relies on invariant assertions (for showing safety) and rank functions
(for showing progress). It is based on a direct translation of the mu-calculus to
alternating tree automata [EJ91]; thus, the proof steps closely follow the syntax
of the formula. We show how the invariance assertions and rank functions in a
valid proof on the abstract program can be lifted to the concrete program domain
to constitute a valid proof in that domain. We define how such lifting works for
abstractions based on simulation (preserving universal properties), bisimulation
(which preserves all properties), and abstraction with 3-valued logics (which
preserves all properties, but with a potential loss of completeness).

We then explore several applications of this lifting scheme. We develop sim-
plified versions of the scheme for common abstractions, such as the encoding of
non-boolean types with bit vectors in symbolic model checkers, and predicate ab-
straction. We also examine the question of generating easily checkable proofs, for
applications to proof-carrying code [NL96] and the addition of model checking
as a trusted decision procedure to theorem provers. We show that it is possible
to combine a checkable proof of the abstraction relationship and a checkable
proof on the abstract program into a checkable proof showing correctness of the
property on the source program.

Related Work. There is not, to the author’s knowledge, an earlier systematic
study of how proofs may be lifted from abstract to concrete programs, but several
interesting and important instances of such lifting can be mentioned.

In [APR+01], an automatically generated invariant for a small instance of a
parameterized system is heuristically (and automatically) lifted to a candidate
invariant for the entire system, which is subsequently checked for validity. This
check is required as it is not known in advance – unlike in our setting – whether
there is an abstraction relationship between the full system and its small in-
stances. The BLAST toolkit for verifying sequential C code [HJM+02] includes
a method for lifting a checkable linear-time invariance proof through the ab-
straction computed by their algorithm into a checkable proof of correctness for
the original program. The results in this paper apply to more general properties,
including liveness and branching-time properties, and to several other types of
abstractions. An alternative to proof-carrying code, called model-carrying code,
is suggested in [SRRS02]. In one version, code is sent together with an abstract
program and a proof of abstraction. The recipient must re-validate the property
by model checking the abstract program. Our results show that it is possible to
avoid this potentially expensive model checking step by combining the abstrac-
tion proof with an automatically generated deductive proof of the property.

176 K.S. Namjoshi

2 Background

In this section, we define the mu-calculus and its universal fragment. For com-
pleteness’ sake, we reproduce the deductive proof system from [Nam01]. In the
following section, we show how to lift proofs that are developed in this system.

The mu-calculus. The mu-calculus [Koz82] is a branching time temporal logic
that subsumes commonly used logics such as LTL, ω-automata, CTL, and CTL∗
[EL86]. It is parameterized with respect to Σ (state labels), Γ (action labels),
and V (the set of fixpoint variables). Formulas of the logic are defined using
the following grammar, where l is in Σ, a is in Γ , Z is in V , and µ is the least
fixpoint operator: Φ ::= l | Z | 〈a〉Φ | ¬Φ | Φ ∧ Φ | (µZ : Φ) .

We assume that Σ and Γ are fixed in the rest of the paper. A formula must
have each variable under the scope of an even number of negation symbols. It
is closed iff every variable is bound by a fixpoint operator. Formulas can be
converted to positive normal form by introducing the operators Φ1 ∨ Φ2 ::=
¬(¬(Φ1) ∧ ¬(Φ2)), [a]Φ ::= ¬〈a〉(¬Φ) and (νZ : Φ) ::= ¬(µZ : ¬Φ(¬Z)), and
using de Morgan rules to push negations inwards. The result is a formula where
negations are applied only to elements of Σ. A universal formula is one where
its positive form does not contain an 〈a〉 operator, for any a in Γ .

Formulas are evaluated over labeled transition systems (LTS’s) [Kel76]. An
LTS is a tuple (S, ŝ, R, L), where S is a non-empty set of states, ŝ in S is the
initial state, R ⊆ S×Γ ×S is the transition relation, and L : S → Σ is a labeling
function on states. We assume that R is total : i.e., for any s and a, there exists t
such that (s, a, t) ∈ R. A set, I, of initial states can be accommodated by adding
a dummy initial state with a transition to each state in I. The evaluation of a
formula f , represented as ‖f‖c, is a subset of S, defined relative to a context c
mapping variables to subsets of S. The evaluation rules are standard (see, e.g.,
[Sti95]) and are omitted here. A state s in the LTS satisfies a closed mu-calculus
formula f iff s ∈ ‖f‖⊥, where ⊥ maps every variable to the empty set. The LTS
satisfies f iff the initial state ŝ satisfies f .

Alternating Automata. The proof system we use is based on alternating au-
tomata rather than the mu-calculus. Alternating automata have a simpler struc-
ture, which results in simple proof rules. Furthermore, it is shown in [EJ91,JW95]
that there is a straightforward translation from a closed mu-calculus formula to
an equivalent alternating automaton: in effect, the automaton skeleton is just
the parse graph of the formula (defining the acceptance condition requires an
analysis of the alternation among fixpoint operators).

An alternating automaton is specified by a tuple (Q, q̂, δ, F), whereQ is a non-
empty set of states, and q̂ ∈ Q is the initial state. F is a partition (F0, F1, . . . , Fn)
of Q, which defines a parity acceptance condition. An infinite sequence over Q
satisfies F iff the smallest index i for which a state in Fi occurs infinitely often
on the sequence is even. The transition function, δ, maps a pair from Q×Σ to a
positive boolean expression formed using the operators ∧ , ∨ applied to elements
of the form true, false, q, 〈a〉q and [a]q, where a ∈ Γ , and q ∈ Q. We assume,

Lifting Temporal Proofs through Abstractions 177

without loss of generality, that δ is in a simple normal form where the boolean ex-
pressions have one of the following forms: q1 ∧ q2, q1 ∨ q2, 〈a〉q1, [a]q1, true, false.
Conversion to an equivalent, normal form automaton can be done in linear time.

The satisfaction of an automaton property by an LTS may be defined in
terms of an infinite, 2-player game [EJ91] – we summarize this game here. A
configuration (s, q) (s is an LTS state, q is an automaton state) is a win for player
I if δ(q, L(s)) = true; it is a loss if δ(q, L(s)) = false. For other values of δ, player
I picks the next move iff δ(q, L(s)) is either 〈a〉q1 or q1 ∨ q2. Player I picks an
a-successor for s for 〈a〉q1, or the choice of disjunct. Similarly, player II picks an
a-successor for s for [a]q1, or the choice of conjunct for q1∧ q2. A play of the game
is a win for player I iff it either ends in a winning configuration, or it is infinite
and the sequence of automaton states on it satisfies F . A strategy is a function
mapping a partial play to the next move; given strategies for players I and II,
one can generate the possible plays. Finally, the LTS satisfies the automaton
property iff player I has a winning strategy (one for which every generated play
is a win for player I) for the game played on the computation tree of the LTS
from the initial configuration (ŝ, q̂).

Deductively Verifying Mu-calculus Properties. Deductive proof systems for veri-
fying sequential and concurrent programs rely on showing safety through invari-
ants, and progress through a decrease of a rank function (alternative names are
‘variant function’, ‘progress measure’). The proof system we use for verifying au-
tomaton properties (from [Nam01]) is based on the same concepts. Suppose that
M = (S, ŝ, R, L) is an LTS, and A = (Q, q̂, δ, F) is a normal form automaton,
where F = (F0, F1, . . . , F2n). To show that M satisfies A, one exhibits:

– for each automaton state q, an invariant predicate, φq, over S, expressed in
some assertion language, and

– for each automaton state q, a partial rank function, ρq, which maps states
in S to elements of a set W equipped with a well-order
. The set W is
the product, W1 × . . . ×Wn, of well ordered sets {(Wi,≤i)}, and
 is the
lexicographic well-order obtained from {≤i}.
The invariants and rank functions must satisfy the proof obligations shown in

Figure 1 (the predicate l(s) is defined as (L(s) = l), and the notation [f] means
that the formula f is valid.) For instance, the rule for a transition δ(q, l) = [a]q1
asserts that for every state with label l that satisfies the invariant φq and has
rank k, all of its successors must satisfy the invariant for q1 and change rank
appropriately. To ensure progress towards termination of least fixpoints, the rank
must change in a specific manner. This is given by a rank change relation, �q (q
is an automaton state), defined over W ×W . First, let ≺i be the restriction of
≺ to the first i vector components: formally, a ≺i b ≡ (∃k : 1 ≤ k ≤ i : a[k] <k
b[k] ∧ (∀j : 1 ≤ j < k : a[j] = b[j])). For any a, b, and q, the relation a�q b holds
iff for the (unique, since F is a partition) index k such that q ∈ Fk, for some
i, either k = 2i and a
i b, or k = 2i − 1 and a ≺i b. Informally speaking, the
strict decrease of rank at odd indexed states ensures that in the game, player I
can not get ‘stuck’ in such states, so the parity condition holds. In [Nam01], it
is shown that this proof system is sound, and relatively complete.

178 K.S. Namjoshi

– Consistency: For each q ∈ Q, [φq ⇒ (∃k : (ρq = k))] (ρq is defined for every
state in φq)

– Initiality: [φq̂(ŝ) ≡ true] (the initial state satisfies the initial invariant)
– Invariance and Progress: For each q ∈ Q, and l ∈ Σ, depending on the form of
δ(q, l), check the following.
• true: there is nothing to check.
• false: [φq ⇒ ¬l] holds,
• q1 ∧ q2: [φq ∧ l ∧ (ρq = k) ⇒ (φq1 ∧ (ρq1 �q k)) ∧ (φq2 ∧ (ρq2 �q k))]
• q1 ∨ q2: [φq ∧ l ∧ (ρq = k) ⇒ (φq1 ∧ (ρq1 �q k)) ∨ (φq2 ∧ (ρq2 �q k))]
• 〈a〉q1: [φq ∧ l ∧ (ρq = k) ⇒ 〈a〉(φq1 ∧ (ρq1 �q k))]
• [a]q1: [φq ∧ l ∧ (ρq = k) ⇒ [a](φq1 ∧ (ρq1 �q k))]

Fig. 1. A deductive proof system for verifying branching-time properties.

3 Lifting Proofs

Given a LTS N that abstracts an LTS M , we show how a proof of a property
f on N can be lifted to a proof of the same property on M . We consider two
common notions of abstraction: simulation [Mil71], which preserves only univer-
sal properties, and bisimulation [Par81], which preserves properties of the full
mu-calculus (cf. [BCG88,Sti95]). Let M and N be LTS’s, with ΓM = ΓN and
ΣM = ΣN . A relation ξ ⊆ SM ×SN is a simulation from M to N if, and only if:

– The initial states of M and N are related, i.e., ŝMξŝN , and
– For every s in SM and t in SN such that sξt holds:
• LM (s) = LN (t), and
• for every a ∈ ΓM , and every u in SM such that (s, a, u) ∈ RM , there

exists v in SN such that (t, a, v) ∈ RN and uξv holds.

A relation ξ is a bisimulation if, and only if, both ξ and its converse relation,
ξ−1, are simulations. We say that M is simulated by (bisimilar to) N if there
exists a simulation (bisimulation) relation from M to N .

Notation. In the rest of this paper, proofs are presented in a format popularized
by Dijkstra and Scholten in [DS90]. Here, individual steps of a proof are linked by
a transitive connective such as ≡ or ⇒ , along with a hint for why the connection
holds. The notation (Qx : r(x) : p(x)) is used to represent an operation where
x is the dummy variable, r(x) is the range of x, and p(x) is the term being
operated on. Therefore, (∃x : r(x) : q(x)) is the same as (∃x : r(x) ∧ q(x)), while
(∀x : r(x) : q(x)) is the same as (∀x : r(x) ⇒ q(x)).

3.1 Lifting Proofs through a Simulation

Suppose thatM is simulated byN through a relation ξ, and f is a universal prop-
erty. Since f is universal, the transition relation of the alternating automaton
for f does not have any occurrence of 〈a〉, although any of the other connectives
may occur. A proof, Π, that N satisfies f is given by the tuple (φ, ρ,W), where

Lifting Temporal Proofs through Abstractions 179

φ is the invariant function, ρ is the rank function, and W is the well-ordered set
of ranks. Let Π ′ = (φ′, ρ′,W ′) be defined by:

– (lifting invariants) φ′q(s) ≡ (∃t : sξt : φq(t))
– (lifting rank functions) ρ′q(s) = (min t : sξt ∧ φq(t) : ρq(t)), where min is

the minimum relative to
 (the condition φq(t) ensures that ρq(t) is defined.)
– (lifting rank sets) W ′ = W ,
′=

The lifted invariant is just the concretization of the abstract invariant (this is a
well-known fact from abstract interpretation theory). We make frequent use of
the following lemma in the subsequent proofs. It captures all of the information
we need about �q in order to show that the lifted proof is valid.
Lemma 1. For any a, b, c, d of equal length, and any automaton state q, if a

b, b�q c, and c
 d, then a�q d.
Proof. By definition, �q is
i or ≺i, for some i. The lemma holds as the

relation is stronger than
i, and
i is transitive (it is a partial order). �
Theorem 1. For a universal property f , if Π = (φ, ρ,W) is a valid proof that
N |= f , and M is simulated by N through a relation ξ, then Π ′ = (φ′, ρ′,W ′),
as defined above, forms a valid proof that M |= f .
Proof. Consider each type of proof subgoal.
(Initiality) We have to show that [φ′q̂(ŝM) ≡ true].

φ′q̂(ŝM)
≡ (definitions)

(∃t : ŝMξt : φq̂(t))
⇐ (logic)

ŝMξŝN ∧ φq̂(ŝN)
≡ (ξ is a simulation)

φq̂(ŝN)
≡ (Initiality for the given proof)

true

(Consistency) We have to show that, for any state s, φ′q(s) implies that ρ′q(s) is
defined. From the definition of ρ′, if φ′q(s) holds, then the range of t in (min t)
is non-empty; thus, ρ′q(s) is defined.
(Invariance and Progress) Based on the form of δ(q, l):
0. true: nothing to check.
1. false: given that [φq ∧ l ⇒ false], we have to show that [φ′q ∧ l ⇒ false].
For any s,

φ′q(s) ∧ l(s)
≡ (definitions)

(∃t : sξt : φq(t) ∧ l(s))
⇒ (by simulation ξ, l(s) ⇒ l(t))

(∃t : sξt : φq(t) ∧ l(t))
⇒ (by subgoal for N)

(∃t : sξt : false)
≡ (logic)

false

180 K.S. Namjoshi

2. q1 ∧ q2: we have to show that [(φ′q ∧ l ∧ ρ′q = k) ⇒ (φ′q1 ∧ ρ′q1 �q k) ∧ (φ′q2 ∧
ρ′q2 �q k)]. Consider the first consequence (the second has a symmetric proof).
For any s,

φ′q(s) ∧ l(s) ∧ ρ′q(s) = k
≡ (definitions)

(∃t : sξt : φq(t)) ∧ l(s) ∧ (min t : sξt ∧ φq(t) : ρq(t)) = k
⇒ (definition of min)

(∃t : sξt ∧ φq(t) ∧ ρq(t) = k ∧ l(s))
⇒ (ξ is a simulation)

(∃t : sξt ∧ φq(t) ∧ ρq(t) = k ∧ l(t))
⇒ (corresponding subgoal for N)

(∃t : sξt ∧ φq1(t) ∧ ρq1(t) �q k)
⇒ (logic)

(∃t : sξt ∧ φq1(t)) ∧ (∃t : sξt ∧ φq1(t) : ρq1(t) �q k)
⇒ (definitions, Lemma 1)

φ′q1(s) ∧ ρ′q1(s) �q k

3. q1 ∨ q2: this is similar to the previous case.
4. [a](q1): we have to show that [(φ′q ∧ l ∧ ρ′q = k) ⇒ [a](φ′q1 ∧ ρ′q1 �q k)]. For
any s and u,

(φ′q(s) ∧ l(s) ∧ ρ′q(s) = k) ∧ (s, a, u) ∈ RM
≡ (definitions)

(∃t : sξt : φq(t)) ∧ l(s) ∧ (min t : sξt ∧ φq(t) : ρq(t)) = k ∧ (s, a, u) ∈ RM
⇒ (definition of min)

(∃t : sξt ∧ φq(t) ∧ ρq(t) = k ∧ l(s) ∧ (s, a, u) ∈ RM)
⇒ (ξ is a simulation)

(∃t : sξt ∧ φq(t) ∧ ρq(t)=k ∧ l(t) ∧ (s, a, u) ∈ RM ∧ (∃v : (t, a, v) ∈ RN : uξv))
≡ (rearranging)

(∃t, v : sξt ∧ φq(t) ∧ ρq(t)=k ∧ l(t) ∧ (t, a, v) ∈ RN ∧ uξv ∧ (s, a, u) ∈ RM)
⇒ (corresponding subgoal for N , dropping some terms)

(∃v : φq1(v) ∧ ρq1(v) �q k ∧ uξv)
⇒ (logic)

(∃v : uξv : φq1(v)) ∧ (∃v : uξv ∧ φq1(v) : ρq1(v) �q k)
⇒ (definitions, Lemma 1)

φ′q1(u) ∧ ρ′q1(u) �q k
�

3.2 Lifting Proofs through Bisimulations

Theorem 2. For any mu-calculus property f , if Π = (φ, ρ,W) is a valid proof
that N |= f , and M and N are bisimilar through a relation ξ, then Π ′ =
(φ′, ρ′,W ′), as defined above, forms a valid proof that M |= f .
Proof. Since we use the same lifted invariant and ranking function as in the
simulation proof, the earlier proof claims carry over unchanged, and we only
need add the proof for the 〈〉 case.
5. 〈a〉q1: We have to show that [φ′q ∧ l ∧ ρ′q = k ⇒ 〈a〉(φ′q1 ∧ ρ′q1 �q k)] holds.
For any s,

Lifting Temporal Proofs through Abstractions 181

φ′q(s) ∧ l(s) ∧ ρ′q(s) = k
≡ (definitions)

(∃t : sξt : φq(t)) ∧ l(s) ∧ (min t : sξt ∧ φq(t) : ρq(t)) = k
⇒ (definition of min)

(∃t : sξt ∧ φq(t) ∧ ρq(t) = k ∧ l(s))
⇒ (ξ is a simulation)

(∃t : sξt ∧ φq(t) ∧ ρq(t) = k ∧ l(t))
⇒ (corresponding subgoal for N)

(∃t : sξt ∧ (∃v : (t, a, v) ∈ RN : φq1(v) ∧ ρq1(v) �q k))
≡ (rearranging)

(∃t, v : sξt ∧ (t, a, v) ∈ RN ∧ φq1(v) ∧ ρq1(v) �q k)
⇒ (ξ is a bisimulation)

(∃v : (∃u : (s, a, u) ∈ RM ∧ uξv) ∧ φq1(v) ∧ ρq1(v) �q k)
≡ (rearranging)

(∃u : (s, a, u) ∈ RM : (∃v : uξv ∧ φq1(v) ∧ ρq1(v) �q k))
⇒ (logic)

(∃u : (s, a, u) ∈ RM : (∃v : uξv ∧ φq1(v)) ∧ (∃v : uξv ∧ φq1(v) ∧ ρq1(v) �q k))
⇒ (definitions, Lemma 1)

(∃u : (s, a, u) ∈ RM : φ′q1(u) ∧ ρ′q1(u) �q k)
�

3.3 Lifting Proofs through 3-Valued Refinement

A modal transition system (MTS) [LT88] is a tuple (S, ŝ, Rmay , Rmust , L), where
S, ŝ, and L are as in the LTS definition, but there are two transition relations,
Rmay (the may-transitions), and Rmust (the must transitions), with the con-
straint that Rmust ⊆ Rmay . The interpretation of a mu-calculus property, f , on
a MTS [HJS01] is given by inductively computing a pair, (fnec , fpos), with the
property that [fnec ⇒ fpos]. The fnec computation interprets 〈a〉 using Rmust ,
and [a] using Rmay . Symmetrically, the fpos computation uses Rmay to interpret
〈a〉 and Rmust to interpret [a].

For MTS’s M and N , N is an abstraction of M iff there exists a relation
ξ ⊆ SM × SN such that ξ is a simulation relative to the Rmay relations of M
and N , and ξ−1 is a simulation relative to the Rmust relations of N and M .
Note that abstraction coincides with bisimulation and [fpos ≡ fnec] when both
MTS’s are, in fact, LTS’s (i.e., Rmay = Rmust).

Theorem 3. [HJS01] For MTS’s M,N and a mu-calculus property f , if N
abstracts M , then: (i) if fnec

N (ŝN), then fnec
M (ŝM) (success), and (ii) if ¬fpos

N (ŝN),
then ¬fpos

M (ŝM) (failure).

Notice that it is not always possible to give a definite answer; there is a
completeness gap. However, MTS refinement can be coarser than bisimulation,
and yet be able to give a definite answer for arbitrary mu-calculus properties. It
is necessary to modify our proof system slightly in order to apply it to MTS’s.
The proof system now checks whether fnec holds: to do so, the 〈a〉 operator is
interpreted using Rmust , and the [a] operator using Rmay .

Theorem 4. Let M and N be MTS’s such that N is an abstraction of M
through a relation ξ, and let f be a mu-calculus property. If Π = (φ, ρ,W) is

182 K.S. Namjoshi

a valid proof that fnec holds for N , then Π ′ = (φ′, ρ′,W ′), where the primed
components are defined as before, is a valid proof that fnec holds on M .
Proof. This follows immediately by inspecting the proofs given earlier for the
validity of Π ′ in the simulation and bisimulation cases, substituting Rmay for R
in the [a] proof, and Rmust for R in the 〈a〉 proof. �

Hence, if the success case holds, a proof of success can be lifted from N to
M . By the semantics, [¬(fpos) ≡ (¬f)nec]. Thus, failure on N is equivalent
to showing success for a negated property, so that a proof of failure becomes a
proof of success of the negated property. So, on failure, we can use the previous
theorem to lift the proof that (¬f)nec holds from N to M .

3.4 Rank Functions and Rank Relations

A proof, as defined, is a triple (φ, ρ,W), where ρ is a collection of rank functions.
For verifying a proof, however, we really need the rank relations ρq(s) = k and
ρq(s) �r k. We write the first relation as ρ=

q (s, k), and the second as ρ�
q (r, s, k).

We now show how to lift these relations through abstraction. For this purpose,
we need a third relation, ρq(s) � k, which we represent by ρ�q (s, k). The lifted
relations can be calculated in terms of the original relations, as shown below.

ρ′=q (s, k)
≡ (by definition)

(min t : sξt ∧ φq(t) : ρq(t)) = k
≡ (definition of min)

(∀t : sξt ∧ φq(t) : ρq(t) � k) ∧ (∃t : sξt ∧ φq(t) : ρq(t) = k)
≡ (definitions)

(∀t : sξt ∧ φq(t) : ρ�q (t, k)) ∧ (∃t : sξt ∧ φq(t) : ρ=
q (t, k))

ρ′�q (r, s, k)
≡ (by definition)

(min t : sξt ∧ φq(t) : ρq(t)) �r k
≡ (definition of min , Lemma 1)

(∃t : sξt ∧ φq(t) : ρ�
q (r, t, k))

ρ′�q (s, k)
≡ (by definition)

(min t : sξt ∧ φq(t) : ρq(t)) � k
≡ (definition of min , Lemma 1)

(∀t : sξt ∧ φq(t) : ρ�q (t, k))

Rank relations can be easier to compute than rank functions. For instance, if
ξ, φ, and the abstract rank relations are expressed in Presburger arithmetic, the
lifted relations are also expressible in Presburger arithmetic.

An alternative way of checking a proof is to fully expand the proof obligations,
removing the dependence on the rank variable k through the 1-point rule. For
instance, the fully expanded form of the [a]q1 obligation is (∀s : φq(s) ∧ l(s) ⇒

Lifting Temporal Proofs through Abstractions 183

(∀u : R(s, a, u) : φq1(u) ∧ ρq1(u) �q ρq(s))). Let γ(q, q1, s, u) ≡ ρq1(u) �q ρq(s).
It is then desirable to lift the γ rank relation; its lifted form is γ′(q, q1, s, u) ≡
(∃v : uξv ∧ φq1(v) : (∀t : sξt ∧ φq(t) : ρq1(v) �q ρq(t))).

4 Applications

In this section, we explore the use of proof lifting in several settings where
abstraction is employed. We start with perhaps the simplest possible example:
the encoding of finite types with bit-vectors in symbolic model checkers.

4.1 Symbolic Model Checking

Symbolic model checkers, such as SMV [McM93] and COSPAN [HHK96], operate
on programs with finite data types. However, for the model checking computa-
tion, these programs are transformed into programs with only binary variables,
by encoding variables with non-binary types with bit vectors. For instance, con-
sider the following program, with a single action, a.

var x,y: [0,3] initially (x=0) and (y=0)
a: x,y := (x+1) mod 4, (y+1) mod 4

To model check this program, variable x is transformed to the bit-vector
(x1, x0), and similarly for y. This transformation induces a bisimulation be-
tween the source and result programs. Now consider the problem of lifting a
proof of the bit-vector invariant, φ ≡ (x0 = y0 ∧ x1 = y1), into a proof
in the original notation. The bisimulation relationship can be expressed by
(x, y)ξ((x1, x0), (y1, y0)) ≡ (x ∈ [0, 3] ∧ y ∈ [0, 3] ∧ x = x0 +2x1 ∧ y = y0 +2y1).
Applying the lifting scheme for invariants, we get the expected result, x = y, as
a result of Presburger simplification, which may be automated with tools such
as Omega [Pug92].

φ′(x, y)
≡ (definition of lifting)

(∃x0, x1, y0, y1 : (x, y)ξ((x1, x0), (y1, y0)) : φ(x0, x1, y0, y1))
≡ (definition of ξ, and φ)

(∃x0, x1, y0, y1 : (x ∈ [0, 3] ∧ y ∈ [0, 3] ∧ x = x0 + 2x1 ∧ y = y0 + 2y1) :
x0 = y0 ∧ x1 = y1)

≡ (Presburger simplification)
x ∈ [0, 3] ∧ y ∈ [0, 3] ∧ x = y

4.2 Predicate Abstraction

In Predicate Abstraction [GS97], predicates of the original program are repre-
sented with boolean variables in the abstract program. For a predicate p, we
let p̄ denote its corresponding boolean variable. Let P = {p1, . . . , pn}, (n > 0),
denote the set of predicates. We let s ∼P t represent the fact that concrete

184 K.S. Namjoshi

state s and abstract state t agree on values of the predicates in P, up to the
predicate-boolean correspondence. Formally, s ∼P t ≡ (∀i : pi(s) ≡ p̄i(t)). The
abstract program, A, is computed from the concrete program, C, while satisfying
the following constraints.

– The abstract initial state, ŝA, is such that ŝC ∼P ŝA
– The abstract transition relation, RA(t, a, v), is such that

(∃s, u : s ∼P t ∧ u ∼P v : RC(s, a, u)) ⇒ RA(t, a, v)

These two constraints ensure that the relation ∼P is a simulation relation from
C to A, relative to the predicates in P. Now consider a proof of a universal
property on the abstract program. The lifted proof computed by the recipe of
the previous section can be simplified as follows.

φ′q(s)
≡ (by definition)

(∃t : s ∼P t : φq(t))
≡ (by definition of ∼P)

(∃t : t = (p1(s), . . . , pn(s)) : φq(t))
≡ (1-point rule)

φq(p1(s), . . . , pn(s))

Thus, abstract invariants can be lifted simply by substituting each boolean vari-
able with its corresponding predicate. The rank relations can be simplified in a
similar manner, to obtain the formulas below.

– ρ′=q (s, k) ≡ (φ′q(s) ∧ ρ=
q (p1(s), . . . , pn(s), k))

– ρ′�q (r, s, k) ≡ (φ′q(s) ∧ ρ�
q (r, p1(s), . . . , pn(s), k))

– ρ′�q (s, k) ≡ (φ′q(s) ⇒ ρ�q (r, p1(s), . . . , pn(s), k))

Similar substitution-based transformations can be obtained for other types of
abstraction that are (as in this case) functional in nature: i.e., sξt if, and only if,
t = g(s), for a total function g. Data type reductions (e.g., reducing the integer
type to {negative, zero, positive}), and symmetry reductions (reducing an equiv-
alence class to its representative) are other examples of functional abstractions.

Example. In the self-stabilizing program below, execution of the actions {a, r}
alone maintains the invariant that (xmod 3 = 0). However, the environment,
through action e, may invalidate this property. In this case, execution of the
restoration action r sufficiently many times (maximum 2) restores the invariant.
This restoration property can be written in the mu-calculus as (νY : (µZ :
(xmod 3 = 0) ∨ [r]Z) ∧ [a, r, e]Y).

var x:integer initially x=0
a: x := x+3
r: not(x mod 3 = 0) -> x := x+1
e: x := choose integer

We can verify this property through an abstraction relative to the set of
predicates {pi | i ∈ [0..2]}, where pi ≡ (xmod 3 = i). One possible abstract
program is as follows.

Lifting Temporal Proofs through Abstractions 185

var b_0,b_1,b_2: boolean initially b_0 and not(b_1) and not(b_2)
a: b_0,b_1,b_2 := b_0,b_1,b_2
r: not(b_0) -> b_0,b_1,b_2 := b_2, b_0, b_1
e: b_0,b_1,b_2 := a_0,a_1,a_2 // the inputs {a_i} are mutually exclusive

The transformed property is (νY : (µZ : b0 ∨ [r]Z) ∧ [a, r, e]Y). The al-
ternating automaton for this property (each automaton state corresponds to a
sub-formula), and its correctness proof are shown in Figure 2. From this proof,
one can read off the lifted correctness proof as follows (the notation (a?b|...) is
read as “a, if b else ...”).
Invariants: φq3 = p0, all other φqi = true
Rank Functions: ρq1 = (1?p0|3?p1|2); ρq4 = (0?p0|2?p1|1); and all other ranks
are 0.

The set of states is Q = {q0, . . . , q4} with
initial state q0.
The transitions are:
δ(q0, true) = q1 ∧ q2,
δ(q2, true) = [a, r, e]q0,
δ(q1, true) = q3 ∨ q4,
δ(q3, b0) = true, δ(q3,¬b0) = false, and
δ(q4, true) = [r]q1
The parity condition is (Q\{q1}, {q1}).

Invariants: φq3 = b0, all other φqi = true
Rank Functions: ρq1 = (1?b0|3?b1|2),
ρq4 = (0?b0|2?b1|1),
all other ranks are 0.

Fig. 2. Alternating Automaton and the Correctness Proof

4.3 Efficiently Checkable Lifted Proofs

In several applications of automatically generated proofs discussed in [Nam01],
[HJM+02], it is important that the proof be efficiently checkable. For programs
with bounded data types, the proof that is generated is propositional in nature:
for instance, the invariants and rank relations may be represented by BDD’s.
Hence, it is possible to refine the individual validity checks of a temporal proof
(which are instances of a co-NP complete problem) into proofs in a sound and
complete propositional proof system (see, e.g., [Men97] for examples of such
proof systems). Such a proof, for instance, in a Hilbert-style system, is easy
to check in polynomial time: one need only check that each step is a proper
substitution into an axiom schema, or a proper inference. The expanded proof
may, of course, be exponential in the length of the original assertions.

However, abstraction often transforms a program with unbounded data types
into a bounded program; thus, the lifted proof is over an unbounded data space.
While it may seem that this makes it difficult to generate a checkable lifted proof,
that is not necessarily the case. Suppose that M is simulated by N through a
relation ξ, and that Π is the proof that N |= f . Let Π ′ be the lifted proof that
M |= f , as defined in Section 3.1. The proof of Theorem 1 shows that each one

186 K.S. Namjoshi

of the conditions for Π ′ to be a valid proof is satisfied. Those proofs use, as sub-
lemmas, the (given) facts that (i) ξ is a simulation relation, and (ii) Π forms a
valid proof for the abstract program. Thus, if there are available checkable proofs
of these facts, then the sub-proofs in Theorem 1 form a schema into which these
can be inserted to make Π ′ a checkable proof.

For fixed abstraction schemes, such as reduction by symmetry, or predicate
abstraction, the proof that ξ is a simulation can further be decomposed into a
generic schema that any relation satisfying certain conditions (e.g., those given
in Section 4.2) induces a valid abstraction relationship, and a proof that a given
relationship satisfies these conditions. This further simplifies the burden of gen-
erating a checkable proof, and of checking it as well, since the generic schemas
may be checked in advance.

5 Conclusions

We have shown that it is possible to lift deductive proofs, quite simply, through
both simulation and bisimulation abstractions, for properties written in power-
ful temporal logics. We have also shown that it is possible to combine checkable
proofs for the validity of an abstraction and for the temporal property on the
abstract program into a checkable proof for the property on the original pro-
gram. We have discussed simplifications in the lifted proof induced by the form
of particular kinds of abstractions. It seems quite possible that other kinds of
abstractions, such as reductions due to symmetry and data independence, will
also be amenable to such simplification. Whether lifted proofs are of reasonable
size in practice is still an open question, but the initial results of the BLAST
project [HJM+02] are encouraging.

The lifted rank functions have the same domain as the abstract rank func-
tions. This suggests that using the types of abstractions discussed here with
finite-state abstract programs, one can only prove properties with ‘bounded
progress’ proofs (as in the self-stabilizing example). Whether this is a limita-
tion in practice remains to be seen. However, it is possible to abstract with
unbounded progress measures, as shown in [KP00]; the extension of their results
from linear time to branching time properties is the subject of ongoing work.

Acknowledgements. Thanks go to Dennis Dams, Patrice Godefroid, and the
referees for a careful reading and many useful suggestions. Patrice Godefroid
suggested the application to Modal Transition Systems.

References

[APR+01] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized
verification with automatically computed inductive assertions. In CAV,
volume 2102 of LNCS, 2001.

[BCG88] M. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science,
59, 1988.

Lifting Temporal Proofs through Abstractions 187

[CE81] E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logics of
Programs, volume 131 of LNCS. Springer-Verlag, 1981.

[CFJ93] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. In CAV, volume 697 of LNCS, 1993.

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Seman-
tics. Springer Verlag, 1990.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determi-
nacy (extended abstract). In FOCS, 1991.

[EL86] E.A. and C-L. Lei. Efficient model checking in fragments of the proposi-
tional mu-calculus (extended abstract). In LICS, 1986.

[ES93] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In CAV,
volume 697 of LNCS, 1993.

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
CAV, volume 1254 of LNCS, 1997.

[HHK96] R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In CAV, volume
1102 of LNCS, 1996.

[HJM+02] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV, volume
2404 of LNCS, 2002.

[HJS01] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a
foundation for three-valued program analysis. In ESOP, number 2028 in
LNCS, 2001.

[HM85] M. Hennessy and R. Milner. Algebriac laws for nondeterminism and con-
currency. J.ACM, 1985.

[JW95] D. Janin and I. Walukiewicz. Automata for the modal mu-calulus and
related results. In MFCS, volume 969 of LNCS, 1995.

[Kel76] R.M. Keller. Formal verification of parallel programs. CACM, 1976.
[Koz82] D. Kozen. Results on the propositional mu-calculus. In ICALP, volume

140 of LNCS, 1982.
[KP00] Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction.

Information and Computation, 163(1), 2000.
[LT88] K.G. Larsen and B. Thomsen. A modal process logic. In LICS, 1988.
[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.
[Men97] E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall

(4th Edition), 1997.
[Mil71] R. Milner. An algebraic definition of simulation between programs. In 2nd

IJCAI, 1971.
[Nam01] K. S. Namjoshi. Certifying model checkers. In CAV, volume 2102 of LNCS,

2001.
[NL96] G.C. Necula and P. Lee. Safe kernel extensions without run-time checking.

In OSDI, 1996.
[Par81] D. Park. Concurrency and automata on infinite sequences, volume 154 of

LNCS. Springer Verlag, 1981.
[PPZ01] D. Peled, A. Pnueli, and L. D. Zuck. From falsification to verification. In

FSTTCS, volume 2245 of LNCS, 2001.
[Pug92] W. Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence analysis. CACM, 35(8), 1992. web page:
http://www.cs.umd.edu/projects/omega/omega.html.

188 K.S. Namjoshi

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proc. of the 5th International Symposium on Pro-
gramming, volume 137 of LNCS, 1982.

[RRR00] A. Roychoudhury, C.R. Ramakrishnan, and I.V. Ramakrishnan. Justifying
proofs using memo tables. In PPDP, 2000.

[SRRS02] R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka.
Model-carrying code (MCC): A new paradigm for mobile-code security. In
New Security Paradigms Workshop, 2002.

[Sti95] C. Stirling. Modal and temporal logics for processes. In Banff Higher
Order Workshop, volume 1043 of LNCS. Springer Verlag, 1995.

[TC02] L. Tan and R. Cleaveland. Evidence-based model checking. In CAV,
volume 2404 of LNCS, 2002.

[Wol86] P. Wolper. Expressing interesting properties of programs in propositional
temporal logic. In POPL, 1986.

	Introduction
	Background
	Lifting Proofs
	Lifting Proofs through a Simulation
	Lifting Proofs through Bisimulations
	Lifting Proofs through 3-Valued Refinement
	Rank Functions and Rank Relations

	Applications
	Symbolic Model Checking
	Predicate Abstraction
	Efficiently Checkable Lifted Proofs

	Conclusions

