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Abstract. In this work, we consider distributed protocols that operate
on arbitrary networks. The analysis of such protocols is challenging, as
an arbitrarily chosen network may have limited global symmetry. We
describe a methodology that uncovers significant local symmetries by
appropriately abstracting node neighborhoods in a network. The local
symmetries give rise to uniform compositional proofs of correctness. As
an illustration of these ideas, we show how to obtain a uniform composi-
tional invariance proof for a Dining Philosophers protocol operating on a
fixed-size, arbitrary network. An interesting and somewhat unexpected
consequence is that this proof generalizes easily to a parametric proof,
which holds on any network regardless of size or structure.

1 Introduction

A distributed protocol may be viewed as a collection of processes communicating
over an underlying interconnection network. In many protocols, the processes are
similar, while the network may be arbitrary. Examples are networking protocols
such as TCP/IP and BGP, application-level protocols such as termination de-
tection and global snapshot, and protocols for sensor and ad-hoc networks. The
verification questions are (1) the analysis of arbitrary, fixed-size instances and
(2) showing correctness in the parameterized sense; i.e., over an unbounded set
of network instances.

These analysis questions are challenging, in large part because standard symme-
try arguments do not apply to networks with irregular structure. On the other
hand, proofs carried out by hand (e.g., those in [3]) make few distinctions be-
tween nodes; the typical inductive invariant has the uniform shape “for every
node m, ...”. This observation motivates our work. We conjecture that many dis-
tributed protocols can be analyzed uniformly, even if the underlying networks
are irregular. Furthermore, we also conjecture that, once discovered, the unifor-
mity can guide the construction of a parameterized proof. The parameterized
model checking question is undecidable in general [2].
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To make progress on this conjecture, we look to a combination of abstraction
and compositional reasoning. The components of our analysis are as follows.

1. Uncover local similarities in a network by abstracting node neighborhoods.

2. Perform a compositional analysis on the abstracted network to fully exploit
the newly uncovered local symmetries; the result is an inductive invariant.

3. Check whether the reductions due to local symmetries are powerful enough
for the invariant to be parametric.

Compositional analysis, by its nature, is less sensitive to global irregularities
in network structure. This is because the analysis is carried out for each node
individually, taking into account interference only from neighboring nodes. In
recent work [19], we showed that the limited sensitivity makes it possible for
compositional methods to take advantage of local symmetries in a network. As
an example, consider a ring network of N nodes. The global symmetry group
of the ring has size O(N). Hence, standard symmetry reduction methods have
limited effect: a state space of size potentially exponential in N can be reduced
only by a linear factor. On the other hand, any two nodes are locally similar,
as their immediate neighborhoods are identical. Using this local symmetry, a
compositional invariant can be computed on a single representative node. This
reduction also enables a parametric proof, as the representative may be chosen
to be the same for all ring networks.

These earlier results, however, find their best application to networks with a
regular structure, such as star, ring, mesh, and complete networks. In an irregular
network, two obstacles arise. The first is that nodes may have different numbers
of neighbors; this suffices to make them locally dissimilar. Even if all nodes have
the same degree, irregular connectivity may limit the degree of recursive local
similarity, called “balance”, which is needed for the most effective symmetry
reduction. To obtain a uniform analysis for irregular networks, it is necessary,
therefore, to redefine local symmetry in a more general form. We do so in this
work, which makes the following contributions.

– We formulate a notion of local symmetry up to abstraction. This generalizes
the structural definition of local symmetry from [19] to a semantic one.

– We show that nodes that are “balanced” (i.e., recursively locally similar)
have similar components in the strongest compositional invariant.

– Hence, an compositional invariant can be calculated using only a single rep-
resentative from each equivalence class of balanced nodes.

– We show completeness: for any compositional invariant, it is always possible
to derive it through a network abstraction based on a small set of local
predicates, one that creates a highly locally-symmetric abstract network.

– We illustrate these ideas by showing how local symmetries may be used to
calculate a parametric invariant for a Dining Philosophers protocol.
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2 Abstraction Uncovers Symmetry

It is well understood that standard symmetry reduction [4, 12] is a form of ab-
straction: symmetric states are bisimular, and the reduction abstracts a state
to its bisimulation equivalence class. This work illustrates a converse principle:
that abstraction may help uncover hidden symmetries. We demonstrate this with
an example based on global symmetries. The subsequent sections work out this
principle for local symmetries.
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Fig. 1. A client-server network.

The example is a client-server protocol with N identical clients. A 6-client in-
stance is shown in Figure 1. The server controls access to a shared resource. Each
client may request access to the resource, in which case it waits for a grant and
eventually returns the resource to the server. To ensure fairness, the server cycles
through its adjacent edges in clockwise order: if the last grant was given to the
client on edge number c and the resource is available, the next grant is given to
the first requesting client encountered when examining edges in clockwise order
– i.e., in the sequence c+ 1, c+ 2, ..., c+N , where addition is modulo N .

This system has an exponential reachable state space, of size at least 2N , as the
subset of clients that have an outstanding request could be arbitrary. Although
the picture suggests that any pair of clients can be interchanged, the operation
of the server restricts the group of isomorphisms of the system to that of a ring.
Hence, the degree of reduction that is possible is only O(N).

An important safety property is mutual exclusion: at any time, at most one client
should have a grant. This can be established with a simpler server process: if the
resource is available, the server chooses a requesting client non-deterministically
and grants its request. Formally, the abstract server simulates the original; hence,
the abstract system as a whole simulates the original system. Moreover, the ab-
stract system satisfies mutual exclusion. The abstract system has an exponential
number of states as well. However, its automorphism group is the full symmetry
group on the clients, so its state space can be reduced by an exponential factor.
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3 Background: System Model, Compositional Invariants

This section introduces the system model, compositional invariants, and the
fixpoint computation which produces the strongest such invariant. The material
is largely a summary of [18, 7, 19].

System Model A network is given as a graph. The graph has nodes and edges
as objects, which are each given a color. Every node is connected to a set of edges;
this set is ordered at the node according to an arbitrarily defined numbering.
With respect to a node, a connected edge is either an input edge, an output
edge, or both an input and an output edge. The network shown in Figure 1 has
this form; edges are represented by rectangles and the numbering of edges on
the server side is shown. Each edge is both an input and an output edge for its
adjacent client and server node.

An assignment maps a set of processes to a network. The assignment also defines
a state type for each node and each edge; types correspond to the coloring of the
nodes and edges. The process assigned to a node m is denoted Pm. The internal
state of this process is given by a value of the node state type. A local state of this
process is given by a tuple of the form (i, v1, v2, . . . , vk), where i is an internal
state, and v1, v2, . . . , vk is a valuation to the states of its adjacent edges, ordered
by the numbering assigned to the edges at node m. For convenience, we associate
symbolic variable names to all nodes and edges. The set of all node and edge
variables is denoted V . The set of variables for process Pm is denoted Vm; these
variables represent its internal state and the state of its adjacent edges. Hence,
a local state is a valuation to Vm. The transition relation for Pm is denoted Tm.
It relates local states of m with the constraint that if (s, t) is in Tm then the
values for non-output edges of node m must be identical in s and t.

A global state is a valuation to all variables. Equivalently, a global state can be
viewed as a set of local states where the local states for any two nodes agree on
the value assigned to any common edge. The set of global initial states is denoted
I. The projection of I on m, the set of local initial states for Pm, is denoted by
Im. Symbolically, Im may be written as (∃V \Vm : I). The quantification over all
variables not in Vm projects I onto Vm. The global transition graph is induced
by interleaving transitions from individual processes, starting from an initial
state. There is a transition by process m from global state s to global state t if
Tm(s[Vm], t[Vm]) holds (s[Vm] is the local state of m in s) and for every variable
x not in Vm, s[x] = t[x].

Inductive and Compositional Invariants An inductive invariant for a tran-
sition system is a set of global states which (a) includes all initial states and (b)
is closed under all transitions. Formally, for an invariant ξ, condition (a) is de-
noted as [I ⇒ ξ] and condition (b) as [SP(Ti, ξ) ⇒ ξ], for all i. SP is the
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strongest post-condition operator (also known as the successor function, or as
post).

A compositional invariant (called a “split” invariant in [18]) is an inductive
invariant of a special shape: it is formed from the conjunction of a number of
local invariants, one for each process. Hence, it can be represented as a vector,
θ = (θ1, θ2, . . . , θN ), where each θi is defined over Vi and is itself an inductive
invariant for process Pi. Equivalently, the constraints defining a compositional
invariant are as follows.

– (Initiality) θi includes all initial states of Pi; formally, [Ii ⇒ θi]

– (Step) θi is closed under transitions of Pi; formally, [SP i(Ti, θi) ⇒ θi], and

– (Non-interference) θi is closed under actions of neighboring processes. For-
mally, [SP i(intf θki, θi) ⇒ θi], for any process k which points to i.

The predicate transformer SP i is the strongest post-condition operator for node
i. Node k points to node i if an output edge of k is adjacent to i. A transition
of k may modify a local state of node i only if k points to i.

The term intf θki (read as “interference by k on i”) is a transition condition. It
describes how the local state of m may be changed due to moves by process
k from states in its local invariant. Formally, intf θki is the projection of Tk,
under θk, on to variables shared with m. This can be written symbolically as
intf θki = (∃V \Vi, V ′\V ′i : Tk ∧ θk), where the primed variables denote next-state
values.

The Strongest Compositional Invariant as a Least Fixpoint Grouping
together the initiality, step, and non-interference constraints gives a set of simul-
taneous implications of the shape [Fi(θ) ⇒ θi]. Here, Fi(θ) is the disjunction
of the terms appearing on the left-hand side of the constraints for θi: namely,
Ii, SP i(Ti, θi), and SP i(intf θki, θi) for all k pointing to i. As Fi is monotonic in
θ for all i (vectors are ordered by point-wise implication), the set of constraints
has a least vector solution by the Knaster-Tarski theorem. The least solution,
denoted by θ∗, forms the strongest solution to the constraints, and is therefore
the strongest compositional invariant.

The least fixpoint is calculated in the standard manner by a process of successive
approximation. The initial approximation, θ0i , is the empty set for all i. The

approximation θ
(K+1)
i for stage (K+1) is defined as Fi(θ

K). Standard methods,
such as widening, may be used to ensure convergence for infinite-state systems.
This is a synchronized computation. However, by the chaotic iteration theorem of
[9], the simultaneous least fixpoint may be computed in an asynchronous manner,
following any “fair” schedule (one in which each component is eventually given
a turn). In Figure 2 we show one possible implementation of the computation.
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var θ, θ′: vector
initially, for all i: θi = ∅, θ′i = Ii
while (θ 6= θ′) do

forall i: θi := θ′i
forall i: θ′i := θi ∨ SP i(Ti, θi) ∨ ( ∨ k : k points-to i : SP i(intf θki, θi))

done

Fig. 2. Computing the Compositional Fixpoint.

4 Informal Analysis of A Dining Philosophers Protocol

In this section, we describe a protocol for the Dining Philosophers problem and
outline an analysis which performs local abstraction to extract symmetry. This
is done in an informal manner; the justification for the soundness of these steps
is laid out in the following sections.

The protocol We model a Dining Philosophers protocol (abbreviated by DP)
as follows. The protocol consists of a number of similar processes operating on
an arbitrary network. Every edge on the network models a shared “fork”; the
variable for the edge between nodes i and j is called fij . Its domain is {i, j,⊥}.
Node i is said to own the fork fij if fij = i; node j owns this fork if fij = j; and
the fork is available if fij = ⊥.

The process at node i goes through the following internal states: T (thinking);
H (hungry); E (eating); and R (release). Each state s is really a “super-state”
with a sub-state sX for every subset X of adjacent forks, but we omit this detail
for simplicity. Let nbr be the neighbor relation between processes. The state
transitions for a process are as follows.

– A transition from T to H is always enabled.

– In state H, the process acquires forks, but may also choose to release them

• (acquire fork) if nbr(i, j) and fij = ⊥, set fij := i,

• (release fork) if nbr(i, j) and fij = i, set fij := ⊥, and

• (to-eat) if (∀j : nbr(i, j) : fij = i) holds, change state to E.

– A transition from E to R is always enabled.

– In state R, the process releases its owned forks.

• (release fork) if nbr(i, j) and fij = i, set fij := ⊥
• (to-think) if (∀j : nbr(i, j) : fij 6= i), change state to T

The initial state of the system is one where all processes are in internal state T∅
and all forks are available (i.e., have value ⊥).
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Correctness Properties The desired safety property is that there is no reach-
able global state where two neighboring processes are in the eating state (E).
The protocol given above is safe. It is also free of deadlock, as a process may
always release a fork to its neighbor. It is, however, not free of livelock. Our focus
is on a proof of the safety property of mutual exclusion between neighbors.

Abstract DP model The simplest abstraction is to have just the four abstract
states: T,H,E,R, corresponding to the four super-states. The abstract transi-
tions derived from standard existential abstraction are T → H,H → H,H →
E,E → R,R → R,R → T . However, this is too coarse an abstraction for com-
positional analysis. By the Step rule (Section 3) all four states, being reachable
from the initial abstract state T , must belong to the final invariant, θ∗i , for every
process i. This abstract compositional invariant contains a global state where
neighbors i, j are in state E, which violates the desired property of mutual ex-
clusion between neighbors.

To tighten up the abstraction, we define a predicate A that is true for a node i if it
“owns all adjacent forks” (i.e., if for every j adjacent to i, the fork variable on the
edge (i, j) has value i). Note that this predicate occurs in the protocol, guarding
the transition from state H to state E. The reachable abstract transitions at a
node with at least one adjacent edge are shown in Figure 3(a). For an isolated
node A is vacuously true as it has no adjacent forks; the transitions for such a
node are shown in Figure 3(b).

The standard existential abstraction is used to compute these transitions. The
concrete domain for node m is the set of local states of m, Lm. The abstract
domain is the set {T,H,E,R}×{A,−A}. The abstraction function, αm, maps a
local state s to an abstract state based on the super-state in s and the value of
A in s. This induces a Galois connection (αm, γm) connecting the two domains.
There is an abstract transition from (abstract) state a to (abstract) state b if
there exist local states x, y of node m such that x ∈ γm(a), y ∈ γm(b), and
Tm(x, y) holds.

Abstract Interference Transitions Figure 3 shows the abstract states reach-
able through step transitions. For the compositional analysis, we also have to
consider how interference by nodes adjacent to node m affects the abstract states
of node m. The concrete interference due to node k was defined in Section 3.
Expanding the definition of intf θkm, one gets that (u, v) is an interference transi-
tion for node m caused by node k, under a vector of assertions θ, if the following
holds.

(∃s, t : u = s[Vm] ∧ v = t[Vm] ∧ Tk(s, t) ∧ θk(s[Vk])) (1)

Here, states s, t are joint states of nodes m and k, representing an assignment
of values to the variables in Vm ∪ Vk.

By analogy, the interference of node k on the abstract state of m is defined as
follows. An abstract transition (a, b) for node m is the result of interference by
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Fig. 3. Abstract State Transitions (a) for non-isolated nodes and (b) for an isolated
node. The notation “−A” indicates the negation of A. Green/dark states are initial.

process Pk under a vector of abstract assertions ξ if the following holds.

(∃s, t : a = αm(s[Vm]) ∧ b = αm(t[Vm]) ∧ Tk(s, t) ∧ ξk(αk(s[Vk]))) (2)

Informally, this expression says that every abstract interference transition is
witnessed by a concrete interference transition.

Computing Interference Surprisingly, there is no non-trivial interference in
the abstract DP protocol ! Informally, this is due to the following reason. The
predicate Am refers to the set of forks owned by m. In the concrete protocol, an
adjacent node cannot take away ownership of forks from node m, nor can it grant
ownership of forks to m. Hence, the value of Am is unchanged by transitions at
neighboring nodes. Those transitions cannot change the value of the internal
state of node m, either. Formally, the maximum interference from k on to m,
obtained by setting ξk to true in the defining expression (2), shows that the
abstract state of m is unchanged by transitions of k.

Abstract Compositional Invariants We have just established that in the
abstract domain, all interference is trivial. Hence, the compositional invariance
calculation produces, for each process, only the set of states reachable via ab-
stract step transitions. This is just the set of states shown in Figure 3. From it,
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one can read off the following invariant: for all nodes m, if Em is true, then Am
is true. The corresponding concrete invariant is that for all nodes m, if Em is
true, then γm(Am) is true. There cannot be a global state meeting this invariant
where adjacent nodes m and n are each in state E. Otherwise, γm(Am) and
γn(An) will be true simultaneously, which is impossible – recall that Am states
that m owns all adjacent forks. Hence, the invariant suffices to show exclusion
between neighbors.

Symmetry Reduction The abstract transition graphs are identical for all non-
isolated nodes, and identical for all isolated nodes. It suffices, therefore, to have
a single representative node for each class. Hence, the analysis of an arbitrary
network, however irregular, can be reduced to the analysis (under abstraction)
of two representative nodes. As this holds for all networks, the (abstract) com-
positional invariant calculated for a small representative network, one with each
kind of node, defines a parameterized proof of safety.

Next Steps In the following sections, we build up the foundations required to
show the soundness of this informal analysis. We give a definition of abstract
symmetry, specialize it to the case of predicate abstraction, and show the conse-
quences for symmetry reduction. We also show a completeness result generalizing
the observation made for DP that its abstract transition graph is interference-
free. We show that there is always an abstraction for which this is true if there
exists a parameterized conjunctive invariant for the protocol.

A similar analysis to the one carried out here applies also to another Dining
Philosophers protocol where there is always a distinguished node. In the case of
a ring network, the process at the distinguished node, say P0, chooses its forks
in an order that is the reverse of that taken by other processes, for instance, in
the order left;right instead of right;left. (This ensures the absence of deadlock.)
The irregularity introduced by the distinguished process implies that the only
structural balance relation for this ring is the trivial identity relation. However,in
the semantic balance relation after abstraction, any two nodes are equivalent.

5 Local Similarity up to Abstraction

In this section, we develop the theory combining local abstraction and symmetry.
In [19], we introduced the notion of a local similarity between nodes of a network.
We refer to that as structural similarity here, to distinguish it from the semantic
similarity notion to follow.

5.1 Structural Similarity and Balance

Two nodes in a network are structurally similar if they have the same color and
there is a bijection between their neighborhoods. The neighborhood of a node
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is the set of its adjacent edges. The bijection should respect the edge color and
the type of the node-edge connection. I.e., input edges should be mapped to
input edges and output edges to output edges. The similarity between nodes is
represented by a triple, (m,β, n), where m,n are nodes and β is the witnessing
bijection. The set of all similarity triples forms a groupoid, a group-like structure
with a partial composition operation.

A structural balance relation is a subset of this groupoid that induces a recursive
similarity. The definition has a co-inductive form, rather like that of a bisimu-
lation. If (m,β, n) is in the balance relation, then for every node k that points
to m, there is a node l that points to n and a map δ, such that (k, δ, l) is in the
balance relation, and β and δ agree on the edges common to m and k. We have
the following theorem.

Theorem 1 ([19]) Consider a structural balance relation B. For any program
that is a valid assignment relative to B, the strongest compositional invariant θ∗

is such that for any (m,β, n) in B, [θ∗n ≡ β(θ∗m)].

A program is a valid assignment relative to B if the assignment respects the
symmetries inB: if (m,β, n) is inB, the transition relations and initial conditions
for Pm and Pn must be related by β. The conclusion of the theorem says that for
any state x in θ∗m, the state y obtained from x by permuting edges according to β
belongs to θ∗n. The permutation is given by setting y(β(e)) = x(e) for every edge
variable e. Informally, this theorem says that the strongest local invariants for
any pair of structurally similar nodes are themselves similar. Hence, it suffices
to compute θ∗ for a representative from each class of balance-equivalent nodes,
as shown in [19].

5.2 Semantic Similarity and Balance

Structural balance is defined solely on the network structure. This can be lim-
iting, as irregular networks have only trivial structural balance relations. The
semantic notion of balance mixes together program and network structure. It re-
quires balanced nodes to have similar transition relations and similar interference
from other nodes.

The analysis in Section 4 relies on abstracting the local state of each node. After
this is done one cannot, in general, define interference between nodes in terms of
shared state. Therefore, it is necessary to abstract the definition of interference.
It is convenient to think of “interference” as a primitive notion: for node k that
points to m, there is a postulated interference relation intf Xkm that is a transition
relation on the states of m, parameterized by a set X of states of k. This relation
is used as usual in the fixpoint computation (Figure 2). We require that intf Xkm
is monotonic in X to ensure that the least fixpoint is defined.

A semantic balance relation consists of triples (m,β, n) where m and n are nodes
and β is a relation on the local state sets Lm and Ln. (Recall that in a structural
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balance relation, β is a bijection on edges.) As with structural balance, there is
a clause that propagates local symmetry between m and n to corresponding
neighbors. In the following, we use the notation 〈β〉Y for the set {x | (∃y :
(x, y) ∈ β ∧ y ∈ Y )} of predecessors of Y according to β.

Definition 1 (Semantic One-sided Balance) A one-sided balance relation
is a set of triples such that for every (m,β, n) in the balance relation

1. (initial-similarity) initial states are related by β: formally, [Im ⇒ 〈β〉In]
2. (step-similarity) β is a safety-simulation from Tm to Tn
3. (interference-similarity) For every k that points to m, there is l that points

to n and δ for which

(a) (successive-balance) (k, δ, l) is in the balance relation, and
(b) (agreement) For state sets X,Y such that [X ⇒ 〈δ〉Y ], β is a safety-

simulation from intf Xkm to intf Yln.

A safety simulation (cf. [21]) R from T1 to T2 is defined as follows. For any
(s, t) ∈ R and any transition (s, s′) ∈ T1, there must be state t′ such that
(t, t′) ∈ T ∗2 and (s′, t′) ∈ R. It is a form of simulation, weakened by the use of
the reflexive transitive closure T ∗2 .

Definition 2 (Two-sided Balance) A two-sided balance relation is a one-
sided balance relation that is closed under inverse; i.e., if (m,β, n) is in the
relation, so is (n, β−1,m).

Theorem 2 Every structural balance relation together with a valid assignment
induces a two-sided balance relation.

5.3 Symmetry Reduction

We consider the compositional fixpoint computation to be carried out in stages.
The set of local states computed for node m at stage S is denoted θSm. At
the initial stage (S = 0), θSm = Im. In a “step” stage, step transitions are
applied for all nodes until no new states are generated. In an “interference”
stage, interference transitions are applied for all nodes until no new states are
generated. The main symmetry theorem below shows that for a balance triple
(m,β, n), at every stage, the local states generated at m are related through β
to the local states generated by n.

Theorem 3 (Main Symmetry Theorem) Given a semantic balance relation,
at every fixpoint stage S in the compositional invariance calculation, for all
(m,β, n) in the balance relation, [θSm ⇒ 〈β〉θSn ] holds.
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Proof. The proof is by induction on stages.

Consider the initial stage. Here, the θ-values are the initial state sets for each
process. The claim follows from the initial-similarity condition.

Suppose, inductively, that the claim holds for stage S for all triples in the balance
relation. Consider stage S + 1 and the triple (m,β, n). For node m, let s be a
state generated at stage S+ 1 that is an immediate successor of a state u in θSm.
From the induction hypothesis applied to u, there is a state v in θSn related by
β to u. There are two cases, based on the type of stage S + 1.

(1) Suppose that S + 1 is a step stage, so that s is a successor by Tm. By step-
similarity, there is a state t reachable by a sequence of Tn moves from v that is
β-related to s. As the stage (S + 1) calculation closes-off under step successors,
t belongs to θS+1

n .

(2) Suppose, instead, that S + 1 is an interference stage, and that s arises from
an interference transition by node k that points to m. By balance, there is l that
points to n and δ such that (k, δ, l) is in the balance relation.

Let X = θSk and Y = θSl . By the inductive claim applied to k and l, [X ⇒ 〈δ〉Y ].

From the agreement condition, β is a safety-simulation between intf Xkm and
intf Yln. Thus, for the transition from u to s, which is in intf Xkm, there is a matching
sequence of intf Yln-transitions from v to a state t that is related by β to s. As
the stage (S + 1) calculation closes-off under interference successors, t belongs
to θS+1

n .

We have considered only the important case, where s is an immediate successor
of a state in the previous stage. The case of a non-immediate successor within
the same stage may be shown by induction within a stage based on the length
of its derivation path within that stage. ut

Corollary 1 Consider a two-sided semantic balance relation where every triple
is based on a one-to-one relation. For any (m,β, n) in the balance relation and
every fixpoint stage S, [θSm ≡ 〈β〉θSn ].

Proof. The direction from left-to-right follows from Theorem 3. As the balance
relation is two-sided, it includes the triple (n, β−1,m). By Theorem 3 for this
triple, [θSn ⇒ 〈β−1〉θSm]. Hence, [〈β〉θSn ⇒ 〈β〉〈β−1〉θSm]. As β is one-to-one,
this implies that [〈β〉θSn ⇒ θSm]. ut

Based on Theorem 3 and Corollary 1, one may symmetry-reduce the fixpoint
calculation as follows, using a procedure defined in [19]. Consider a balance
relation that is closed under inverse and composition. This defines a symmetry
groupoid. The orbit of the groupoid, i.e., the set of pairs (m,n) such that there is
a β for which (m,β, n) is in the balance relation, is an equivalence relation. For
each balance-equivalence class, one chooses a representative node. The fixpoint
calculation is carried out only for the representative nodes. The value of θSi for
a non-representative node i, which may be needed to calculate interference, can
be computed by Corollary 1 as 〈β〉θSr ), where r is the representative for node i
and (i, β, r) is a triple linking i to r.
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6 Local Predicate Abstraction and Symmetry Reduction

This section connects the general concepts from Section 5 with the predicate
abstractions used in the informal treatment in Section 4.

6.1 Local Domain Abstraction

We consider the effect of a general domain abstraction before specializing to
predicate abstraction. The effect of a domain abstraction at each node is to
construct an abstract network, which has the same structure as the original
one, but with a different state space at each node. We refer to the abstract
network for network N as N and refer to the abstract counterpart of node m as
m. In the following, we show how to connect the two networks using a balance
relation. This relation induces a connection between the compositional invariants
computed on the concrete and abstract networks.

A local abstraction is given by specifying, for each node m an abstract domain,
Dm, and a total abstraction function, αm : Lm → Dm. This induces a Galois
connection on subsets, which we also refer to as (αm, γm): αm(X) = {αm(x) | x ∈
X}, and γm(A) = {x | αm(x) ∈ A}.
The abstract set of initial states, Im is given by αm(Im). (For a simpler notation,
we denote this set as Im rather than Im.) The abstract step transition, Tm, is
obtained by existential abstraction: there is a transition from (abstract) state a
to (abstract) state b if there exist x, y in Lm such that αm(x) = a, αm(y) = b,
and Tm(x, y) holds. An abstract transition (a, b) is the result of interference by

node k from state set Y , that is, (a, b) ∈ intf
Y

km, if the following holds.

(∃s, t : αm(s[m]) = a ∧ αm(t[m]) = b ∧ Tk(s, t) ∧ αk(s[k]) ∈ Y ) (3)

Theorem 4 The set of triples of the form (m,αm,m) is a one-sided semantic
balance relation connecting the concrete network N to the abstract network N .

Proof. We have to check the conditions for one-sided balance. Initial-similarity
follows by the definition of Im. Step-similarity holds as the abstract transition
relation is the standard existential abstraction. For a node k that points to m,
we use k as its corresponding node, which points to m, and let δ = αk. Then,
(k, δ, k) is also in the balance relation. The agreement condition follows from the
analogy between the concrete and abstract interference conditions. Specifically,
if (x, y) is a transition in intf Xkm, there exist joint (concrete) states s, t such
that s[k] ∈ X, s[m] = x, t[m] = y and Tk(s, t) all hold. Thus, we get that
αk(s[k]) ∈ αk(X), αm(s[m]) = αm(x), αm(t[m]) = αm(y) and Tk(s, t) all hold.
Let Y be such that [X ⇒ 〈αk〉Y ]. Then we get that αk(s[k]) ∈ Y . Hence, from

definition (3) above, the pair (αm(x), αm(y)) is in intf
Y

km, which establishes the
agreement condition. ut
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As a consequence, from Theorem 3, we obtain the following corollary. This corol-
lary shows that the strongest compositional invariant obtained on N can be con-
cretized to a compositional invariant for the network N . Abstraction may lose
some precision, but this comes at the potential gain of local symmetry.

Corollary 2 Let θ∗ and ξ∗ be the strongest compositional invariants for the
concrete and abstract networks, respectively. Then (1) for every m, [θ∗m ⇒
γm(ξ∗m)] and (2) the vector (m : γm(ξ∗m)) is a compositional invariant for the
concrete network.

Proof (sketch). The first conclusion follows from Theorem 3 applied to the (dis-
joint) union of N and N , and the Galois connection between αm and γm.

The second conclusion follows by reasoning with the conditions of compositional
invariance and the Galois connection. For simplicity, we suppose that the ab-
stract domain is flat (i.e., ordering is equality), so that the condition x ∈ γk(Y ) is
equivalent to αk(x) ∈ Y . (Non-flat domains may be handled by taking downward
closures in the computation of ξ∗, a complication we omit here.)

Define Zm = γm(ξ∗m) for all m. We show that Zm satisfies the compositional
invariance conditions for node m by considering them in turn. For x ∈ Im, αm(x)
is in Im. By initiality, αm(x) is in ξ∗m, so that x ∈ Zm. For x ∈ SPm(Tm, Zm),
there is y ∈ Zm such that Tm(x, y). Hence, (αm(x), αm(y)) belongs to Tm and
αm(y) is in ξ∗m. The step condition for Tm ensures that αm(x) is in ξ∗m; hence,
x ∈ Zm. Similar reasoning proves the case for interference transitions. ut

6.2 Local Predicate Abstraction

Local predicate abstraction maps the local state of a node to the valuation of a
set of predicates on the local state. For simplicity, we fix a set of predicates, P,
which can be interpreted over all nodes.

There is a natural Galois connection, denoted (αm, γm), established by P over a
node m. For a local state s of node m, the abstraction function αm(s) maps s to
a set of literals giving the valuation of the predicates in P on s. This is the set
{(p ≡ p(s)) | p ∈ P}. The abstraction is extended naturally to sets of concrete
states. The concretization function, γm, maps a set X of of sets of literals to the
set of local states given by {s | αm(s) ∈ X}. Given this abstraction, the abstract
forms of the transition relation and interference are as defined in Section 6.1.

Corollary 2 establishes that the compositional invariant calculated using the ab-
stract initial states, abstract step and abstract interference transitions defined
over P is, as interpreted through the γm functions, a valid compositional invari-
ant for the concrete system.

We now show that, with the right choice of predicates, the induced abstract
network is (a) fully locally symmetric, (b) free of interference, and (c) adequate.
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This result is similar in spirit to a completeness theorem of Kesten and Pnueli [17]
for abstraction over the global state space. The key difference in the following
theorem is in its treatment of compositionality and symmetry, which are not
covered by the Kesten-Pnueli result.

Theorem 5 For a fixed-size process network, any inductive invariant of the
form (∀i : θi), where each θi is local to process Pi, can be established by compo-
sitional reasoning over a uniform abstract Boolean network.

Proof (sketch). By a result in [18], the strongest compositional invariant, θ∗, is
such that [θ∗i ⇒ θi], for all i.

The single predicate symbol is B. (A helpful mnemonic is to read B as “black”
and (¬B) as “white”.) The abstraction function αi maps a local state x of Li to
B, if θ∗i (x) holds, and to (¬B) otherwise. Let ξ∗ be the strongest compositional
invariant computed for the abstract network. By Corollary 2, [θ∗i ⇒ γi(ξ

∗
i )].

This implies that the abstract state (B = true) is in ξ∗i for all i.

We show that the implication is, in fact, an equality; i.e., that the other abstract
state, (B = false), does not belong to ξ∗i for any i. As [Im ⇒ θ∗m], it follows
that [αm(Im) ⇒ αm(θ∗m)], i.e., that [Im ⇒ B]. Hence, initially, only the state
B is in ξ∗m. Suppose, inductively, that this is the case at the S’th stage. Consider
an abstract step transition that introduces the state (¬B). This must have a
concrete step transition Tm(x, y) as a witness where θ∗m(x) holds but θ∗m(y) does
not. This is impossible by the step constraint for θ∗. Similarly, one can establish
the impossibility of an abstract interference transition of this kind, so that the
only interference is the trivial (B,B) transition. Hence, ξ∗m = {B} for all m, so
that the concrete invariant induced by ξ∗ is just θ∗. This establishes adequacy:
any property implied by the original invariant can be shown with the concretized
abstract invariant.

We now show that, in the abstract network, any two isolated nodes and any two
non-isolated nodes are balanced. The balance relation consists of triples (m,β, n)
where β is the partial bijection B 7→ B. Initial-similarity holds as the only initial
state is B. Step similarity holds as, by the reasoning above, the only abstract
reachable step transition is (B,B). The reasoning so far is sufficient to show that
any two isolated nodes are balanced; the rest of the proof applies to the case
where m and n are not isolated nodes. For a node k that points to m, choose its
corresponding node l arbitrarily from the nodes pointing to n – there is at least
one such node as n is not isolated. Then k and l are non-isolated and (k, δ, l)
is in the balance relation with the bijection δ which maps B to B. Consider
X,Y as in the agreement condition. It suffices to consider Y = δ(X), by the
monotonicity of interference relations. As δ is defined for all elements of X it
cannot include (¬B); therefore, X must be either ∅ or {B}. Thus, Y = δ(X) is
correspondingly ∅ or {B}. Expanding the definition of abstract interference, it
follows from the non-interference condition for θ∗ that β is a safety simulation
between intf Xkm and intf Yln. ut
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A consequence of Corollary 2 is that if all members of a parameterized family
of networks can be reduced to a finite set of abstract networks (over a fixed set
of predicates), the compositional invariants computed for the abstract networks
concretize to a parametric compositional invariant for the entire family. The
following theorem shows that there is always a “right” choice of predicate for
which this is true.

Theorem 6 For a parameterized family of process networks, any compositional
invariant of the form (∀i : θi), where each θi is local to process Pi, can be
established by compositional reasoning over a small uniform abstract Boolean
network.

Proof (sketch). The difference between the statement of this theorem and The-
orem 5 is that the assumed invariant is compositional. This implies that the
compositionality conditions hold for the given θi for every instance. Hence, the
predicate symbol B in the proof of Theorem 5 has an interpretation that is
uniform across all instances.

The proof of Theorem 5 shows that in the abstract network, there are at most
two classes of nodes: those that are isolated and those that are not. Hence, there
is a cutoff instance N whose abstract network N (over B) exhibits all the classes
of nodes that can arise. By Theorem 3, the concretized form of the compositional
abstract invariant for N is a compositional invariant for every larger instance of
the family. ut

6.3 Reviewing the Dining Philosophers Analysis

We can now review the informal analysis of Section 4 in terms of these theorems.
The per-node abstraction with predicate A is an instance of the local predicate
abstraction discussed in Section 6.2. From Corollary 2, the abstract composi-
tional invariant, when concretized, is a compositional invariant for the concrete
system. This establishes the correctness of (∀m : Em ⇒ γm(Am)) as a concrete
invariant.

For the abstract network, the candidate balance relation is {(m, id , n)} where
id is the identity relation, and m,n are both isolated nodes or both non-isolated
nodes. Using the definitions of abstract transitions and interference, one can
check that this meets the conditions for a two-sided balance relation (Defini-
tions 1 and 2). The orbit of this balance relation has just two classes so, from
Corollary 1, it suffices to consider two representative nodes for the analysis. Since
the calculation for the representative node is identical across networks, we may
conclude that the computed invariant applies to all networks.

The completeness theorems show that the phenomenon observed in the informal
analysis of the Dining Philosophers protocol (Section 4) is not an isolated case.
Any compositional invariant of a parameterized family can be obtained through
a local predicate abstraction that induces complete local symmetry and only
trivial interference in the abstract network.
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7 Summary and Related Work

The seminal work on symmetry reduction in model checking [12, 4, 16] and its
many refinements base the theory on the global symmetries of a Kripke structure,
expressed as a group of automorphisms. For a distributed program, these sym-
metries (as shown in [12]) are lower-bounded by the symmetries of the process
interconnection network. In fact, for most interesting protocols, the symmetries
are also upper-bounded by the group of symmetries of the process network.
This implies that symmetry reduction works well for networks with a complete
interconnection or a star shape. (This is typically a client-server structure, al-
though, as the example in Section 2 shows, not all client-server protocols fit the
assumptions made in [12].) For other networks, most notably ring, mesh and
torus networks, the global automorphism group has size at most linear in the
number of nodes of the network; hence, the available symmetry reduction is also
at most a linear factor. This is not particularly helpful if, as is often the case,
the Kripke structure is exponential in the size of the network.

Motivated by this problem, we introduced in [19] the notion of local symmetries.
Regular networks, such as the complete, star, ring, mesh and torus networks
have a high degree of local similarity: intuitively, the network “looks the same”
from nearly every node. We show that this results in symmetry reduction for
compositional methods. Although the compositional invariance calculation is
polynomial, requiring time O(N3) for a network of N nodes, local symmetry
does have a significant effect, in two ways. First, for many regular networks, the
calculation time becomes independent of N after symmetry reduction. Second,
it is possible to derive parametric invariants if local symmetry reduces each
member of a family of networks to a fixed set of representatives.

As discussed in the introduction, this symmetry notion is, however, not appli-
cable to irregular networks. In this work, we show that it is possible in many
cases to overlay a local similarity structure on an irregular network, by using an
appropriate abstraction over node neighborhoods. The theoretical drawback is
that using abstraction generally results in weaker invariants. On the other hand,
we show that for the Dining Philosophers protocol, the invariant calculated by
abstraction suffices to prove mutual exclusion. Moreover, the completeness re-
sult ensures that, for any compositional invariant, there is always an appropriate
predicate abstraction. Hence, we conjecture that abstraction will suffice for most
practical analysis problems.

Other compositional reasoning methods, such as those based on alternative
assume-guarantee rules [15] or on automaton learning [14, 6] should also benefit
from local symmetry reduction; working out those connections is a subject for
future work. It should be noted that there are other techniques (e.g., [13]) which
enhance global symmetry in certain cases where the original protocol is only
minimally globally symmetric. In the current work, we have instead applied lo-
cal, rather than global, symmetry reduction techniques; local symmetries appear
to be more widely applicable. A particularly intriguing outcome of the analysis
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of the Dining Philosophers protocol is that one can show a parametric invariant,
one which holds for all networks. Parameterized safety analysis is undecidable in
general [2]. There is a large variety of analysis methods, such as those based on
well-quasi-orders (e.g., [1]) or on iterating transducers (e.g., [10]), each of which
works well on a class of problems.

We discuss two methods which are the closest to the point of view taken here.
The first is the “network grammar” method from [20]. A family of networks
is described by a context-free network grammar. A choice of abstract process
is made for each non-terminal in the grammar. This results in a set of model-
checking constraints, which, if solvable, give a parametric proof of correctness.
This technique is applicable to regular networks (rings, trees) that have a com-
pact grammar description. The second method is that of environment abstraction
[5]. This method chooses the point of view of a single process, abstracting the
rest of the network. There is a certain similarity between the generic process
used for environment abstraction and the single representative process used in
our work. However, there is a difference in how the network abstraction is defined
(non-compositionally for environment abstraction) and the method has not been
applied to irregular networks.

The connections made in [19] between local symmetry, compositionality and
parametric verification are extended in here to irregular networks. The crucial
observation is that local abstraction can make an irregular network appear reg-
ular, facilitating symmetry reduction. The application to versions of the Dining
Philosophers protocol and the completeness results suggest that these connec-
tions are worth further study. In ongoing work, we are examining how well
abstraction works for other protocols. An interesting question is whether appro-
priate abstraction predicates, such as the predicate A from Section 4, can be
discovered automatically. It is possible that automatic methods that discover
auxiliary predicates to address incompleteness (e.g., [7, 8]) can be adapted to
discover predicates for abstraction. A particularly interesting question for future
work is to investigate parametric proofs of protocols on dynamic networks, i.e.,
networks where links and nodes can fail or appear, a domain that is interesting
because of its connections to fault tolerance and ad-hoc networking (cf. [11]).
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