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Abstract. This work considers concurrent programs formed of pro-
cesses connected by an underlying network. The symmetries of the net-
work may be used to reduce the state space of the program, by grouping
together similar global states. This can result in an exponential reduc-
tion for highly symmetric networks, but it is much less effective for many
networks, such as rings, which have limited global symmetry. We focus
instead on the local symmetries in a network and show that they can
be used to significantly reduce the complexity of compositional reason-
ing. Local symmetries are represented by a symmetry groupoid, a gen-
eralization of a symmetry group. Certain sub-groupoids induce quotient
networks which are equivalent to the original for the purposes of compo-
sitional reasoning. We formulate a compositional reasoning principle for
safety properties of process networks and define symmetry groupoids and
the quotient construction. Moreover, we show how symmetry and local
reasoning can be expoited to provide parameterized proofs of correctness.

“Whenever you have to do with a structure-endowed entity try to determine its group
of automorphisms”
Hermann Weyl, Symmetry , 1952

“... there are plenty of objects which exhibit what we clearly recognize as symmetry, but

which admit few or no nontrivial automorphisms. It turns out that the symmetry, and

hence much of the structure, of such objects can be characterized algebraically if we use

groupoids and not just groups.”

Alan Weinstein, Groupoids: Unifying Internal and External Symmetry – A

Tour through Some Examples, Notices of the AMS, 1996.

1 Introduction

State-space explosion is the main obstacle to the scalability of model checking.
In this work, we consider proofs of safety for programs structured as a network
of processes, executing concurrently and asynchronously. The network is used
to represent how state is shared between groups of processes. The model is
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expressive, allowing refined statements of sharing relationships, such as read-
only, read-write and write-only. As an example, globally shared memory may
be represented by a hub-and-spoke network, with the memory at the hub and
processes at the spokes; a dining philosophers network has processes arranged in
a ring, with adjacent philosophers given read-write access to their shared fork.

A natural question is whether network symmetries can be exploited to reduce the
complexity of model checking. Indeed, it is known that for networks which are
highly symmetric, reducing the global state space by collapsing together sym-
metric states results in exponential savings [18, 6, 14]. On the other hand, many
networks, such as rings, have limited global symmetry so this reduction is much
less effective for those networks. We consider instead the local symmetries of a
network and show that they can be used to significantly reduce the complexity
of compositional reasoning methods.

The essence of compositional methods lies in using local reasoning as a substitute
for global reasoning: each process of a concurrent program is analyzed separately
along with an abstraction of its neighboring processes. The benefit is that local
methods work in time polynomial in the number of processes, in contrast with the
PSPACE-hardness of the model checking question. Efficiency comes, however, at
the cost of incompleteness. (It is possible to overcome incompleteness by adding
auxiliary state, at the cost of making the analysis less compositional.)

The intuition behind our results is that compositional methods, being local in
their scope, benefit from purely local symmetries. Networks with little global
symmetry can have significant local symmetry: in a ring network, for instance,
any two nodes are locally similar, as they have identical left and right neighbors.

To illustrate these issues, consider a uniform ring network with N nodes. A
program on this network may have a state space whose size is exponential in N
– this is the case, for instance, of a simple token-based mutual exclusion protocol.
The global symmetry group of the ring has N elements (the rotations), so the
global state space can be reduced only by a factor of N . (The state space of a
program could exhibit more symmetry than that of its underlying network, but
that is not the case here.) We show that it is possible to automatically construct
a compositional invariant which is strong enough to prove mutual exclusion,
in time polynomial in N . Making use of the local symmetries of a ring, this
calculation can be reduced to one on a fixed set of representative nodes, making
the time complexity for computing the compositional invariant independent of
N ! Moreover, it is sometimes possible to pick the same set of representatives for
all networks in a family. In such a case, the compositional invariant computed
for a small instance forms a parameterized invariant which holds for all members
of the family.

Technically, local symmetries are described by a symmetry groupoid, a gener-
alization of a symmetry group (cf. the quotations at the start of this section).
The main question tackled in this work is to determine precisely how the local
symmetries of the network influence the symmetry of a compositional inductive
invariant which is computed to prove safety properties. In the following sketch



of the main results, a local invariant has the shape (∀i : θi), where the quantifi-
cation in i is over the nodes of the network and θi is an assertion which depends
only on the neighborhood of node i.

1. Given an “balance” relation B on the network (a form of bisimulation defin-
ing local symmetries), if (i, j) ∈ B then θi and θj are similar. I.e., the local
symmetry of the network is reflected in the symmetry of the computed com-
positional invariant.

2. The orbit relation of the group of global automorphisms of a network forms
a balance relation. I.e., global symmetries induce local symmetries.

3. A groupoid balance relation induces a quotient network which is equivalent
to the original for the purpose of local reasoning.

4. If there is a single quotient for a family of networks, the compositional in-
variant computed for this quotient generalizes to a parameterized invariant
which holds for all networks in the family.

The results point to deep connections between local symmetry, compositional
methods and parameterized reasoning.

2 Networks and Their Symmetry Groupoids

A network is given by a pair (N,E) where N is a set of nodes and E is a
set of edges. Each node is assigned a color by a function ξ : N → C, with
C a set of colors. Associated with each edge is a color, given by a function
ξ : E → C (we use the same color set for simplicity); a set of input nodes, given
by ins : E → P(N); and a set of output nodes, given by outs : E → P(N),
where P(N) represents the power-set of N . The input and output sets of an
edge may overlap.

There are several derived notions. The incoming edges for a node are given by
a function In : N → P(E), defined by In(n) = {e | n ∈ outs(e)}. The outgoing
set of edges for a node is similarly defined by a function Out : N → P(E), given
by Out(n) = {e | n ∈ ins(e)}. The set of edges incident to a node is defined by
the function InOut : N → P(E), given by InOut(n) = In(n) ∪Out(n).

Definition 1 (Points-To) A node m points-to node n, denoted m ∈ pt(n), if
m 6= n and Out(m) ∩ InOut(n) is non-empty.

Informally, two nodes are locally similar if their immediate neighborhoods are
identical up to a re-mapping.

Definition 2 (IO-Similarity) Nodes m and n are (locally) similar, written
m 'IO n, if (1) the nodes have the same color, i.e., ξ(m) = ξ(n), and (2) there
is a correspondence between respective sets of incident edges, which preserves
color and in/out status. I.e., there is a function β : InOut(m) → InOut(n)
which is a bijection between In(m) and In(n), a bijection between Out(m) and
Out(n) and for every e, ξ(e) = ξ(β(e)).
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Fig. 1. Trivial Global Symmetry, Non-trivial Local Symmetry.

Figure 1(a) an example network, based on one from [16]. Colors are also marked
by shapes: node 5 has a different color from node 4. This network has only the
identity as a global automorphism; however, nodes 1 and 2 are locally similar,
as their neighborhoods – shown in Figure 1(b) – are related by the bijection β
which maps input edges e2 7→ e1; e5 7→ e6 and output edges e1 7→ e2; e3 7→ e4.
Nodes 3 and 2 point to node 1, while nodes 3 and 1 point to node 2.

2.1 Local Symmetry Groupoids

The set of tuples of the form (m,β, n) where β is a witnessing bijection for
m 'IO n forms a groupoid. Following [16], we call this the symmetry groupoid
of the network and denote it by GIO. A groupoid (cf. [3, 26]) is (roughly) a group
with a partial composition operation. It is defined by specifying a set of elements,
E, a set of objects O, source and target functions src : E → O and tgt : E → O
and an identity function id : O → E. These must satisfy group-like conditions.

1. The composition ab of elements a, b is defined only if tgt(a) = src(b), with
src(ab) = src(a) and tgt(ab) = tgt(b)

2. Composition is associative. If one of a(bc) or (ab)c is defined, so is the other,
and they are equal

3. For every element a, the element λa = id(src(a)) is a left identity, i.e.,
λaa = a, and ρa = id(tgt(a)) is a right identity, i.e., aρa = a

4. Every element a has an inverse (a−1), such that aa−1 = λa and a−1a = ρa

A groupoid can be pictured as a directed graph: the nodes are the objects, there
is a directed edge labeled by element e from its source to its target object.
Identities form self-loops. (A group is a groupoid with a single base object.)

In the network symmetry groupoid, the objects are the nodes of the network and
the elements are all triples (m,β, n) where β is a bijection defining the similarity
between nodes m and n. The identities are defined by id(n) = (n, ι, n), where ι



is the identity map. For an element (m,β, n), src(m,β, n) = m, tgt(m,β, n) =
n and its inverse is (n, β−1,m). The composition of (m,β, n) and (n, γ, o) is
(m, γβ, o).

A groupoid induces an orbit relation: objects a, b are related if there is a groupoid
element e connecting them, i.e., if src(e) = a and tgt(e) = b. From the groupoid
properties, this is an equivalence relation. The orbit relation for the symmetry
groupoid is just 'IO.

3 Local Reasoning on a Process Network

In this section we develop an assume-guarantee rule for proving safety properties
of process networks. It is similar to the rules from [15, 23] which apply to the
globally shared memory model. Each node in a network is assigned a process,
with locally similar nodes being assigned similar processes. The proof rule results
in an inductive invariant of the form (∀i : θi) where θi is an assertion on the
neighborhood of the process assigned to node i. We show that there is a strongest
invariant of this form and that it can be computed as a simultaneous fixpoint.

3.1 Assignment of Variables and Processes

Given a network (N,E), we associate a variable ln with each node n and a
variable ve with every edge e. The type of the variable is the color of the node
or edge. Let Xn = {ve | e ∈ In(n)} be the set of input variables for node n;
similarly, let Yn = {ve | e ∈ Out(n)} be the set of output variables for n and
let Ln = {ln}. Let Vn = Xn ∪ Yn ∪ Ln. Thus, Vn defines the variables in the
immediate neighborhood of node n. The set V is defined as (∪ n : Vn).

With each node n is associated a transition condition Tn(Vn, V
′
n) which is con-

strained so that it leaves the variables in Xn\Yn unchanged. The network as a
whole has an initial condition, I. The variables assigned to nodes and edges, the
network initial condition and the transition conditions for each node define an
assignment of processes to the network. We denote the process for node n as
Pn. Let Ĩn = (∃V \Vn : I) be the projection of the initial condition on to Vn.

Definition 3 (Valid Assignment) An assignment is valid for B ⊆ GIO if it
respects the local symmetries in B: i.e., for every (m,β, n) ∈ B, it should hold
that [Tn ≡ β(Tm)] and [Ĩn ≡ β(Ĩm)].

In this definition, β(f) is a predicate which holds for a valuation b over V if f
holds for a valuation a over V where for every e ∈ InOut(m), a(ve) = b(vβ(e))
and a(v′e) = b(v′β(e)), and a(lm) = b(ln) and a(l′m) = b(l′n). Informally, β(f) is
the predicate obtained by substituting in f variables from the neighborhood of
m (i.e., those in Vm) with the variables which correspond to them by β.



The semantics of a valid program assignment is defined as the asynchronous,
interleaving composition of the processes associated with each node. The initial
condition is I. The interleaved transition relation, T , is defined as a choice
between local transitions, (∃n : T̃n), where T̃n is the transition relation which
extends Tn so that all variables of nodes other than n are unchanged. Formally,
T̃n ≡ Tn ∧ unch(V \Vn).

3.2 Local Proof Rules

A rely-guarantee proof rule based on the Owicki-Gries method is given in [23] for
shared-memory programs. We generalize this formulation to networks. The rely-
guarantee conditions are expressed over vectors of the form θ = (θ1, θ2, . . . , θn),
where each component, θi, is a state assertion local to process Pi. The proof
conditions ensure that the conjunction (∀i : θi) is a global inductive invariant.

Let θn(Vn) be a predicate on the neighborhood variables of node n. For (∀n : θn)
to be a globally inductive invariant, θn must include the initial states of Pn, it
must be closed under transitions of Pn and it must be closed under interference
from the nodes which point to n. We next express these conditions precisely.
We use two convenient notational conventions, taken from the book by Dijkstra
and Scholten [12]. The notation [ϕ] expresses that ϕ is valid. The notation
(∃X : r : ϕ), where X = {x1, . . . , xk} is a finite set of variables, is a shorthand
for (∃x1, . . . , xk : r ∧ ϕ). The predicate r constrains the type or the range of
variables in X. If X is empty, the quantified expression is equivalent to false.

The first condition is expressed as

[Ĩn ⇒ θn] (1)

The second condition is expressed as follows, where SPn is the strongest post-
condition operator for node n. (SP(T, ψ) is the set of successors of states sat-
isfying ψ by transitions satisfying T . SPn(T, ψ) is the projection of states in
SP(T, ψ) on to Vn.)

[SPn(Tn, θn) ⇒ θn] (2)

Closure under interference is expressed as follows

[SPn(intf θmn, θn) ⇒ θn] for every m ∈ pt(n) (3)

The transition term, intf θmn (read intf as “interference”) represents the effect of
transitions at a node m on the values of variables in the neighborhood of node
n. This is defined as

intf θmn ≡ (∃V \Vn, V ′\V ′n : T̃m ∧ θm) (4)

The interference term is a function of (Vn, V
′
n), and is thus a general transition

term. The definition of T̃m implies, however, that the interference leaves all
variables not in Vn ∩ Ym unchanged.



The three implications can be gathered together to form a simultaneous system
of implications [Fn(θ) ⇒ θn], with Fn defined by

Fn(θ) ≡ Ĩn ∨ SPn(Tn, θn) ∨ ( ∨ m : m ∈ pt(n) : SPn(intf θmn, θn)) (5)

This is in pre-fixpoint form as Fn(θ) is monotone in the vector θ, ordered
component-wise by implication. By the Knaster-Tarski theorem, this system
has a least fixpoint. For finite-state systems, the fixpoint can be computed as
the limit, say θ∗, of the iteration sequence given by θ0m = Ĩn; θk+1

m = θkm ∨
SPn(Tn, θ

k
n) ∨ ( ∨ m : m ∈ pt(n) : SPn(intf θ

k

mn, θ
k
n)). For infinite-state systems,

the limit may be trans-finite. Component θ∗n is defined over Vn, as can be seen
by its equivalence to Fn(θ∗) and the definition of Fn.

Theorem 1 (Soundness) The proof rules (1)-(3) imply that θ = (∀n : θn) is a
globally inductive invariant.

Proof: The base case, that [I ⇒ θn], follows for all n by (1), as I is stronger
than Ĩn = (∃V \Vn : I). To show inductiveness, consider any state s satisfying
θ and a transition by process Pm from state s to state t. As θm holds of s, the
transition satisfies both Tm and intf θmn. By (2), θm holds of t. Now consider any
other node n. If m points to n, as θn holds of s by assumption, it follows by (3)
that θn holds of t. If m does not point to n, the transition does not change the
values of any variables in the neighborhood of n, so that θn continues to hold.
EndProof.

Complexity Let L be the number of local states per process – i.e., the number
of valuations to Vn, assuming all Vn’s are identical. Let |N | be the number of
nodes in the network, which is also the number of components of the θ vector.
Then, (1) the number of fixpoint rounds is at most |N | ∗L, as each round must
strictly increase the set of states in at least one component; (2) the number of
updates per round is |N |, as each component of θ is updated. The work for an
update to θn is typically dominated by the interference term. Consider round k.
For each m which points to n, this requires computing successors for all states in

θkn with respect to the transition relation intf θ
k

mn. For a state in θk, its successors

can be found by looking up its association list in a table storing intf θ
k

mn. The
cost of the successor computation is, therefore, bounded by L∗L. The total cost
is bounded by (|N | ∗ L) ∗ |N | ∗ (L2 ∗ D) where D is the maximum over all n
of the size of pt(n). This simplifies to |N |2 ∗ L3 ∗D, which is polynomial in all
parameters, whereas global model-checking is PSPACE-complete in |N | which,
in practice, implies time-complexity exponential in |N |.

Completeness Owicki-Gries [25] and Lamport [20] recognized that local asser-
tions may not always suffice to represent the global constraints needed for a
valid proof. The resolution is to expose local state through auxiliary or history



variables, a process which can be automated [8, 9, 17]. It was observed in [8] that
for many protocols, constructing (∀ij) local invariants – described below – is
a good alternative to adding auxiliary variables. We consider purely composi-
tional proofs: auxiliary variables modify network symmetries in ways that will
be explored in future work.

Pair-Indexed Properties A similar simultaneous fixpoint scheme can be con-
structed for multi-indexed properties, such as (∀m,n : m 6= n : θmn). The proof
rules for a pair (m,n) are as follows. The term Ĩmn is defined as (∃V \(Vn∪Vm) :
I) and SPmn is the projection of SP on to variables Vm ∪ Vn. We abbreviate
(∀m,n : m 6= n : θmn) by θ.

[Ĩmn ⇒ θmn] (6)

[SPmn(Tm ∧ unch(Vn\Vm), θ) ⇒ θmn] (7)

[SPmn(Tn ∧ unch(Vm\Vn), θ) ⇒ θmn] (8)

[SPmn(intf θkmn, θ) ⇒ θmn], for k ∈ pt(m,n) where (9)

intf θkmn ≡ unch((Vn ∪ Vm)\Vk) ∧ (∃V ′k\(V ′m ∪ V ′n) : Tk) and (10)

k ∈ pt(m,n) if k 6∈ {m,n} and Out(k) ∩ (InOut(m) ∪ InOut(n)) is non-empty
(11)

For the rest of the paper we focus first on the simpler case of singly-indexed
properties, returning to pair-indexed properties at the end.

4 Symmetry and Quotients

The equivalence 'IO induced by the local symmetry groupoid GIO is not enough
in itself to obtain the symmetry reduction results. While it ensures that nodes
m,n related by 'IO have a similar neighborhood, it does not ensure that the
nodes which point into m and n correspond in any way. Some correspondence
is needed, as the processes on pt(m) affect θm and those on pt(n) affect θn.
We define a bisimulation-like relationship which builds on (strengthens) the ba-
sic local symmetry relation. We call relations satisfying the stronger conditions
“balance” relations, following [16], where a similar notion is defined.

Definition 4 (Balance) A balance relation B is a subset of GIO satisfying the
following properties. For any (m,β, n) in B: (1) (n, β−1,m) is in B, and (2) for
any j in pt(m), there must be k in pt(n) and δ such that (2a) (j, δ, k) is in B
and (2b) for every edge f in InOut(j) ∩ InOut(m), δ(f) = β(f).

Condition (2a) ensures that any node which points to m has an equivalent node
which points into n. Condition (2b) ensures that β and δ agree on edges that are
common to m, j. The theorem below summarizes properties of balance relations.



Theorem 2 (Balance Properties) For any network:

1. The union of two balance relations is a balance relation
2. The composition of two balance relations is a balance relation
3. There is a largest balance relation, which we denote by B∗

4. B∗ is a greatest fixpoint
5. B∗ is a sub-groupoid of 'IO

The final balance property implies that the orbit relation forB∗ is an equivalence.
The fixpoint property induces a partition-refinement algorithm for computing
the orbit relation of B∗ which is polynomial in the size of the network.

4.1 Automorphisms and Balance

Informally, an automorphism of a network is a permutation of the edge and
node set which leaves the network structure unchanged. Formally, for a network
(N,E), an automorphism is given by a function π which is a bijection from N
to N and a bijection from E to E such that

1. (Color Preservation) For any node n, ξ(n) = ξ(π(n)), and for any edge e,
ξ(e) = ξ(π(e))

2. (Link Preservation) For any node n and edge e, n ∈ ins(e) holds iff π(n) ∈
ins(π(e)) and n ∈ outs(e) holds iff π(n) ∈ outs(π(e))

The global symmetry of the network is defined by its set of automorphisms, which
forms a group under function composition. Given an automorphism group, G,
of the network, define Local(G) as the set of triples (m,β, n) where, for some
π ∈ G, π(m) = n and β is π restricted to InOut(m). The following theorem
shows that global automorphisms induce balance relations.

Theorem 3 For any automorphism group G of a network, Local(G) is both a
sub-groupoid of GIO and a balance relation.

The network of Figure 1 has a balance relation connecting 1 and 2 through the
bijection β, even though the only automorphism is the identity.

4.2 Balance and Symmetry

The following theorem shows how a balance relation influences the symmetry of
the computed invariant. We say that a vector θ respects a balance relation B if
for all (m,β, n) in B, [θn ≡ β(θm)].

Lemma 1 Let B be a balance relation. Consider a program assignment which is
valid for B. For any (m,β, n) ∈ B and any transition condition t(Vm, V

′
m) and

any predicate p(V ), it is the case that [β(SPm(t, p)) ≡ SPn(β(t), β(p))].



Lemma 2 Let B be a balance relation. Consider a program assignment which
is valid for B. For all (m,β, n) ∈ B, any θ which respects B, and j ∈ pt(m), k ∈
pt(n) which correspond for (m,β, n) by B, [β(intf θjm) ≡ intf θkn] holds.

Theorem 4 (Symmetry Reduction) Let B be a balance relation. For a program
assignment which is valid for B, the computed local invariant θ∗ respects B.

Proof: The proof is by transfinite induction on the fixpoint stages. The inductive
assumption at stage λ is that θS respects B for all stages S which precede λ.

(Basis) The initial values θ0m = Ĩm and θ0n = Ĩn are related as claimed by the
validity of the assignment.

(Step ordinal) Suppose that the hypothesis is true at stage S. The definition of

θS+1
m is θSm ∨ SPm(Tm, θ

S
m) ∨ ( ∨ j : j ∈ pt(m) : SPm(intf θ

S

jm, θ
S
m)). Applying

β, which distributes over ∨ , we get

β(θSm) ∨ β(SPm(Tm, θ
S
m)) ∨ ( ∨ j : j ∈ pt(m) : β(SPm(intf θ

S

jm, θ
S
m))) (12)

The SP terms satisfy the conditions of Lemma 1. By the inductive hypothesis
and Lemma 1, we get

θSn ∨ SPn(β(Tm), θSn) ∨ ( ∨ j : j ∈ pt(m) : SPn(β(intf θ
S

jm), θSn)) (13)

By valid program assignment and Lemma 2, this is equivalent to

θSn ∨ SPn(Tn, θ
S
n) ∨ ( ∨ k : k ∈ pt(n) : SPn(intf θ

S

kn, θ
S
n)) (14)

There is a slight subtlety in the last step. By the definition of B, every j has a
corresponding k ∈ pt(n). As B is closed under inverse, all k in pt(n) are related
to some j ∈ pt(m). Hence, the interference terms for m map exactly to the
interference terms of n. The final expression is just the definition of θS+1

n .

(Limit ordinal) Suppose that the hypothesis is true for all stages S below a
limit ordinal λ. As β distributes over arbitrary unions, we obtain the chain of
equivalences β(θλm) ≡ β( ∨ S : S ≺ λ : θSm) ≡ ( ∨ S : S ≺ λ : β(θSm)) ≡
( ∨ S : S ≺ λ : θSn) ≡ θλn. EndProof.

4.3 Symmetry-Reduced Local Invariant Computation

The main symmetry theorem gives rise to the following symmetry-reduced fix-
point computation for the local invariant.

1. Fix a balance relation B which is a sub-groupoid of GIO. (B∗ is one such
relation.) Let 'B be its orbit relation; this is an equivalence.

2. Pick a representative from each equivalence class of 'B . For a node n, let
rep(n) denote its representative.



3. For each non-representative node n fix a bijection βn such that (rep(n), βn, n)
is a triple in B. For a representative node r, fix βr to be the identity.

4. Compute the fixpoint over the set of representatives. The fixpoint vector
has a component θr for each representative r. To compute the update for
representative r, use the formula for Fr(θ), except that the term θn for a
node n which is not a representative node is replaced with βn(θrep(n)).

By induction on the fixpoint stages, we get the theorem below. The complexity
of the symmetry-reduced calculation is given by the formula derived previously,
with |N | replaced by the number of representatives.

Theorem 5 The symmetry-reduced computation computes the same least fix-
point as the original.

4.4 Equivalent Networks and the Quotient Construction

A balance relation which is a groupoid (for instance, B∗) induces an orbit rela-
tion, which is an equivalence on the nodes. This partitions nodes into equivalence
classes. We use the classes to define a quotient network, and show that it suffices
to compute the local invariant on the quotient.

A quotient is an instance of the more general concept of an equivalent network.
For networks W1 and W2 with valid assignments, W2 is equivalent to W1 via the
relation R ⊂ N1 × N2 if, for all (i, j) ∈ R, [θ∗1(i) ≡ θ∗2(j)]. Every network is
equivalent to itself through the identity relation. A quotient construction pro-
duces a smaller assigned network which is equivalent to the original.

Given a network W = (N,E) and a groupoid balance relation B, a quotient W
is defined as follows.

1. The nodes of W are the equivalence classes of 'B . Each class C has a defined
representative, denoted rep(C), chosen arbitrarily. We write the class for
node n as n. The color of a class is the (common) color of all nodes in it.

2. For a class C with representative r, there is an edge e for each edge e in
InOut(r). The edge e connects equivalence classes of nodes connected by e.
In more detail, m ∈ ins(e) iff m ∈ ins(e), and m ∈ outs(e) iff m ∈ outs(e).
The color of a quotient edge is the color of the edge which generates it.

3. A class C with representative r is assigned similarly to r; i.e., such that
[ĨC ≡ βr(Ĩr)] and [TC ≡ βr(Tr)], where β is the bijection which relates
each e in InOut(r) to its corresponding edge e.

The quotient is not unique, except under stronger conditions on the balance
groupoid. (Non-uniqueness arises as the balance definition allows representatives
x and y for a class C to have corresponding edges e and f such that e and
f have inequivalent outs sets. This does not, however, influence the invariant
computation, as only ins sets are relevant for the points-to definition.) The



theorem below shows that local invariant computed on a quotient is identical
to that on the original network for the representative nodes. Values for non-
representative nodes are obtained by the transformation given in Theorem 4.

Theorem 6 Any quotient W is equivalent to W via R = {(r, C) | r = rep(C)}.

5 Pairwise Symmetry and Balance Relations

In this section, we turn to symmetry reduction for invariants of the form (∀i, j :
i 6= j : θij). The definitions of pairwise local symmetry and balance, given below,
are analogues of the previous definitions for singly-indexed invariants.

For a pair of nodes (i, j), let In(i, j) = In(i)∪ In(j) and let Out(i, j) = Out(i)∪
Out(j). A node k is in pt(i, j) if k 6∈ {m,n} and Out(k)∩InOut(i, j) is non-empty.
A pairwise local symmetry between (i, j) and (m,n) is possible if ξ(i) = ξ(m)
and ξ(j) = ξ(n), and there is a a function β such that (i, β,m) and (j, β, n) are
local symmetries. The set of all pairwise local symmetries ((i, j), β, (m,n)) forms
the pairwise symmetry groupoid of the network.

A pairwise balance relation B is a subset of the pairwise symmetry groupoid of
the network which is closed under inverse, and such that for all ((i, j), β, (m,n))
in B, and every k in pt(i, j), there is l in pt(m,n) such that

1. There is a function δ so that (k, δ, l) is a local symmetry, and

2. For all edges e in InOut(k) ∩ InOut(i, j), it is the case that β(e) = δ(e)

A program assignment is valid for B if for any ((i, j), β, (m,n)) in B, [β(Ti) ≡
Tm], [β(Tj) ≡ Tn] and [β(Ĩij) ≡ Ĩmn]. With a proof strategy similar to that
for singly-indexed properties, we have the following analogue of Theorem 4.

Theorem 7 (Pairwise Symmetry Reduction) Let B be a pairwise balance rela-
tion. For any program assignment valid for B: for any ((i, j), β, (m,n)) in B, in
the computed local pairwise invariant, θ∗, it is the case that [θ∗mn ≡ β(θ∗ij)].

From a global automorphism group G, define Local2(G) as the set of triples
((i, j), β, (m,n)) such that for a permutation π in G, π(i) = m,π(j) = n and β
is π restricted to InOut(i, j).

Theorem 8 For any automorphism group G of a network, Local2(G) is a pair-
wise groupoid balance relation.



6 Consequences

Consider a simple token-passing protocol on a unidirectional ring network. Each
process is in one of three states: thinking (T), hungry (H), and eating (E). It
moves from T to H on its own; from H to E by removing a token from its left
edge; and from E to T on its own, placing the token on its right edge. The
predicate ti expresses the presence of a token on the edge to the left of node i.

The singly-indexed local invariant for a ring is too weak to conclude safety
(mutual exclusion). However, the pairwise local invariant suffices. It is given by
(∀i, j : i 6= j : (ti ⇒ ¬tj) ∧ (Ei ⇒ ¬Ej ∧ ¬ti ∧ ¬tj)).
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Fig. 2. Token-Ring Network and Neighborhood Views for (1, 3) and (2, 5)

By Theorem 8, Local2(G) is a pairwise balance relation. Pairs (i, j) and (m,n)
are related if the nodes in the pairs are the same distance apart (clockwise) on the
ring. Thus, (1, 2) is a representative for spacing 1, and (1, 3) is a representative
for spacing 2. It turns out that (1, 3) is also a representative for any larger
spacing, as the relation between (1, 3) and (m,n) with spacing at least 2 is a
balance relation. Figure 2 shows, for example, the similar local neighborhoods
of (1, 3) and (2, 5) in a ring of size 6.

It suffices, therefore, to compute the pairwise invariant over the representative
pairs (1, 2) and (1, 3) for a fixed ring network of size at least 3. Moreover, for
a family of ring networks, each instance has the same pair of representatives.
The following theorem establishes conditions under which a pairwise invariant
generalizes to an invariant for any larger instance.

Theorem 9 For a uniform ring network family where the processes and node
and edge data types are independent of the size of the ring, the pairwise invariant
computed for a ring of size 3 holds (by extending the range of node indices) for
all larger ring sizes.



For a dining philosophers protocol, mutual exclusion is required only between
neighboring processes. For an abstract dining philosophers protocol, the singly-
indexed invariant (∀i : Ei ⇒ fork i−1 = R ∧ fork i = L) holds, where L,R
represent left and right directions. Thus, the symmetry-reduced structure is a
single node, which also proves that the invariant holds in a parameterized sense.

7 Related Work, Conclusions and Open Questions

There is a large body of work on compositional methods for verification of
concurrent programs. Much of this work, the early examples of which are the
Owicki-Gries method [25] and proof rules used by Lamport [20] and Jones [19],
applies to a memory model where all processes share a common memory. The
assume-guarantee method of Misra and Chandy [4] is based on a network model
with processes communicating on unbounded queues. Compositional methods for
CCS and CSP are described in [11, 21]. Proof rules based on CCS/CSP synchro-
nization have been automated using learning techniques [7]. In [24] and [1], for
example, compositional proof rules are given that are sound (and semantically
complete) for the full range of Linear Temporal Logic properties, thus including
safety properties, liveness properties and fairness properties. Local reasoning has
also been applied to synchronous computation [5, 22].

Our network model is based on atomic actions and shared memory rather than
CCS/CSP style synchronization or message queues. Using it, it is possible to
represent, for instance, the sharing of forks among dining philosophers. The
proof rules are assertion-based. The key idea of reduction with local symmetries
should, we believe, carry over to other models of process communication.

Earlier work [23, 10] on symmetry reduction for compositional reasoning applies
to programs with a common shared memory. This paper significantly generalizes
the scope of symmetry reduction to arbitrary networks of processes and fine-
grained sharing relationships.

These results have been strongly influenced by the work of Golubitsky and Stew-
art on local symmetry in networks [16], but there are crucial differences in both
the problem domain and the questions being addressed. The networks in [16] are
clocked synchronous networks where the “program” at each node is given by an
ordinary differential equation. The authors show that the local symmetries of the
network influence the emergence of computations in which a group of nodes have
completely synchronized (or phase-shifted) values. (In temporal logic terms, the
network satisfies properties such as EG(x1 = x2) or EG(x′1 = x2).) They identify
balance as a necessary (and, in a sense, sufficient) condition for this behavior.
Our results, on the other hand, are about interleaved process execution and uni-
versal rather than existential safety properties. We do make use of and adapt
the groupoid formulation defined in their paper to describe local symmetries.

The results on parameterized verification build on the idea of generalizing from
proofs of small instances that was explored in the work on “invisible invari-
ants” [2]. This method was connected to compositional reasoning in [23]. The



earlier papers used a globally shared memory model; the network model results
in a strengthening of the results, especially for ring networks. The token-ring
example from Section 6 falls into the decidable class from [13] but the result
here is both more general in that it applies also to non-token-passing proto-
cols and yet limited in that it applies only to inductive invariants. There is, of
course, a variety of other methods for parameterized verification; these are, in
general, incomparable. Our results do point to intriguing connections between
local symmetry, compositional invariants and parameterized verification.

This work shows that striking reductions can be obtained by considering the
combination of local symmetries with compositional reasoning. There are several
intriguing open questions: the proper treatment of auxiliary variables, deriving
similar results for CCS/CSP-style synchronization, extending the symmetry re-
duction theorems from safety to liveness properties and exploring the role of
local symmetries in proofs of parameterized properties of irregular networks.
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