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Hardware systems and reactive software systems can be described as the composition of sev-
eral concurrently active processes. Automated reasoning based on model checking algorithms can
substantially increase confidence in the overall reliability of a system. Direct methods for model
checking a concurrent composition, however, usually suffer from the explosion in the number of
program states that arises from concurrency. Reasoning compositionally about individual processes
helps mitigate this problem. A number of rules have been proposed for compositional reasoning,
typically based on an assume-guarantee reasoning paradigm. Reasoning with these rules can be
delicate, as some are syntactically circular in nature, in that assumptions and guarantees are
mutually dependent. This is known to be a source of unsoundness. In this article, we investigate
rules for compositional reasoning from the viewpoint of completeness. We show that several rules
are incomplete: that is, there are properties whose validity cannot be established using (only) these
rules. We derive a new, circular, reasoning rule and show it to be sound and complete. We show that
the auxiliary assertions needed for completeness need be defined only on the interface of the com-
ponent processes. We also show that the two main paradigms of circular and noncircular reasoning
are closely related, in that a proof of one type can be transformed in a straightforward manner
to one of the other type. These results give some insight into the applicability of compositional
reasoning methods.
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1. INTRODUCTION

In a landmark article, Pnueli [1977], advocated the use of temporal logic as a
formalism for describing the correct operation of reactive systems. The subse-
quent development of model checking [Clarke and Emerson 1981; Queille and
Sifakis 1982] (cf. Clarke et al. [1986] and Vardi and Wolper [1986]) created a
fully automated technique for showing that a finite-state reactive system, M,
satisfies a temporal logic formula, f , typically denoted as M |= f . For many
useful specification logics, model checking has complexity linear in the size
of the state transition graph of M. However, when M is given as the parallel
composition of n finite-state processes, each of size bounded by K, its size may
be exponential in n. This problem of “state explosion” is the main limitation to
applying model checking in practice.

Compositional reasoning techniques, originally devised in the context of de-
ductive proof methods [de Roever et al. 2001], form a promising approach to
ameliorating the state explosion problem. To construct a proof that the parallel
composition of M1 with M2, written as M1//M2, satisfies a correctness spec-
ification g, a typical compositional technique breaks this into two subproofs,
performed in isolation on M1 and M2.

For instance, consider the rules in Figure 1. The notation { f }M{g} indicates
that model M satisfies specification g under the assumption f . The first hy-
pothesis shows that M1 satisfies h under the assumption f . The second shows
that M2 satisfies g under the assumption h. As a consequence of the seman-
tics of synchronous composition, it follows that M1//M2 satisfies g under the
assumption f . The auxiliary assertion h plays a role similar to that of determin-
ing an intermediate assertion in a Hoare-style proof for sequential composition,
where { f }S1; S2{g} is proved by supplying hsuch that { f }S1{h} and {h}S2{g} both
hold.

In general, determining the appropriate auxiliary assertion hcan be difficult.
But once this is done, the hypotheses of the rule can be discharged by model
checking properties of the individual processes, without reference to the global
states that arise in the composition. This can lead to a dramatic drop in the
cost of checking a property (cf. McMillan [1997]). In fact, in several instances,
model checking a composition as a whole is simply infeasible.

The rule in Figure 1(a) is very similar to the Hoare rule for sequential com-
position. In effect, M1 and M2 can be viewed (for the proof) to be connected in
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Fig. 1. Typical forms of compositional rules.

a pipeline. This might go against intuition, especially if M1 and M2 exchange
a series of messages to achieve a joint result. To match the intuitive back-and-
forth reasoning that is typically applied in such cases, several (so-called) cir-
cular proof rules have been proposed. An example is the rule from Figure 1(b).
Several points differentiate this rule from the previous one. First, the form
of the postconditions has been restricted to specific operators. The property
q � p (read as “q constrains p”) is true of a computation if, at all points i on
the computation, p is true provided that q holds at all previous points. This
can be expressed in linear temporal logic as ¬(q U ¬p). The property G(p)
(read as “always p”) is true of a computation if p holds at all points of the
computation. Second, in the first subgoal, { f }M1{ g2 � g1}, g1 is understood to
be the correctness assertion of M1 while g2 is a helper assertion. This may
be justified by thinking of M1 as an open system, which interacts with an en-
vironment over which it has little control. Thus, the correct operation of M1

may be dependent on the correct operation of its environment M2; therefore,
g2 appears as a guarantee of the correct operation of the environment in the
proof of the correctness of M1. The appearance of g1 in the proof subtask for M2

can be similarly justified—hence the use of the word circular in the name for
such proof rules. The circularity helps to more easily encode the back-and-forth
handshake protocols that designers typically use for connecting components of
a system.

For any proof system, soundness is, of course, the most important property—
it should not be possible to deduce false facts. A measure of the quality or useful-
ness of a proof system is obtained from an investigation into completeness—is
it possible to deduce all true facts using the rules of the system? Existing com-
positional rules, including the circular ones, are known to be sound, but the
completeness of compositional rules that refer to temporal properties has not
been well studied.

In this article, we first investigate the completeness of compositional rea-
soning rules, focusing on rules used in practice that are known to be sound
for arbitrary linear temporal properties. Surprisingly, several such rules turn
out to be incomplete; that is, there are compositions whose correctness is not
provable by following the proof rules. Typically, the unprovable assertions are
liveness properties, but some rules may also be incomplete for safety properties.
The counter examples for incompleteness are also quite simple, which indicates
that the rules may be inadequate for handling many compositions that arise
in practice. We propose a new circular reasoning rule similar to the one above
and show that it is both sound and complete. The new rule strengthens the
previous rule in a manner analogous to strengthening a proof of invariance by
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introducing auxiliary assertions—to prove Gp show that a stronger assertion,
(p∧h), is inductive. Furthermore, our new rule is backward compatible, in that
any proof done using the previous rule is also a proof with the new circular
rule.

We then investigate whether circularity is, in itself, essential for reasoning
about composed systems. We show that the notion of circularity is a somewhat
weak one for LTL properties, in that proofs carried out with circular rules can
be easily translated to proofs with non-circular rules, and vice versa.

The article is organized as follows: Section 2 contains preliminary defini-
tions; Section 3 gives the details of several different styles of proof rules and
develops our new sound and complete circular proof rule; Section 4 derives our
sound and complete circular rule; Section 5 generalizes to n-processes; Section 6
discusses the translations between proofs carried out with circular and noncir-
cular rules. Finally, Section 7 contains a brief conclusion and discusses related
work.

2. BACKGROUND

In this section, we define the computational model and provide examples of
circular and non-circular rules for compositional reasoning.

2.1 Linear Temporal Logic (LTL)

LTL was first suggested as a protocol specification language in Pnueli [1977].
Formulas in the logic define sets of infinite sequences. LTL formula are defined
relative to a set of variable symbols. As in first-order logic, one can construct
terms over the set of variables using function symbols from a vocabulary, F ,
and atomic predicates from terms, using relational symbols from a vocabulary,
R. A special function symbol, η (read “next”) not in F is assumed to be given:
informally, this symbol is used to indicate the value of a variable at a following
state.

Atomic predicates and temporal formulas are defined below. A predicate
is a Boolean combination of atomic predicates. N denotes the set of natural
numbers.

—For a relational symbol r ∈ R of arity n and terms t0, . . . , tn−1, r(t0, . . . , tn−1) is
an atomic predicate and a formula;

—for formulae f and g, ( f ∧ g) and ¬( f ) are formulae;
—for formulae f and g, X( f ), and ( f U g) are formulae.

The temporal operators are X (next-time), and U (until).
Given an interpretation I (which is fixed from now on) for the function and

relation symbols, temporal formulae are interpreted with respect to infinite
sequences of valuations of the variables. For a set of typed variables W, let a
W-state be a function mapping each variable in W to a value in its type. The
set of W-states is denoted by �(W). A W-sequence σ is an infinite sequence
of W-states, which is represented as a function σ : N → �(W). The notation
σ, i |= f indicates that the infinite sequence σ satisfies the formula f at position
i. The language of f , denoted by L( f ), is the set {σ : σ, 0 |= f }. The satisfaction
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relation can be defined by induction on the structure of f . First, the value of
a term t at location i on σ , denoted by t(σ, i), may be defined by induction on
the structure of terms where, specifically, the interpretation of η(t) at position
i is given by the interpretation of t at position i + 1. We omit the detailed
formulation. The satisfaction relation for formulas is defined as follows:

—σ, i |= r(t0, . . . , tn−1) iff (I(r))(t0(σ, i), . . . , tn−1(σ, i)) is true.
—σ, i |= ¬( f ) iff σ, i |= f is false.
—σ, i |= ( f ∧ g) iff both σ, i |= f and σ, i |= g are true.
—σ, i |= X( f ) iff σ, i + 1 |= f .
—σ, i |= ( f U g) iff there exists j, j ≥ i, such that σ, j |= g and for every k,

i ≤ k < j, σ, k |= f .

Other connectives can be defined in terms of these basic connectives: ( f ∨ g)
is ¬(¬ f ∧ ¬g), ( f ⇒ g) is ¬ f ∨ g, Fg (read as “eventually g”) is (true U g),
G f (“always f ”) is ¬F(¬ f ), ( f W g) (“ f holds unless g”) is (G( f ) ∨ ( f U g)),
∞
F p (“infinitely often p”) is GFp,

∞
Gp (“finitely often ¬p”) is FGp, and q � p (“q

constrains p”) is ¬(q U ¬p).
The “constrains” operator is used extensively in the formulation of composi-

tional rules. An alternative formulation may give additional insight. The prop-
erty q� p is true for a sequence σ at position 0 if, for all positions i, i ≥ 0, p holds
at i if q holds at all earlier positions. It follows that (i) p must be true at the ini-
tial position, (ii) true� p is equivalent to Gp, and (iii) q� p is monotonic in p and
antimonotonic in q. We make use of these properties in the correctness proofs.

2.2 Extensions of LTL

The completeness proofs require the use of several extensions of LTL; these are
defined below.

2.2.0.1 LTL+Past. LTL may be extended with “past” operators [Lichten-
stein et al. 1985]. The past temporal operators are B (“back”) and S (“since”).
Their interpretation is given below.

—σ, i |= B(f) iff i > 0 and σ, i − 1 |= f .
—σ, i |= ( f S g) iff there exists j, 0 ≤ j ≤ i, such that σ, j |= g and for every k,

j < k ≤ i, σ, k |= f .

The operator P (“previously”) can be defined as (true S g). Extending LTL with
the past operator does not increase expressive power [Gabbay et al. 1980], but
does increase succinctness.

2.2.0.2 LTL+Quantification. The expressive power of temporal logic can
be enhanced by allowing variable quantification. The formula (∃∃∃W : f ) is true
of a V-sequence σ iff there is a V ∪ W-sequence δ that satisfies f , and agrees
with σ on the variables in (V\W).

Adding quantification to LTL does increase both expressive power and
succinctness. In the finite-state case, LTL+quantification is as expressive as
ω-regular expressions—see Thomas [1990] for a survey of these issues.
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2.2.0.3 LTL+Past+Quantification. In the completeness proofs, we often
make use of formulas that involve both extensions. From the preceding,
LTL+past+quantification is as expressive as LTL+quantification, but the use
of the past operators results in succinct statements of the constructions and
proofs.

2.3 Computational Model

We adopt a definition of a process similar to those in Pnueli [1977], Abadi and
Lamport [1995], and McMillan [1999]. A process is specified by giving an initial
condition, a transition condition and a fairness condition over a set of variables.

Definition 2.1 (Left-Total Relation). A binary relation T over a set S is left-
total if for all s ∈ S there is a t ∈ S such that (s, t) ∈ T.

Definition 2.2 (Process). A process is specified by a tuple (V, I, T, F) where
the following hold:

—V is a finite, nonempty set of typed variables. Let V ′ denote the set of terms
{η(v) : v ∈ V}.

—I(V), the initial condition, is a predicate on V.
—T(V, V ′), the transition condition, is a left-total predicate on V ∪ V ′.
—F(V, V ′), the fairness condition, is a Boolean combination of temporal formu-

las
∞
F(p) and

∞
G(p), for predicates p on V ∪ V ′.

Definition 2.3 (Computation). For a set of variables W such that V ⊆ W,
a W-computation σ of a process is a W-sequence such that I(σ0), and, for each
i ∈ N, σ, i |= T.

Definition 2.4 (Process Language). For a set of variables W such that V ⊆
W, the W-language of a process M = (V, I, T, F), denoted by LW(M), is the set
of W-computations of M that satisfy the fairness condition F. Thus, LW(M) can
be expressed by the LTL formula I ∧ G(T) ∧ F, interpreted over W-sequences.

We define process composition so that the language of a composition M1//M2

is simply the intersection of the languages of M1 and M2. The semantics of most
hardware description languages follows this model. In addition, as shown in
Abadi and Lamport [1995], with some reasonable restrictions, it holds also of
asynchronous models of computation.

Definition 2.5 (Synchronous Process Composition). Given processes M1

, . . . , Mn, with Mi = (Vi, Ii, Ti, Fi), their composition is the process denoted
by M = (//i : i ∈ [1..n] : Mi), where M = (V, I, T, F) such that

—V = ( ∪ i : Vi),
—I = (∧i : Ii),
—T = (∧i : Ti),
—F = (∧i : Fi).
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When M is composed of processes M1 and M2, we may express this composi-
tion as M = M1//M2.

Definition 2.6 (Interface Variable). For a system M, composed of several
processes Mi, we refer to the interface, or interface variables of Mi, as those
variables in Vi ∩ ( ∪ j �=iVj).

With these definitions of composition, it is possible that T = T1∧T2 is not left-
total even though the Ti ’s are left-total. For instance, suppose that x ∈ V1 and
x ∈ V2, where for at least one initial state of M = M1//M2, x = 0. Furthermore,
assume that whenever x = 0, then any transition in T1 forces x to 1 in the next
state but T2 requires that x is 0 in the next state. Then the composed model M
does not have a transition from a state where x = 0 and T is not left-total. In
the rest of the article, we restrict attention to those compositions where T is
left-total and nonempty.

THEOREM 2.7 (COMPOSITION THEOREM). For a composition M = (//i : i ∈
[1..n] : Mi) and a set of variables W such that ( ∪ i : Vi) ⊆ W, it is the case
that LW(M) = ( ∩ i : LW(Mi)).

PROOF. Let σ be a computation in LW(M). Then σ |= I ∧ F ∧ G(T). So for
all i in [1..n], σ |= Ii, and σ |= Fi. As G distributes over conjunction, for all i in
[1..n], σ |= G(Ti). This implies the right-hand side.

In the other direction, if σ is not a computation of LW(M), then it violates
either I or F or G(T). In either case, it violates one of Ii, Fi, or G(Ti), for some i;
thus, it does not satisfy LW(Mi).

Definition 2.8 (Model Checking). Let f be a property defined over a vari-
able set W, and let program M have a variable set that is a subset of W. The
model checking question is to determine whether f holds for all computations
of M, that is, whether (∀∀∀W : LW(M) ⇒ f ) is true.

2.4 Compositional Reasoning

The model checking question for a composition M1//M2 may be phrased as
(∀∀∀W : LW(M1//M2) ⇒ f ), which is equivalent, by Theorem 2.7, to (∀∀∀W :
LW(M1) ∧ LW(M2) ⇒ f ). Compositional reasoning rules convert this question
into two separate model checking questions, one explicitly involving M1 and
the other explicitly involving M2. This separation is typically required in the
proofs of large systems because even the symbolic computation (as BDDs) of
the transition relation for M1//M2 may be infeasible.

Assume-guarantee rules for composition attempt to generalize the pre-
and postcondition reasoning of Hoare logic [Hoare 1969]. Informally, a triple
{ f }M{g} asserts the property that every computation of M that satisfies
the assumption f satisfies the guarantee g. Formally, this can be stated as
(∀∀∀W : f ∧ LW(M) ⇒ g). We state below two typical compositional reasoning
rules based on the assume-guarantee formulation: the first is syntactically
noncircular, while the second is syntactically circular, in that the assumptions
of one process form the guarantees of the other and vice versa.
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Definition 2.9 (Noncircular Reasoning). For a composition M = (//i : i ∈
[1..n] : Mi), find intermediate assertions hj such that f implies h0, hn implies
g, and {hi−1}Mi{hi} holds for each i in [1..n]. Then { f }M{g} holds.

PROPOSITION 2.10 (NC SOUNDNESS). The noncircular reasoning rule is sound.

PROOF. Suppose that assertions hj have been found that satisfy the assump-
tions of the noncircular reasoning rule. The soundness proof is by induction on
process indices. The inductive hypothesis is that { f }(//j : j ∈ [1..i] : Mj){hi}
holds at the ith step.

The basis (i = 1) holds by the first assumption. The inductive hypothesis,
together with the assumption {hi}Mi+1{hi+1}, ensures that the inductive hy-
pothesis holds for i + 1. This follows from the general statement that { f }M1{h}
and {h}M2{g} implies { f }M1//M2{g}, for any f, h, g, and any M1, M2. To see this,
note that the first triple is (for W chosen to contain the variables of all formulas
involved) (∀W : f ∧ LW(M1) ⇒ h), and the second is (∀W : h ∧ LW(M2) ⇒ g).
The result, which is (∀W : f ∧ LW(M1//M2) ⇒ g), follows by the transitivity of
implication and the composition theorem.

The claim follows by instantiating the induction hypothesis for i = n.

PROPOSITION 2.11 (NC COMPLETENESS). The noncircular reasoning rule NC
is complete.

PROOF. Given that { f }M{g}, where M = //i ∈ [1..n] : Mi, we have to show
that there exist assertions {hi} which satisfy the conditions of the rule. Choose
hi = f ∧ (∧ j : j ∈ [1..i] : LW(Mj)). (Note that this is equivalent, by the
composition theorem, to f ∧ LW(//j : j ∈ [1..i] : Mj).) Then, h0 = f , and
hn = f ∧ (∧ j : j ∈ [1..n] : LW(Mj)), which implies g by the hypothesis. For
any i, consider {hi−1}Mi{hi}. This expands to (∀W : f ∧ (∧ j : j ∈ [1..(i − 1)] :
LW(Mj)) ∧ LW(Mi) ⇒ f ∧ (∧ j : j ∈ [1..i] : LW(Mj))), which is trivially true.

While the rule is, in some sense, trivially complete, this seems to be the
nature of completeness proofs for compositional reasoning. It remains to be
shown that the rule is readily applicable in practice. We note that interest in
circular reasoning stems from the fact that rules of this type are not seen to be
straightforward to apply.

The following rule is derived from the application of a property decompo-
sition theorem to compositional reasoning in McMillan [1999] (cf. Theorem 1
in McMillan [1999]). Below we make use of the following notation: let
B = { f1, . . . , fk} be a set of LTL formulae, then we use the set B as a shorthand
for (

∧
i : fi).

Definition 2.12 (Syntactically Circular Reasoning (Rule C1)). Consider
the composition M = (//j : Mj). Let {gi} be a set of properties. To show that
{ f }M{G(

∧
i : gi)} holds,

—for each i, choose a composition M(i) = (//k : Mk) where k ranges over a strict
subset of the process indices that includes i, and,

—choose a well founded order ≺ and subsets {�i} and {�i} of the set of properties
{gi}, such that if gj ∈ �i, then j ≺ i.

Then show that { f }M(i){ �i � (¬�i ∨ gi)} holds for all i.
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The requirement that M(i) is a strict subcomposition of M is imposed to
prevent trivial applications of this rule with every M(i) equal to M.

THEOREM 2.13. The rule C1 is sound.

PROOF. By assumption we have that { f }M(i){ �i � (¬�i ∨ gi)}. That is ∀∀∀W :
( f ∧ IM(i) ∧GM(i) ∧ FM(i)) ⇒ ( �i �(¬�i ∨ gi)). Notice that, for all i, the variable set
for M(i) is contained in the variable set for M and that, by definition, the initial
condition, transition relation, and fairness conditions for M are more restrictive
than those for M(i). Therefore IM ⇒ IM(i), G(TM) ⇒ G(TM(i)), and F ⇒ Fi for all
i. Hence, for any computation σ ∈ LW(M), it must also be that σ ∈ LW(M(i))
for all i. Since by assumption σ |= f , we have that σ |= �i � (¬�i ∨ gi) for
all i.

Suppose, to the contrary, that there is a computation σ of M which satisfies
f but fails to satisfy G(

∧
i : gi). Consider the first position, k, along σ where

(
∧

i : gi) does not hold. Pick a minimal element, m, among the set of failure
indices {i : ¬gi}. As m is minimal in this set, gl must be true for all indices l that
are below m in the order. Hence, �m is true at position k; therefore, (¬�m ∨ gm)
is false at position k. By the definition of the constrains operator, �m must be
false at some position before k. But this is a contradiction, as �m is a subset of
the {gi}’s, and k is the first position where (

∧
i : gi) is false.

3. (IN)COMPLETE PROOF RULES

We have shown in the previous section that the noncircular rule NC is both
sound and complete. In this section, we consider the proof rule C1 and the
assume-guarantee rule from Abadi and Lamport [1995] and show that these
circular rules are incomplete, even for finite-state processes. Our choice of these
rules is guided by two considerations: (i) these rules, unlike many other com-
positional rules (as discussed in Section 7), are sound for arbitrary linear tem-
poral properties, and (ii) they have been used successfully (cf. McMillan [1998])
to verify large systems. We then present a new sound and complete circular
rule.

3.1 Incompleteness of C1

To demonstrate that rule C1 is incomplete, consider the programs below where
M = M1//M2. Informally, M1 and M2 juggle four tokens by throwing them back
and forth in a circular pattern (the l, r variables indicate left and right “hands,”
respectively). System transitions are described as follows: we use η(l) to denote
the value of variable l in the next state.

program M1 program M2

variables l1, r1, r2 : boolean variables l2, r2, r1 : boolean
initially l1 ∧ r1 initially l2 ∧ r2

transition (η(l1) ≡ r2) ∧ (η(r1) ≡ l1) transition (η(l2) ≡ r1) ∧ (η(r2) ≡ l2)

As can be checked easily, the property G(l1 ∧ l2) holds of the composition
M1//M2. All the variables, l1, l2, r1, and r2 are true initially. Since the variable
li is assigned the current value of ri′ , in the state after the initial state li must be
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true. Similarly, the ri ’s will be true in the state after the initial one. This pattern
continues throughout the computation of M. Applying the substitution f =
true, g1 = l1, g2 = l2 to rule C1, we obtain the property {true}M1//M2{G(l1 ∧ l2)}.

However, as can be checked by enumeration, there is no way to define the
well-founded order ≺, and the subsets �i and �i such that the subgoals of rule
C1 are satisfied. Intuitively, this is because the next value of l1 is determined
by the current value of r2, which is unconstrained by the assumptions. Hence,
the original property, which is true of the composition, cannot be shown using
the proof rule C1. This is shown formally below.

Recall that the goal is to show {true}M(i){ �i � (¬�i ∨ gi)}, where gi = li.
for both M(1) and M(2). Here, M(1) = M1 and M(2) = M2. Consider the case
where 1 is a minimal element of the order—the case where 2 is minimal has
a symmetric proof. By minimality, �1 must be empty; thus, the goal for i = 1
simplifies to {true}M(1){ �1 � l1}. We show that this must be false by showing
that the weaker property {true}M(1){ (l1 ∧ l2) � l1} is false. The new property is
weaker as constrains is antimonotonic in its left-hand argument, and (g1 ∧ g2)
is stronger than any � property. Since M1 does not constrain r2, consider a
computation of M1 where l2 is true at the initial state, and r2 is always false.
The first state of this computation satisfies (l1 ∧ l2), but l1 is false in the second
state. This shows that the property {true}M(1){ (l1 ∧ l2) � l1} is not valid, and
proves that the rule cannot be applied to this instance.

One reason that this rule is incomplete is that it does not permit a choice
of auxiliary assertions, as in rule NC. If auxiliary assertions were allowed, it
is easy to see that the strengthened property G(l1 ∧ r1 ∧ l2 ∧ r2) can be shown
by properly instantiating rule C1. An analogy can be drawn here to the well-
known difference between invariance and inductive invariance: to establish
that a property p is invariant, one often needs to strengthen p to p ∧ h, for
some h, and show that this strengthened formula is an inductive invariant. We
say more about strengthening in Section 4.

3.2 Other Incomplete Rules

The circular proof rule presented in Abadi and Lamport [1995] is given below.
This rule is also used to reason about the joint behaviors of N1//N2 by reasoning
about the behaviors of the Nis in isolation. However, there are several key
differences, in particular while, for instance, rule C1 is used to show that the
behaviors of N1//N2 satisfy temporal properties of interest, the Abadi-Lamport
rule given below is used in proofs of process refinement; that is, one attempts to
show that the behaviors of N1//N2 are correct by showing that all the behaviors
of N1//N2 are behaviors of an assumed correct system M1//M2.

For the rule below, taken from Abadi and Lamport [1995], // can be used
to represent either synchronous or asynchronous composition and L̂(M), the
language of computations of M, is defined so that it is insensitive to stutter-
ing. A sequence σ is stuttering equivalent to another sequence, δ, if σ can be
transformed into δ by repeating or reducing adjacent duplicate states. For ex-
ample, the sequences aaaabb and abbb are stuttering equivalent. The language
L̂(M) is insensitive to stuttering if, whenever a sequence σ is in the language,
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all sequences that are stuttering equivalent to σ are also in the language.
Composition is defined so that L̂(M1//M2) equals L̂(M1) ∧ L̂(M2).

Although this rule allows the choice of auxiliary assertions Ei, it turns out
that it is still incomplete, because of the restricted form of the hypotheses.
We recall several of the definitions from Abadi and Lamport [1995] needed to
present the results, including the temporal ‘+’ operator, which extends safety
properties by allowing them to hold for some finite amount of time.

In the definition below, C( f ), for an LTL property f , is the strongest safety
property that is weaker than f while f+v asserts that if the formula f should
become false then the variable v becomes constant (for more details see Abadi
and Lamport [1995]). The following definitions are all taken from Abadi and
Lamport [1995].

Definition 3.1 (Safety Property). A property, p, is a safety property if, for
every computation σ , if every finite prefix of σ can be extended into a compu-
tation in p, then σ must also be in p.

Definition 3.2 (Process Closure). Let p be a property; then C(p) is the
strongest safety property that is weaker than p.

Definition 3.3 (Temporal ‘+’). Let p be a temporal formula with variable v

and let σ be a computation; then σ |= p+v iff σ |= p, or there exists an i ∈ N

such that for all j < i, σ, j |= p, and for all j ≥ i, σ j(v) = σ j+1(v).

Definition 3.4 (Circular Rule C2). To show that E ∧ L̂(N1//N2) ⇒
L̂(M1//M2) holds, pick Ei and show that for each i in {1, 2} all the following
hold:

—C(E) ∧ ∧
j∈{1,2} C(L̂(Mj)) ⇒ Ei, and

—C(Ei)+v ∧ C(L̂(Ni)) ⇒ C(L̂(Mi)), and
—Ei ∧ L̂(Ni) ⇒ L̂(Mi).

This rule was shown to be sound in Abadi and Lamport [1995]. However,
consider the programs M1, M2, N1, and N2 given below, all of which have initial
condition true and a weak-fairness condition on the actions a1, a2.

program M1 program M2

variables x : boolean variables y : boolean
transition a1: η(x) = true, b1: η(x) =
false

transition a2: η(y) = true, b2: η(y) =
false

fairness GFa1 fairness GFa2

Thus, the specification programs M1 and M2 define the properties GFx and
GFy, respectively. The implementation programs N1 and N2 are as follows:

program N1 program N2

variables x, y : boolean variables x, y : boolean
transition a1: η(x) = y transition a2: η(y) = true, b2: η(y) =

(¬x ∧ y)
fairness GFa1 fairness GFa2
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It is easy to check that E ∧ L̂(N1//N2) ⇒ L̂(M1//M2)) with E ≡ true. By a
result in Abadi and Lamport [1995], C(L̂(M)) is just the temporal formula for
process M without the fairness condition. Thus, C(L̂(M1)) = true ∧ G(η(x) ≡
true ∨η(x) ≡ false ∨η(x) ≡ x), which simplifies to true, as does C(L̂(M2)). Hence,
if the first hypothesis is to hold, both E1 and E2 must equal true. Therefore, by
the third hypothesis, L̂(N1) ⇒ L̂(M1), which is false as N1 admits computations
where x is false at every point. Hence, rule C2 is incomplete.

4. A SOUND AND COMPLETE CIRCULAR RULE

The discussion in the previous section shows that some of the circular reasoning
rules that have been proposed in the literature are incomplete. This raises the
question: what should a complete circular rule look like?

We answer this question by deriving such a rule from first principles. The
rule permits the choice of auxiliary properties over process interfaces (Defini-
tion 2.6), while retaining the overall style of the proof obligations of rule C1.
This rule is shown to be sound and complete. For clarity, we restrict the dis-
cussion below to the two-process case—we show in Section 5 how to generalize
to the n-process case. The derivation of the new rule is carried out in the com-
pleteness proof: the new rule is derived, and shown to be complete, in one step.
For this reason, we present the completeness proof first.

4.1 Deriving the Rule

There are two notable aspects of the new rule: first, it generalizes C1; thus it is
“backward compatible.” Second, the completeness proof shows that it suffices
to pick the auxiliary assertions over the interface between the two processes.
In a well-designed program, this interface should be “narrow,” exposing only a
small part of the internal workings of each process, and it must have a simple
description. This result makes precise the usual informal claim that composi-
tional reasoning is “easier” than full verification. Of course, this is only true
if the interface is available, or can otherwise be easily derived by inspection.
We do not, in this work, discuss algorithms for deriving such interface speci-
fications (one such algorithm is implicit in the derivation of the method). This
aspect is discussed more fully in Section 7 on related work.

Definition 4.1 (Circular Reasoning (Rule C3)). For properties g1 over V1

and g2 over V2, to show { f }M1//M2{G(g1 ∧ g2)}, pick properties h1 and h2 for
which the following two obligations hold:

(1) { f }M1{ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1)}.
(2) { f }M2{ (h1 ∧ g1) � ((h1 ⇒ g2) ∧ h2)}.

A natural extension of rule C1 would be to have the obligations take the
symmetric form { f }M1{ (h2 ∧ g2) � (h1 ∧ g1)}; { f }M2{ (h1 ∧ g1) � (h2 ∧ g2)}. The
completeness proof shows that this is not quite possible. The hypotheses of C3
are individually weaker than these more symmetric hypotheses as, for instance,
the guarantee term (h1 ∧ g1) implies the term ((h2 ⇒ g1) ∧ h1). Thus, a proof
using the symmetric hypothesis is also a valid proof according to C3.
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THEOREM 4.2 (COMPLETENESS OF C3). Rule C3 is complete. Furthermore, if f
is defined over the interface variables V1 ∩ V2, it is always possible to choose h1

and h2 as properties over V1 ∩ V2.

PROOF. In the following, let V = V1 ∪ V2. Assume that { f }M1//M2{G(g1∧g2)}
holds.

By definition, this is equivalent to (∀∀∀V : f ∧ LV(M1) ∧ LV(M2) ⇒ G(g1 ∧ g2)).
As G distributes over ∧, this is equivalent to the conjunction of (1) and (2) below.

(∀∀∀V : f ∧ LV(M1) ∧ LV(M2) ⇒ G(g1)), (1)

(∀∀∀V : f ∧ LV(M1) ∧ LV(M2) ⇒ G(g2)). (2)

Let α1 = (∃∃∃V\V2 : f ∧ LV(M1)) and α2 = (∃∃∃V\V1 : f ∧ LV(M2)). Informally, αi

is the language defined by Mi at its interface.
As M1 and g1 are defined over V1, expression (1) can be rewritten as

(∀∀∀V1 : LV(M1) ∧ α2 ⇒ G(g1)). (3)

By definition of α1, it is also true that

(∀∀∀V : f ∧ LV(M1) ⇒ α1). (4)

It would be nice to have a strengthening of C1 where the first obligation
is to show { f }M1{ (h2 ∧ g2) � (h1 ∧ g1)}. However, this implies that g1 and h1

must hold at the initial point of any computation that satisfies f ∧ LV(M1).
By (4), such computations satisfy α1 initially. Thus, it is reasonable to define
h1 as Pα1; informally, h1 says that α1 holds either now or in the past. But it
is not possible to prove that g1 holds initially; the best that can be said (by
(3)) is that (α2 ⇒ g1) holds initially. With a symmetric definition of h2 as Pα2,
this becomes (h2 ⇒ g1). Hence, the form of the first obligation is modified to
{ f }M1{ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1)}.

The preceding discussion shows that this assume-guarantee triple holds at
the initial point. Now consider an arbitrary position i + 1 on the sequence such
that (h2 ∧ g2) holds for all positions j, j ≤ i. Thus, h2 holds initially, which
implies that α2 is true initially. By Equation (3), G(g1) holds at the origin, so
(h2 ⇒ g1) is true at point i +1. By the definition of h1 and (4), h1 is true at point
i + 1.

Hence, the first hypothesis is true. In a similar manner, one may argue that
the second hypothesis is also true; so the rule is complete.

Note that, if f is defined over V1 ∩ V2, the auxiliary assertions h1 and h2 are
also defined over the common interface variables V1 ∩ V2.

THEOREM 4.3 (SOUNDNESS OF C3). Rule C3 is sound.

PROOF. Assume that the hypotheses of the rule hold for some choice of
h1 and h2. Then the guarantees of both hypotheses are true for any com-
putation of M1//M2 that satisfies f . Consider any such computation σ , and
any point i on σ . Since σ is a computation of M1//M2, and by assump-
tion LW(M1//M2) = LW(M1) ∩ LW(M2), it follows that σ is in LW(M1). There-
fore, by the first hypothesis, σ |= (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1). Hence, initially
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σ, 0 |= ((h2 ⇒ g1) ∧ h1). Therefore, σ, 0 |= h1. Similarly, since σ is also a compu-
tation of M2, and by assumption σ |= (h1 ∧ g1) � ((h1 ⇒ g2) ∧ h2), we must have
that σ, 0 |= h2. But then it follows that σ, 0 |= g1 and that σ, 0 |= g2. Putting
these facts together, we have that σ, 0 |= h1 ∧ g1 ∧ h2 ∧ g2.

Now assume inductively that, for all points j, j ≤ i, the property (g1 ∧ h1 ∧
g2 ∧ h2) holds. Together with the first hypothesis of rule C3, σ |= (h2 ∧ g2) �

((h2 ⇒ g1) ∧ h1), it must be the case that σ, i + 1 |= (h2 ⇒ g1) ∧ h1. Similarly, by
the second hypothesis, (h1 ⇒ g2) ∧ h2 holds at the (i + 1)st position. Reasoning
similar to the base case shows that σ, i + 1 |= h1 ∧ g1 ∧ h2 ∧ g2. Hence, the
inductive hypothesis holds at point i + 1. This shows that G(g1 ∧ h1 ∧ g2 ∧ h2)
holds of σ , from which it follows that the weaker property G(g1 ∧ g2) also holds
of σ .

4.2 Relationship to Rule C1

An instance of rule C1 can be obtained from C3 by making the substitution
h1 = true, h2 = true. In other words, if the gi ’s hold initially, and if g1 and g2

hold on the first n states of a computation, then g1 is guaranteed to hold on the
n + 1st state of the computation. Similarly for g2. Then g1 ∧ g2 is an invariant
of the computations of M1//M2.

For the first example, in Section 3.1, that showed the incompleteness of
rule C1, the following choices for h1 and h2 over the common variables {r1, r2}
ensure that the hypotheses of rule C3 hold: h1 = r1, h2 = r2. With this substi-
tution, the hypotheses become (1) {true}M1{ (r2 ∧ l2) � ((r2 ⇒ l1) ∧ r1)}, and (2)
{true}M2{ (r1 ∧ l1) � ((r1 ⇒ l2) ∧ r2)}.

For the second example, in Section 3.2, that showed the incompleteness of
rule C2, the property to be satisfied by N1//N2 may be written as G(GFx ∧GFy).
The following choices for h1 and h2 over the common variables x, y ensure that
the hypotheses of rule C3 hold: h1 = true, h2 = GFy. With this substitution, the
hypotheses simplify to (1) {true}M1{ GFy�(GFy ⇒ GFx)}, and (2) {true}M2{ GFx�

GFy}.

5. GENERALIZING TO N-PROCESSES

We present a sound and complete n-process circular reasoning rule, a general-
ization of the rule C3.

Definition 5.1 (Circular Rule C4). Let M = (//i ∈ [1..n] : Mi) be a compo-
sition of processes, and let {gi} be a set of properties such that, for each i, gi

is a property over Mi. Let g = (
∧

i : gi) and g(i) = (
∧

j �= i : gj). To show
that { f }M{G(g)} holds, pick an auxiliary property set {hi}, one property for
each Mi. Then let h = (

∧
i : hi) and show that, for each i, the following holds:

{ f }Mi{ (h ∧ g(i)) � ((h ⇒ gi) ∧ hi)}.
THEOREM 5.2. Rule C4 is sound.

PROOF. Assume that the hypotheses of the rule hold for some choice of {hi}.
That is, { f }Mi{ (h ∧ g(i))� ((h ⇒ gi) ∧ hi)} for each i. Then the guarantees of the
hypotheses are true for any computation of M that satisfies f .
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Consider any such computation of M, say σ , and any point k on σ . Since σ is
a computation of M, and by assumption LW(M) = ∧

i : LW(Mi), σ ∈ LW(Mi) for
all i ∈ [1..n]. Therefore, by the hypothesis, σ |= (h ∧ g(i)) � ((h ⇒ gi) ∧ hi).

Hence, initially σ, 0 |= ((h ⇒ gi) ∧ hi). Therefore, σ, 0 |= hi. Similarly, since
σ is also a computation of Mj for all j �= i, and by assumption σ |= (h ∧ gj) �

((h ⇒ gj) ∧ hj), we must have that σ, 0 |= hj . But then it follows that σ, 0 |= gi.
Hence, σ, 0 |= g. Putting these facts together we have that σ, 0 |= h ∧ g.

Now assume inductively that for all points l, l ≤ k, the property h ∧ g holds.
Together with the hypotheses of rule C4, σ |= (h ∧ g(i)) � ((h ⇒ gi) ∧ hi), this
implies that σ, k + 1 |= (h ⇒ gi) ∧ hi for each i. Putting these facts together,
implies that σ, k |= h. Hence for each i, σ, k |= h and therefore, for each i,
σ, k |= gi. Hence σ, k |= h ∧ g and therefore that σ, k |= g. This shows that
σ |= G(g) and therefore that { f }M{G(g)} holds.

THEOREM 5.3 (COMPLETENESS). Rule C4 is complete for every property f that
is independent of the local variables X.

PROOF. The proof is quite similar to the completeness proof for rule C3. To
simplify the argument, assume that the variables Vi of each process Mi are
partitioned into Xi, the local variables, and Yi, the interface variables (i.e., each
variable in Yi is referred to in some process Mj , for j �= i). The language of Mi,
LW(Mi), is then given by a formula Li(Xi, Yi) = Ii ∧ G(Ti) ∧ Fi. We let L denote
the formula representing LW(M) built from the intersection of the languages of
the individual processes.

Assume that { f }M{G(g)} holds. Hence, { f }M{G(gi)} holds, for each i. Using
the assume-guarantee definition, this is equivalent to (∀∀∀V : f ∧L(M) ⇒ G(gi)).
As gi is defined over Vi, this can be rewritten as

(
∀∀∀Vi : Li(Xi, Yi) ∧

(
∃∃∃V\Vi : f ∧

( ∧
j �= i : Lj(Xj, Yj)

))
⇒ G(gi)

)
. (5)

Define βi = (∃∃∃V\Vi : f ∧ (
∧

j : j �= i : Lj(Xj, Yj))), which can also be written in
terms of the Xi, Yi variables as: βi = (∃∃∃X, Y\Yi : f ∧ (

∧
j : j �= i : Lj(Xj, Yj)),

where X = ( ∪ i : Xi) and Y = ( ∪ i : Yi). Informally, βi is the language defined
by all other processes at the interface to process Mi.

Let αi = (∃Xi : f ∧ Li). Informally, αi is the language defined by Mi at its
interface. Now define hi = P(αi).

Lemma 5.4 (proved below) is used, in conjunction with Equation (5), to show
that (h ⇒ gi) holds at the initial state of a Mi computation. The rest of the
argument is similar to that in the earlier completeness proof. It follows that
that, for each i, the assume-guarantee triple { f }Mi{ (h ∧ g) � ((h ⇒ gi) ∧ hi)}
holds.

LEMMA 5.4. (
∧

i : P(αi)) ⇒ hj, for any j.

PROOF. From the definitions, this is equivalent to (
∧

i : P(αi)) ⇒ P(β j),
which is equivalent, since this must be true at point 0 of every computation, to
(
∧

i : αi) ⇒ β j . Notice that β j is defined over Yj , while the antecedent is defined
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over Y. Thus, the implication is equivalent to

(
∃∃∃Y\Yj :

( ∧
i : αi

))
⇒ β j .

Expanding the definitions of α and β, we get

(
∃∃∃Y\Yj :

( ∧
i : (∃∃∃Xi : f ∧ Li)

))
⇒

(
∃∃∃V\Yj : f ∧

(∧
k : k �= j : Lk

))
,

which is true if
(
∃∃∃Y\Yj :

( ∧
i : (∃∃∃Xi : f ∧ Li)

))
≡

(
∃∃∃V\Yj : f ∧

(∧
i : Li

))

holds for any j. We show this equivalence as follows. Starting with the right-
hand side,

(
∃∃∃V\Yj : f ∧

( ∧
i : Li(Xi, Yi)

))

≡ (splitting V into X and Y)(
∃∃∃X, Y\Yj : f ∧

( ∧
i : Li(Xi, Yi)

))

≡ (pushing f inside, as the range of i is nonempty)(
∃∃∃X, Y\Yj :

(∧
i : f ∧ Li(Xi, Yi)

))

≡ (rearranging quantifiers)(
∃∃∃Y\Yj :

(
∃∃∃X :

( ∧
i : f ∧ Li(Xi, Yi)

)))

≡ (the X′
is are mutually disjoint, and f does not depend on X)(

∃∃∃Y\Yj :
( ∧

i :
(
∃∃∃Xi : f ∧ Li(Xi, Yi)

)))
.

6. TRANSLATING PROOFS

In this section we show how proofs derived using the circular rule C3 can be
translated into proofs using the noncircular rule NC and vice versa. We also
discuss some of the consequences of these translations. In the sequel, when W
is clear from the context, we will write (∀∀∀W : f ) simply as f .

THEOREM 6.1 (FROM CIRCULAR TO NONCIRCULAR). Suppose { f }M1//M2{G(g1 ∧
g2)} has been derived from the circular rule C3. Then { f }M1//M2{G(g1 ∧g2)} may
be derived by application of the rule NC by letting the intermediate assertion h
equal f ∧ (g2 ∧ h2) � ((h2 ⇒ g1) ∧ h1).

PROOF. { f }M1{ f ∧ (g2 ∧ h2) � ((h2 ⇒ g1) ∧ h1)}, the first requirement of rule
NC, follows as a direct result of the first proof obligation from C3 in the premise.

ACM Transactions on Computational Logic, Vol. 11, No. 3, Article 16, Publication date: May 2010.



On the Completeness of Compositional Reasoning Methods • 16:17

We now show why the second requirement of rule NC also holds.

{ f ∧ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1)}M2{G(g1 ∧ g2)}
≡ (by the definition of the assume − guarantee triple)

{ f }M2{ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1) ⇒ G(g1 ∧ g2)}
⇐ (by the second proof obligation of rule C3)

(h1 ∧ g1) � ((h1 ⇒ g2) ∧ h2) ⇒
[ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1) ⇒ G(g1 ∧ g2)]

≡ (rearranging)

[ (h1 ∧ g1) � ((h1 ⇒ g2) ∧ h2)] ∧ [ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1)] ⇒
G(g1 ∧ g2)

≡ (temporal logic (see proof of Theorem 4.3))

true.

THEOREM 6.2 (FROM NONCIRCULAR TO CIRCULAR). Suppose { f }M1//M2{g} has
been derived from the noncircular rule NC using the intermediate assumption
h. Then the conclusion { f }M1//M2{g} may be derived by application of the rule
C3 using the substitution h1 = Ph, h2 = true, g1 = true, and g2 = Pg.

PROOF. Firstly, we note that the conclusion of the rule is the desired one. It is
straightforward to show that, at the initial point, any computation satisfies GPg
iff it satisfies g. Therefore, { f }M1//M2{G(g1∧g2)} is equivalent to { f }M1//M2{g}.
Consider the first proof obligation.

{ f }M1{ (h2 ∧ g2) � ((h2 ⇒ g1) ∧ h1)}
≡ (substituting and simplifying)

{ f }M1{ Pg � Ph}
⇐ ( � is antimonotone in its first argument)

{ f }M1{ true � Ph}
≡ (as true � Ph ≡ GPh)

{ f }M1{GPh}
≡ (as GPpand pare equivalent at the initial point)

{ f }M1{h}
≡ (by the first premise in the supposition)

true.

Now we show that the second premise is also true.

{ f }M2{ (h1 ∧ g1) � ((h1 ⇒ g2) ∧ h2)}
≡ (substituting and simplifying)

{ f }M2{ P(h) � (P(h) ⇒ P(g))}.
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This follows by an induction on positions of any sequence satisfying
f ∧L(M2). At the initial position, by the second part of NC, (h ⇒ g) holds;
thus, (Ph ⇒ Pg) holds at the initial position. At any other position i, by the
assumption Ph for 0 up to i−1, h must be true initially; hence, g is true initially
by the second part of NC, so that Pg is true at position i.

We note that the translations make no use of quantified formulae, which
justifies the following corollary.

COROLLARY 6.3. Compositional Rule C3 is complete for linear temporal logic.

PROOF. As in the proof of the previous theorem, one can write a property
f as G(true ∧ P( f )) and apply rule C3. Since C3 was shown to be complete
for properties of the form G(g1 ∧ g2), it follows that C3 is sufficient for proving
any linear temporal logic property. We note that the proof of Theorem 4.2,
presented above, does make use of quantified temporal properties. This use of
quantification is beneficial, in that the properties constructed in the proof of
completeness may be restricted to the variables which are mentioned in the
interface between M1 and M2. However, we show below that it is possible to
prove Theorem 4.2 without reference to quantified formulae, and hence the
result follows.

ALTERNATIVE PROOF OF THEOREM 4.2. Suppose { f }M1//M2{g} for some lin-
ear temporal logic formulae f and g. This can be written equivalently as
{ f }M1//M2{G(true ∧ Pg)}.

Let h1 encode M1 by writing h1 = P( f ∧I1∧G(T1)∧F1) and let g2 = Pg. Set h2 =
true and g1 = true. It is required to show that { f }M1{ (h2 ∧ g2) � (h2 ⇒ g1) ∧ h1}
and { f }M2{ (h1 ∧ g1) � (h1 ⇒ g2) ∧ h2}.

Suppose σ ∈ LV(M1) and σ |= f . Applying the substitutions, the requirement
becomes σ |= (true ∧ Pg) � (true ⇒ true) ∧ P( f ∧ I1 ∧ G(T1) ∧ F1) given that σ

is in LV(M1). This requirement on σ can be rewritten as σ |= ( f ∧ I1 ∧ G(T1) ∧
F1) ⇒ (true ∧ Pg)�(true ⇒ true) ∧ P( f ∧ I1 ∧ G(T1) ∧ F1). This can be simplified
to true.

Suppose σ ∈ LV(M2) and σ |= f . Applying the substitutions, the requirement
becomes

σ |= (P( f ∧ I1 ∧ G(T1) ∧ F1) ∧ true) � (P( f ∧ I1 ∧ G(T1) ∧ F1) ⇒ Pg) ∧ true.

Putting these facts together we rewrite the requirement as

σ |= ( f ∧ I2 ∧ G(T2) ∧ F2) ⇒
(P( f ∧ I1 ∧ G(T1) ∧ F1) ∧ true) � (P( f ∧ I1 ∧ G(T1) ∧ F1) ⇒ Pg) ∧ true.

This simplifies to

σ |= ( f ∧ I2 ∧ G(T2) ∧ F2) ⇒
P( f ∧ I1 ∧ G(T1) ∧ F1) � (P( f ∧ I1 ∧ G(T1) ∧ F1) ⇒ Pg).

Note that this last statement requires that σ, 0 |= P( f ∧ I1 ∧G(T1)∧ F1) =⇒ Pg,
which means that if σ is also a computation of M1 then σ |= g. Since by
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assumption if σ is a computation of M1//M2 then σ |= g, therefore σ |= Pg and
therefore this last requirement is satisfied.

7. RELATED WORK

There are several proposals for compositional reasoning rules in the litera-
ture, but only a few investigations of the completeness of these rules—a good
survey of the field appears in de Roever et al. [1997]. de Roever et al. [2001]
contains a comprehensive discussion of completeness for compositional proof
rules dealing with invariance and termination. The seminal work on assertion
based noncompositional reasoning for concurrency was by Owicki and Gries
[1976] and Lamport [1977]. This was extended to an assume-guarantee rea-
soning method by Misra and Chandy [1981] and Jones [1981]. These methods
apply to invariance and termination properties. Zwiers [1989] contains much
of the groundwork necessary for reasoning about compositional proof systems.
Pandya [1988] and de Roever et al. [1997] extended the fundamental work by
Zwiers [1989] on compositional partial correctness proofs for synchronously
communicating processes to proving more general safety properties such as
deadlock freedom, and to a restricted class of liveness properties. Proofs of
the completeness of compositional reasoning systems for safety properties are
found in Zwiers et al. [1984], Pandya [1988], Pandya and Joseph [1991], and
de Roever et al. [2001]. Other assume-guarantee rules for safety properties
were proposed in Stark [1985], Pnueli [1985], Kurshan [1988], Alur and Hen-
zinger [1996], and McMillan [1997]. More general rules that apply to both safety
and liveness properties were proposed in Pnueli [1985], Josko [1987], Clarke
et al. [1989], and Grümberg and Long [1994], Abadi and Lamport [1995], and
McMillan [1999].

We have concentrated on the completeness question for general rules that
apply to both safety and liveness properties. As shown in Section 3, the circular
rules in Abadi and Lamport [1995] and the rule C1 derived from McMillan
[1999] are incomplete. The simplicity of the counterexamples suggests that
the incompleteness may indeed impact the verification of systems in practice.
We presented a new circular rule, which is a modification of rule C1, and show
it to be sound and complete for all of LTL—in fact, it is straightforward to
generalize these ideas so that the rule is complete for the ω-regular languages.
The proofs carried out using rule C1, including that of the Tomasulo algorithm
[McMillan 1998], can be carried out in exactly the same manner with the
new rule. We also investigated whether circularity is, in itself, essential for
reasoning about composed systems, and showed that, for assume-guarantee
reasoning in LTL, the notion of circularity is a somewhat weak one, in that
proofs carried out with circular rules are easily translated into proofs with
noncircular rules, and vice versa.

There are a number of ways one could choose to strengthen the circular proof
rules found in the literature in order to make them complete. We have chosen
one in particular, rule C3. Our choice was motivated by a desire to remain as
close as possible to the spirit of the original circular proof rule—namely, to avoid
the “direct” use of M1//M2 when proving properties about this composition.
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Specifically, we have decided not to allow the use of temporal implication, h ⇒ g,
as a proof rule [Manna and Pnueli 1995]. Our results show that implication is
not necessary in order to obtain a sound and complete rule. Furthermore, rules
that include implication may allow the proof of f ∧LW(M1) ∧LW(M2) ⇒ g to be
instantiated directly as an implication without use of the, hopefully, better rules
mentioning only M1 or M2. That this goal has been, to some extent, mitigated
against in our proof of completeness should not come as a surprise in light of
the difficulty of the problem.

This article has concentrated on an assume-guarantee style of compositional
reasoning for synchronously communicating processes. Amla et al. [2001] de-
scribed a related style of assume-guarantee, circular reasoning where it was
shown that this style of reasoning fits in well with specifications written as
timing-diagrams. Such diagrams are commonly used to specify hardware sys-
tems and it was shown that they can offer particular benefits in terms of the
complexity of compositional reasoning over the use of LTL. In particular, that
work gave polynomial time model checking algorithms for a class of timing dia-
gram specifications. The authors showed how those algorithms could be used to
perform compositional reasoning in time linear in the size of a composed system
and its composed specification provided that the specification was structured
appropriately.

Those authors then extended their work on synchronous systems to asyn-
chronous systems in Amla et al. [2002]. Furthermore, Amla et al. [2002] de-
scribed a timing diagram-based modular specification language that is as ex-
pressive as the ω-regular languages, thus substantially increasing the expres-
sive power of the specification formalism that is applicable with a circular,
assume-guarantee style of reasoning. Amla et al. [2003] then showed how,
in the context of a more general mathematical framework, many of the ex-
isting circular-style compositional reasoning rules could be seen as instances
of a common pattern of mutual induction over the computations of several
variables.

Several different approaches have recently been developed to incorporate
learning-based algorithms into assume-guarantee reasoning frameworks. The
key idea is to learn appropriate assumptions needed to perform the compo-
nent verification tasks. For instance, Chaki and Sinha [2006] have used learn-
ing algorithms in the context of compositional reasoning for deadlock detec-
tion. Cobleigh et al. [2003] and Barringer et al. [2003] have used learning
algorithms to perform assume-guarantee reasoning for safety-property veri-
fication. Alur et al. [2005] concentrated on learning algorithms for composi-
tional verification in a symbolic setting. Blundell et al. [2005], have looked at
assume-guarantee-based approaches for testing. Related work by Chaki et al.
[2005] has looked at automated techniques for reasoning about simulation
conformance.
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