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Abstract. Model checking large networks of processes is challenging due
to state explosion. In many cases, individual processes are isomorphic,
but there is insufficient global symmetry to simplify model checking. This
work considers the verification of local properties, those defined over the
neighborhood of a process. Considerably generalizing earlier results on
invariance, it is shown that all local mu-calculus properties, including
safety and liveness properties, are preserved by neighborhood symme-
tries. Hence, it suffices to check them locally over a set of representative
process neighborhoods. In general, local verification approximates veri-
fication over the global state space; however, if process interactions are
outward-facing, the relationship is shown to be exact. For many network
topologies, even those with little global symmetry, analysis with repre-
sentatives provides a significant, even exponential, reduction in the cost
of verification. Moreover, it is shown that for network families generated
from building-block patterns, neighborhood symmetries are easily deter-
mined, and verification over the entire family reduces to verification over
a finite set of representative process neighborhoods.

1 Introduction

Networks of communicating processes are a model for distributed systems, cloud
computing environments, routing protocols, many-core hardware processors, and
other such systems. Often, networks are described parametrically, that is, a pro-
cess template is instantiated at each node of a network graph. The expectation
then is that basic correctness properties should hold regardless of the size and
the shape of the network.

Model checkers can determine, fully automatically, whether a fixed instance
of a process network satisfies a correctness property. However, model checking
suffers from exponential state explosion as the size of the analyzed network in-
creases. Thus, one may aim for parameteric analysis of a network family, “in one
fell swoop”; however, the parametric model checking problem (PMCP) is unde-
cidable in general [2]. Limiting to compositional proofs makes parametrized ver-
ification more tractable; as shown in [20], the PCMCP (Parameterized Compo-
sitional Model Checking problem) can be solved efficiently for standard network
families (rings, tori, wrap-around mesh, etc.) where the PMCP is undecidable
even for invariance properties.

In this work, we generalize these results considerably, from invariance to mu-
calculus properties. We formulate a local version of the mu-calculus to describe



behaviors of a single process and its immediate neighborhood. The logic allows
specification of safety and liveness properties, each property being limited to
assertions over a fixed process neighborhood – e.g., “A hungry philosopher even-
tually acquires all adjacent forks”. The goal of this work is a method to prove
such properties for all processes in a network and, moreover, to prove properties
parametrically, i.e., for all networks in a family.

Our analysis is based on a grouping of processes by local symmetry, where
“balanced” processes have (recursively) similar neighborhoods [20] [18] [17]. Such
symmetries are common in parametric network structures, for example [18] [19],
c.f. [20] [17]. We establish that the local state spaces of balanced processes are
sufficiently bisimilar that they satisfy the same local mu-calculus properties. It
is, therefore, enough to model-check a representative process from each balance
class, while paying particular attention to ‘interference’ transitions from neigh-
boring processes.

We show that any universal local mu-calculus property established locally
also holds on the global state space. Thus, a universal property can be estab-
lished globally for all processes by checking it on the local state spaces of a few
representatives.

Many communication protocols are designed in such a way that a typical
process must offer a given set of input/output services to its communication
environment, irrespective of its internal state. We show that under such outward-
facing interactions, the correspondence is exact: a local mu-calculus property
holds globally if, and only if, it holds locally.

We also detail the implications for entire families of networks that are defined
by ‘symmetry patterns.’ For instance, a network family with a transitive global
symmetry group can be analyzed by examining a single representative node.
Such dramatic reductions in complexity are generally not possible for non-local
properties.

None of the symmetry reduction results rely in any essential manner on the
processes being finite-state. To summarize the main results:

– The local state spaces of balanced processes (the spaces incorporate interfer-
ence from neighbors) are bisimilar. Hence, it suffices to model-check proper-
ties on representative processes of the balance equivalence classes,

– The local state space simulates the global space up to stuttering. Thus, a
universal local mu-calculus property holds on the global space if it holds on
a representative local space,

– With ‘outward-facing’ interaction, the local and global spaces are stuttering-
bisimilar. A local mu-calculus property holds on the global space if, and only
if, it holds on a representative local space.

We also explore the implications of these results and, in particular, show
that in several settings, local symmetries can be determined easily from process
syntax. We show that for isomorphic ‘normal’ processes operating in a network
whose communication graph has at least transitive symmetry, a balance relation
with a single representative process can be generated from the syntactic descrip-
tion of the network. In another direction, we show that for networks formed from
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‘building block’ patterns, the pattern instances serve as balance representatives.
These direct, syntactic constructions avoid having to build global symmetry re-
duced structures, can lead to exponential reductions in the cost of model check-
ing, and apply to many networks where global symmetry reduction techniques
are ineffective. Moreover, entire network families can be model-checked via the
analysis of a small number of representative processes, so that the savings in the
cost of analysis are unbounded.

2 Preliminaries

We define process networks, locality, and neighborhood symmetries.

Processes and Networks: Syntax A network is a directed graph, defined by
a set of nodes, N , a set of edges, E, and two connection relations: Out ⊆ N ×E
and In ⊆ N ×E. Connections are directed from node n to the edges in Out(n),
and directed inwards from the edges in In(n) to n. Nodes m and n are neighbors,
denoted nbr(n,m), if they have a common connected edge. Node m points to
node n if there is an edge e in Out(m) ∩ In(n).

A process is defined by a tuple (V, I, T ), where V is a set of variables which
defines its local state space; I(V ) is a Boolean predicate defining the initial
states; and T (V, V ′) is a Boolean predicate defining the state transitions, using
a copy V ′ to denote the next state. Variables are partitioned into internal and
external variables. External variables are labeled as read, or write, or both. The
transition relation is required to preserve the value of read-only variables and its
enabledness cannot depend on the values of write-only variables.

A process network P is defined by a network graph, a set of processes, and
an assignment, ξ. Every node n is assigned a process ξ(n), which we denote
for convenience by Pn = (Vn, In, Tn). Each edge e is assigned a variable ξ(e) in
V = (

⋃
n : Vn). The assignment ξ must assign In(n) to the read variables in

Vn, Out(n) to the write variables of Vn, and the internal variables of Vn to no
network edge. The shared variables of processes Pm and Pn are those assigned
to common connected edges of m and n.

Processes and Networks: Semantics Semantically, the behavior of a process
network P is defined as the process P = (I, V, T ), where V = (

⋃
n : Vn),

I = (
∧
n : In), and T = (

∨
n : Tn ∧ unchanged(V \ Vn)). This defines an

interleaving semantics, with unchanged(W ) denoting that the values of variables
in W are unchanged.

A global state is a function mapping variables in V to values in their domain.
A local state of Pn is a function mapping the variables in Vn to values in their
domain. An internal state of Pn is a function mapping the internal variables of
Pn to values in their domains.

For neighbors m,n, a joint state is a pair x = (xm, xn), where xm and xn
are local states of processes Pm and Pn, respectively, such that xm and xn have
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the same value for all shared variables. The transition relation Tn is extended
to joint states as Tn(x, y), which holds iff Tn(xn, yn) holds and the values of
variables in Pm that are not shared with Pn are unchanged.

Invariants: Global and Compositional Invariance is central to reasoning
about dynamic system behavior. For a process network P as defined above, a
global assertion, θ, is a set of global states of P . It is an inductive invariant for P
if all initial states are in θ, i.e., [I(x)→ θ(x)], and θ is closed under transitions,
i.e., [θ(x) ∧ T (x, y)→ θ(y)]. 3

In place of a single invariance assertion, compositional reasoning postulates
a set of local assertions, {θn}, where θn is a set of local states of Pn, for each n.
This set is a compositional inductive invariant if, for all n:

(Init) The initial states of Pn are included in θn. That is, [In(xn)→ θn(xn)]
(Step) Transitions of Pn preserve θn. That is, [θn(xn) ∧ Tn(xn, yn)→ θn(yn)]
(Non-Interference) Assertion θn is preserved by transitions of neighbors Pm,

from every joint state satisfying both θm and θn. I.e., For all m such that
nbr(n,m) and all joint states x = (xn, xm), y = (yn, ym) : [θn(xn)∧θm(xm)∧
Tm(x, y)→ θn(yn)]

These constraints are in a simultaneous pre-fixpoint form over {θn}. The
least fixpoint is the strongest compositional invariant. For finite-state processes,
this computation is polynomial-time in the size of the local state spaces.

Theorem 1 [17] If {θn} is a compositional inductive invariant then
∧
i θi is a

global inductive invariant.

Symmetry between Neighborhoods A neighborhood symmetry between
nodes m and n is witnessed by a bijection, β, which maps edges in In(m) to
those in In(n) and edges in Out(m) to those in Out(n); we call (m,β, n) a
similarity. The set of similarities (m,β, n) is a groupoid4.

A balance relation ([17], c.f. [11]) links symmetries throughout a network:
balanced nodes m,n have isomorphic neighborhoods, nodes connected to cor-
responding edges of m,n are themselves balanced, and so on. Formally, a bal-
ance relation, B, is a set of triples (m,β, n), such that (m,β, n) is a similarity;
(n, β−1,m) is in B; and for any node k that points to m, there is a node l which
points to n and a bijection γ such that (k, γ, l) is in B, and γ(e) = β(e) for every
edge e that is connected to both m and k.

The structure of this condition is similar to that of bisimulation (it is co-
inductive); thus, there is a greatest fixpoint, which is the largest balance relation.
Nodes m,n are balanced if (m,β, n) is in the largest balance relation for some β.

A process network P respects balance relation B if balanced nodes are as-
signed processes with isomorphic initial states and transition relations: i.e.,

3 The notation, [ϕ], from Dijkstra and Scholten [7], means that ϕ is valid.
4 I.e., (n, ι, n) is a similarity for the identity map ι; if (m,β, n) is a similarity, so is

(n, β−1,m); and if (m,β, q) and (q, γ, n) are similarities, so is (m, (γβ), n).
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for all (m,β, n) ∈ B, it is the case that [In(β(s)) ≡ Im(s)] for all s, and
[Tn(β(s), β(t)) ≡ Tm(s, t)] for all s, t. Similarly, we say that local assertions
{φi} respect B if [φn(β(s)) ≡ φm(s)] for all (m,β, n) ∈ B. We abbreviate these
conditions as [In ≡ β(Im)], [Tn ≡ β(Tm)] and [φn ≡ β(φm)], respectively.
Here, β is overloaded to permute local states of Pm. For local state s of node m,
the local state β(s) at node n is defined as follows: the internal states of m in s
and n in β(s) are identical and, for every edge e connected to m, the value on e
in s is identical to the value of β(e) in β(s). A key result is that balanced nodes
have isomorphic compositional invariants.

Theorem 2 ([17]) If a process network respects balance relation B, its strongest
compositional invariant also respects B.

This theorem implies that it suffices to compute the strongest compositional
invariant only for representative nodes5, as the invariants for all other nodes are
isomorphic to those of their representatives.

3 The Local Mu-Calculus

Intuitively, a local property is one that refers to the local state of a node, e.g.,
“the process at node n is in its critical section”, or “the philosopher at node
n holds all adjacent forks”. We are interested in establishing a local property
f(n), parameterized by node n, and so isomorphic between nodes, for all nodes
of a process network. We represent such a property by a mu-calculus formula.
This has two interpretations: one in the global state space, the other in a com-
positionally constructed local state space. Their connections are discussed in the
next section.

3.1 Syntax

The local mu-calculus syntax and semantics is largely identical to that of the
standard mu-calculus [15]. The only difference is the use of the E[U ] operator
in place of EX, this is given a stuttering-insensitive semantics.

Let Σ be a set of atomic propositions, Γ be a set of propositional variables,
and ∆ a set of transition labels; these sets are mutually disjoint. Local mu-
calculus formulas are defined by the following grammar. A formula is one of

– An atomic proposition from Σ,
– A propositional variable from Γ ,
– ¬ϕ, for a formula ϕ,
– ϕ ∧ ψ, the conjunction of formulae ϕ and ψ,

5 A balance relation B induces the equivalence relation m 'B n if (m,β, n) ∈ B for
some β. The compositional fixpoint is calculated for a representative of each class of
'B . In the fixpoint calculation, the assertion θn is replaced by γ(θr), where r is the
representative for n, and γ is a chosen isomorphism such that (r, γ, n) is in B.
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– E[ϕUa ψ], where ϕ,ψ are formulas, and a is a transition label from ∆,
– µZ.ϕ(Z), where ϕ(Z) is a formula syntactically monotone in Z (i.e., all

occurrences of Z fall under an even number of negations).

Operators A[ϕWa ψ] = ¬E[¬ϕUa ¬ψ] and νZ.ϕ(Z) = ¬µZ.(¬ϕ(¬Z)) are the
negation duals of E[U ] and µ, respectively, with Boolean operations ∨ and →
defined as usual.

3.2 Semantics

A state space has the form (S, S0, R, L), where S is a set of states, S0 is the
set of initial states, R ⊆ S × ∆ ∪ {τ} × S is a left-total transition relation,
and L : S → 2Σ labels states with atomic propositions. A path is a sequence
s0, a0, s1, a1, . . . such that (si, ai, si+1) ∈ R for all i, where the sub-sequence
a0, a1, . . . is the label sequence of the path.

The state set S generates a complete lattice of all subsets of S, ordered by set
inclusion. A functionalΠ : 2S → 2S is monotone if for allA,B such thatA ⊆ B it
is the case that Π(A) ⊆ Π(B). By the Knaster-Tarski theorem, every monotone
functional has a least and a greatest fixpoint. Consider a formula ϕ(Z1, . . . , Zd)
with free variables Z1, . . . , Zd. Given an assignment λ mapping each free variable
to a subset of S, the interpretation of ϕ under λ is defined inductively as follows.
We write M, s |= ϕ to mean that state s in space M satisfies a closed formula
ϕ, i.e., s is in interp(ϕ, ε) where ε is the empty interpretation.

– interp(p, λ) = {s ∈ S | p ∈ L(s)}, for proposition p ∈ Σ,
– interp(Z, λ) = λ(Z),
– interp(ϕ ∧ ψ, λ) = interp(ϕ, λ) ∩ interp(ψ, λ),
– interp(¬ϕ, λ) = S \ interp(ϕ, λ),
– State s is in interp(E[ϕUa ψ], λ) if, and only if, there is a finite path π from s

to state t with label sequence τ∗; a, where t is in interp(ψ, λ) and every other
state s′ on π is in interp(ϕ, λ). Informally, ϕ holds until the first a-action,
after which ψ is true,

– interp(µZ.ϕ(Z), λ) is the least fixpoint of functional Π(X) = interp(ϕ(Z), λ′)
where λ′ extends λ with the assignment of X to Z.

3.3 Local and Global Interpretations

Let θ be a compositional invariant respecting a balance relation B. For any node
n of the network, define Hθ

n as the following transition system:

– The states are the local states of Pn that satisfy θn,
– A transition (s, s′) is either
• A transition (labeled with n) by Pn from state s, or
• An interference transition (labeled with m) by a neighbor Pm from a

joint state (s, u) where θn(s) and θm(u) hold, to a joint state (s′, u′).
By the properties of a compositional invariant, s′ is in θn in both cases.
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The only missing ingredient is a labeling of the states with atomic propositions.
Given such a labeling, L, a closed formula evaluates to a set of local states.

The global transition system G defines the semantics of the process network.
For a given n, let Gn be G with transitions by Pn labeled with n, transitions by
neighbors m of n labeled with m, and all other transitions (which cannot change
the local state of Pn) labeled with τ . A local labeling L of Pn is extended to Gn
by labeling a global state s with proposition p if p labels the local state of Pn in
s. Formulas local to node n are evaluated over Gn. A closed formula evaluates
to a set of global states.

3.4 Simulation and Bisimulation

For processes without τ actions, a simulation relation α from process P to process
Q is a relation from the state space of P to that of Q, satisfying:

– Every initial state of P is related to an initial state of Q by α, and
– If sαt holds, then s and t satisfy the same atomic propositions, and
– If sαt holds and s′ is a successor state of s in P , there is a successor state t′

of t in Q such that s′αt′ holds.

If a simulation relation exists from P to Q, we say that Q simulates P . It
is well known that if Q simulates P , then any standard universal mu-calculus
formula that holds for all initial states of Q also holds for all initial states of P . A
universal local mu-calculus formula is one where its negation normal form does
not contain E[U ]. Relation α is a bisimulation from P to Q if α is a simulation
from P to Q and α−1 is a simulation from Q to P . It is well known that bisimilar
processes satisfy the same standard mu-calculus properties.

For processes with τ transitions, one can relax the third condition to allow
the possibility of stuttering (cf. [4]): if sαt holds, then for any state s′ reachable
from s by a finite path π with label sequence τ∗; a (for a non-τ letter a), there is
a state t′ reachable from t by a finite path δ labeled τ∗; a such that s′ and t′ are
related by α, and every other pair of states u on π and v on δ is related by α.
Relation α is a stuttering bisimulation if α and α−1 are stuttering simulations.

Theorem 3 Stuttering simulation preserves universal local mu-calculus proper-
ties. Stuttering bisimulation preserves all local mu-calculus properties.

4 Connecting Local Mu-Calculus Interpretations

We explore relationships between the local and global interpretation of formulas,
and show the following:

– The local state spaces of balanced nodes are bisimilar. It follows from Theo-
rem 3 that balanced nodes satisfy the same local mu-calculus formulas. From
this result, to model check a property of the form (

∧
i :: f(i)), it suffices to

check f(i) for the representatives of the balance equivalence classes.
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– The local state space of node m stuttering-simulates the global state space
up to the local state of m. It follows from Theorem 3 that a universal local
mu-calculus formula on m holds globally if it holds locally.

– If processes exhibit ‘outward-facing’ interaction, i.e., (roughly) the effect of
interfering transitions is independent of the internal state of the interfering
process, then the local and global state spaces are stuttering-bisimilar up to
the local state of m. It follows that the two spaces satisfy precisely the same
local mu-calculus formulas over m.

Notation. In the proofs below, for a local state s of node n, the notation s[n]
refers to the internal state of Pn in s, and for an edge e that is connected to n,
the notation s[e] refers to the value in s of the variable assigned to e.

4.1 Bisimilarity between Local State Spaces

Theorem 4 Let B be a balance relation on a process network P , and θ a compo-
sitional invariant for the network. If P and θ respect B, then for every (m,β, n)
in B, Hθ

m and Hθ
n are bisimilar up to β.

Proof: The bisimulation relation R relates a local state s of node m to a local
state t of node n if β(s) = t. Before getting to the details of the proof, which
is technical, we sketch the main reasoning. First, local transitions are easily
matched by symmetry. For an interfering transition from a neighbor k of m, by
balance, there is a matching neighbor l of n with a symmetric interference tran-
sition. Crucially, the preservation of the compositional invariant under balance
lets us transfer the joint state from which the interference transition occurs in
Hθ
m to a joint state with a matching interference transition in Hθ

n.
Suppose that s, t are states of m and n in the local state spaces Hθ

m and Hθ
n,

respectively, such that sRt holds, that is β(s) = t. By construction of Hθ
m and

Hθ
n, θm(s) and θn(t) hold.

Consider a step transition Tm(s, s′). Since Tm and Tn respect the balance re-
lation, B, by the local symmetry between the transition relations, Tn(β(s), β(s′))
holds as well. Thus, for t′ = β(s′), we have that there is a step transition Tn(t, t′)
such that s′Rt′. By construction, s′ and t′ are successors of s and t, respectively,
in the local state spaces.

Now consider an interference transition in Hθ
m from a joint state (s, u) where

u is a local state of a neighbor k of m. The transition Tk(u, u′) creates a joint
state (s′, u′). From the definition of balance, there is a neighbor l of n such
that for some γ, we have (k, γ, l) in the balance relation. As θ respects B by
assumption, we have that θl = γ(θk). As θk(u) holds by the definition of the
interference transition, the state v = γ(u) is in θl. We claim that there is a
matching transition from the joint state (t, v).

First, we show that the pair (t, v) forms a joint state. Consider any edge f
that is shared between n and l. By balance, shared edges are mapped identically
by β and γ; hence, e = β−1(f) = γ−1(f) is shared by m and k. By the definition
of t = β(s) and v = γ(u), we have that t[f ] = s[e] and v[f ] = u[e]. As (s, u) is a
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joint state, we have s[e] = u[e]; hence, t[f ] = v[f ]. As f was chosen arbitrarily,
it follows that t and v agree on the values of all shared edges, so (t, v) is a joint
state. Moreover, the state t is in θn by assumption, and v is in θl by construction.

By the similarity between Pk and Pl, there is a transition Tl(γ(u), γ(u′));
letting v′ = γ(u′), this can be expressed as Tl(v, v

′). That induces an interference
transition in Hθ

n from the joint state (t, v) to a joint state (t′, v′).
Finally, we show that t′ = β(s′). Let e be an edge connected to node m and

let f = β(e). Note that f is shared between n and l if, and only if, e is shared
between m and k. Now if f is not shared between n and l, then t′[f ] = t[f ] by
definition of interference; t[f ] = s[e] as t = β(s); and s′[e] = s[e] by definition
of interference. By transitivity, t′[f ] = s′[e], as required. If f is a shared edge,
then t′[f ] = v′[f ] by joint state; v′[f ] = u′[e] as v′ = γ(u′); and u′[e] = s′[e] by
joint state. By transitivity, t′[f ] = s′[e]. The internal states of t, t′ and s, s′ are
(respectively) identical, as they are unaffected by interference. Hence, t′ = β(s′).

The proof so far shows that R is a simulation if (m,β, n) is in the balance
relation. From the same argument applied to (n, β−1,m), which must also be
in the balance relation, the inverse of R is also a simulation. Hence, R is a
bisimulation between Hθ

m and Hθ
n. EndProof.

We say that per-process propositional labelings respect balance if for every
(m,β, n) in the balance relation, every atomic proposition p, and every local
state s: [p ∈ Ln(β(s)) ≡ p ∈ Lm(s)]. From Theorems 3 and 4, we obtain:

Corollary 1 Let f(i) be a local mu-calculus formula parameterized by i. If the
compositional invariant θ and the interpretation of the atomic propositions in
f respect balance relation B, then for any (m,β, n) in B and any local state s:
Hθ
m, s |= f(m) if, and only if, Hθ

n, β(s) |= f(n).

4.2 Local-Global Simulation

From the point of view of a process Pm, a transition in the global state space is
either a transition of Pm, or an interference transition by one of the neighbors
of m, or a transition by a “far away” process that has no immediate effect
on the local space of m. Thus, global transitions can be simulated by step or
interference transitions in the local space, with far-away transitions exhibiting
stuttering. The converse need not be true, as interference transitions appear in
the local space without the constraining context of the entire global state.

Theorem 5 Let the scheduling of transitions in the global system be uncon-
ditionally fair. For every m and any compositional inductive invariant θ, Hθ

m

simulates the global transition system Gm up to stuttering.

Proof: For a global state s, let s[m] refer to the local state of node m in s.
Define the relation R from global states to those of Hθ

m by (s, t) ∈ R iff θ(s)
and s[m] = t. We show that R is a simulation, up to stuttering. The proof is by
cases on the kinds of transitions from global state s to a successor state, s′. As
θ is a global inductive invariant by Theorem 1, it is the case that θ(s′) holds.
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Suppose the transition is by process m. Thus, Tm(s[m], s′[m]) should hold.
As θm(s[m]) holds, this transition is in the local state space as well. Letting
t′ = s′[m], we have s′Rt′.

Suppose the transition is by a neighbor k of m, so that Tk(s[k], s′[k]) holds,
and for all edges e that are not connected to k, s′[e] = s[e]. By definition,
θm(s[m]) and θk(s[k]) hold, so this is a valid interference transition in the local
state space Hθ

m. Denoting s[k] by u, this can be re-expressed as a joint transition
from state (t, u) to (t′, u′), where u′ = s′[k]. Consider an edge e that is connected
to m but not to k. Then t′[e] = (by non-adjacency) t[e] = (by R) s[m][e] =
(by non-adjacency) s′[m][e]. Now consider an edge e that is shared by nodes m
and k; then t′[e] = (by shared edge)u′[e] = (by definition) s′[k][e] = (by shared
edge) s′[m][e]. The internal state of m is unchanged on either transition. Thus,
t′ = s′[m], so that s′Rt′, as desired.

Finally, suppose the transition is by a process that is not a neighbor of m.
Then s′[m] = s[m], so that s′Rt holds. This is the stuttering step. As transitions
are scheduled in an unconditionally fair manner, on any infinite computation
from s, process m or one of its neighbors must eventually make a move. Hence,
all stuttering is bounded. This establishes (fair) stuttering simulation between
the two spaces. EndProof.

From the preservation of universal local mu-calculus properties under stut-
tering simulation, we have:

Corollary 2 If f(m) is a universal local mu-calculus formula, then for any t, s
such that s[m] = t: Hθ

m, t |= f(m) implies that Gm, s |= f(m) under fairness.

4.3 Outward-Facing Interactions and Local-Global Bisimulation

The obstacle to establishing bisimilarity in the proof of Theorem 5 is that an
interference transition from local state t may not have a corresponding transition
from a related global state s, as the internal state of the interfering neighbor in s
may be different from the internal state of the interfering neighbor of t. In some
protocols, however, we see that interference depends only on the shared state.
For instance, in a form of the dining philosophers’ protocol where a process may
give up a fork if it is not eating, the interference transition (passing a fork to a
neighbor) is dependent only on possession of the fork. In this setting, one can
indeed show that the two spaces are bisimilar.

We express the independence from internal state as a stuttering bisimulation
within the interfering process. Define a relation Bm,n on the local state space of
Pn by (u, v) ∈ Bm,n if u and v are both in θn, and u[e] = v[e] for every edge e
shared between m and n. We say that process n is outward-facing in interactions
with its neighbor m if the relation Bm,n is a stuttering bisimulation on Hθ

n.

Theorem 6 With outward-facing interaction, the local state space of process m
is stuttering bisimilar to the global state space in terms of the local state of m.

Proof: Define the relation R from global states to those of Hθ
m as in the proof

of Theorem 5 by (s, t) ∈ R iff θ(s) and s[m] = t.
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Consider a transition from t to t′. If the move is by process m, it is enabled
in s as well, and the resulting states are related by R. Now suppose the move
is an interference transition by a neighbor, n. Hence there is some joint state
(t, u) of (m,n) such that the move is by n from (t, u) to (t′, u′). As u ∈ θn (by
joint state) and s[n] ∈ θn (by definition of R), and the two are connected to
the same local state of m, the pair (s[n], u) is in Bm,n. As Bm,n is a stuttering
bisimulation, there is a sequence, say σ, of transitions by Pn alone from s[n] to
a state v′ such that (v′, u′) ∈ Bm,n, and all intermediate states on σ from s[n]
to v′ are related by Bm,n to u. Hence, the value of the shared edges between m
and n is unchanged on σ until the final step, where it matches u′. Therefore, for
the global computation induced by σ from s, the final state s′ is such that s′Rt′,
and for all intermediate global states x on that path, xRt holds. This shows that
R−1 is a stuttering simulation from the local to the global space. By Theorem
5, the relation R is a simulation from the global to the local space. Hence, R is
a stuttering bisimulation between the spaces. EndProof.

Corollary 3 With outward-facing interaction and unconditionally fair schedul-
ing, the local state space of a process m satisfies the same local mu-calculus
properties as the global state space.

5 Syntactic Determination of Local Symmetries

We show how to recognize local symmetry from syntactic structure. This also
applies to network families, with corresponding unbounded savings in local ver-
ification. First, we use relations between structure and global symmetry, and
between global and local symmetries. Next, we show how local symmetries may
be directly derived if network families are induced by a finite set of tilings. We
note that when local symmetry is derived syntactically, either through the use
of normal process descriptions, or through building block tiles, the computa-
tion of the compositional invariant can be done symbolically, and in the case of
tilings, directly on each tile, unlike the case of global symmetry reduction, where
the symbolic (BDD-based) orbit relation is difficult to compute even for fully
symmetric networks [5].

5.1 Program Symmetries

Let P = ||i∈[0..k−1]Pi, k ≥ 1 be a fixed network where each component Pi is an
implementation of a process template W . Network topology is restricted so that
all edges are bidirectional and connect only two nodes. Each Pm is described
by a finite transition graph where if there is an arc from the internal node g
to the internal node h then the arc is labeled by a guarded command ρ → A.
Transitions are given by g : ρ→ A : h where A is the local update function and
ρ is a predicate over the neighborhood of Pm. The action A is given by a list of
simultaneous updates to the shared variables, v1, . . . , vd, where vi is the variable
across the edge (m,ni).
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We name the variables associated with a process, depending on the specific
topology, the left variable, the right variable, the forward variable of Pm, etc.
This modeling tactic is used (see [8]) to stipulate that the update functions for
the variables be process-index independent.

Two transitions g : ρ → A : h and g′ : ρ′ → A′ : h′ are equivalent if g = g′,
h = h′, ρ is semantically equivalent to ρ′ and A and A′ are semantically equiva-
lent (c.f. [8]). Processes Pm and Pn are equivalent if there is a bijective mapping
between equivalent transitions of Pm and Pn. A permutation π of process indices
is an automorphism of P if Pm is equivalent to Pπ(m) for all m ∈ [0..k − 1].

As shown in [8] the global symmetries of the program P , essentially the
permutations of [0..k − 1] that leave P unchanged, are a subset of the global
symmetries of the global state space G. From P , one defines an undirected
graph, the communication relation, CR [8]. The nodes of CR are the nodes of
N of the topology (N,E) and there is an edge from m to n in CR iff the nodes
are connected to a common edge.

P is normal [8] if the transitions of P are given in the following form:
g : (∧n∈CR(m)ρ(m,n))→ (∧n∈CR(m)A(m,n)) : h

where each ρ(m,n) is a boolean expression over the internal state of Pm and
the neighborhood variables of Pm, or equality tests between the variables local
to the neighborhood of Pm, and the assignments of A(m,n) are concurrent as-
signments to the neighborhood variables of Pm, where variable values may be
swapped with each other or assigned constant values. When P is a normal pro-
cess network [8] showed that global symmetries of CR are symmetries of P and
are automorphisms of G.

This setting substantially simplifies the application of local symmetry. First,
the balance relation can be “read off” directly from the relation CR, as by results
in [17], the global symmetries of CR define a balance relation over (N,E), which
includes (m,β, n) if there is a symmetry π of CR such that π(m) = n. Secondly, if
CR induces a transitive symmetry group, then local symmetry reduction reduces
to analysis of a single representative process and its neighborhood. This may
result in an exponential reduction in the cost of model checking, compared with
an analysis of the entire state space. (The global symmetry used in [8] provides
an exponential reduction only when CR is fully symmetric.) The check is in
general over-approximate (cf. Corollary 2) but is exact under outward-facing
interaction. In the parametric setting, the reduction is unbounded.

5.2 Tilings

Rings, tori, and other ‘regular’ network patterns have considerable local sym-
metry but little global symmetry. Here we show how to enforce local symmetry
across network families by generating them from a finite set of tiles. The tiles
directly induce local symmetries and balance.

Consider a fixed, finite set of process types where each process type has a
fixed, finite set of edge directions, which are given unique names. The initial
condition and the transition relation of a process type may refer to the values
on edges in the given direction. Each type is associated with a tile describing a
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fixed neighborhood pattern around a node of that type. The pattern specifies
for each edge connected to the central node its direction from the center and
the type and direction of the other process connected to it. The tiles induce a
family of networks, typically of unbounded size, as follows. A network is in the
family if (1) each node is assigned an instance of a process type, and (2) the
neighborhood of a node matches the tile for that node type. For instance, a tile
for a torus shape would have 4 neighbors, labeled north, south, east and west.

A network family constructed in this manner has an induced balance relation,
B, defined as follows. Let m, n be nodes of a network in the family. Let (m,β, n)
belong to B if (a) both nodes are instances of the same type and (b) β is the
mapping which, for each direction a, relates the edge reachable in direction a
from m to the edge reachable in the same direction from n. (E.g., it maps the
north edge of m to the north edge of n.)

Theorem 7 B is a balance relation for the induced family, with finitely many
equivalence classes.

Proof: We show that B is a balance relation, and that it is respected by the
process assignment.

The mapping β is an isomorphism of the edges connected to m and n, as both
have the same type. Moreover, as their initial conditions and transition relations
are derived from those of the type and are independent of node identities, they
are isomorphic up to β.

We now establish that B meets the balance relation. Consider a direction a.
Let m′ (n′) be the node connected to m (n) in that direction. As m and n have
the same tiling pattern, m′ and n′ have the same type, so the tuple (m′, γ, n′)
is in B, for the isomorphism γ between the edges of m′ and n′ as given in the
definition of B. Consider the edge e reached from m in direction a, and let b be
the direction that this edge is reached from m′. Let f be the edge in direction
a from n. As m and n follow the same tiling pattern, f must be reached from
direction b from n′. Therefore, β and γ agree on this edge. As the edge was
chosen arbitrarily, this establishes the balance condition.

The number of equivalence classes induced by the greatest balance relation
is, then, at most the number of tiles, which equals the number of process types.
EndProof.

Theorem 7 implies that the compositional analysis of all instances of the
network family can be reduced to the analysis of a finite set of representatives.
This is a substantial contrast with global symmetry reduction for network fam-
ilies, where parameterized collapse is not as simple, nor as general. Moreover,
the required representatives are just the tiles. The easy syntactic symmetry re-
duction contrasts with the difficulty of computing global symmetry groups for
such network families.

6 Applications

Example 1 Consider a non-deterministic token-ring system P = ||iPi. The
internal states of Pi range over {T, H, E} with shared variables xi and xi+1 ranging
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over {⊥, tok}. Initially, each process is in internal state T and either owns 0
tokens or owns 1 token. The initial condition specifies that a single process owns
the token. Processes cycle through states in the order T ,H and E . A process in
H can move to E only if it owns the token. When exiting E the process puts
the token on its right and enters T . If a process is in T and has the token,
then it either enters H or passes the token to the right. It can be shown that
the process interactions are outward-facing. Verification of the mutual exclusion
property for all i: AG(Ei → (xi = tok)) can then be performed on a model with
3 processes that suffices to see all reachable local states.

In addition, a liveness property, for all i : AG(Hi → AFEi), can also be
verified using a combination of local arguments. The proof is constructed as
follows: first, show that the system satisfies the invariant that there is exactly
1 token in the system. Then show every process that has the token eventually
passes the token to the neighbor on the right. Using the global system fairness
assumption that each process executes infinitely often we can chain these proofs
together to conclude that for any particular process Pn: AG(Hn → AFEn) holds
which by local symmetry implies: for all i : AG(Hi → AFEi).

Example 2 Interestingly, the results about a single token ring network can
be extended to a ring with 2 tokens. However, the minimal model requires 4
processes. Similar reasoning holds for 3 tokens and we hypothesize can be gen-
eralized to any fixed number of tokens. A related example is a ring with 2 types
of processes, one labeled red and one labeled black . For rings with even numbers
of processes, half of them red and half of them black , there are 2 equivalence
classes. Local symmetry reduction can be used to verify behavior of the two
equivalence classes for any even number of processes, though the networks have
little global symmetry and do not have transitive symmetry.

Example 3 Several works including [10, 9, 3, 14] have considered using counting
arguments as a way of implementing full symmetry reduction. Given an n process
system, with isomorphic processes having local state spaces of size m, and full
global symmetry on [1..n] the idea is to replace the global symmetry-reduced
model with a set of m counters, where the counter values record the number
of components in each of the different local states. A combinatorial argument
[22] shows that the number of combinations of n isomorphic process each with
m local states, is (m + n − 1)!/(n!(m − 1)!). If n > 2m, this is more than 2m.
On the other hand, if each component has b neighbors, the local representative
(full global symmetry implies a single balance class) has a local state space of
size approximately mb. Over a parametric analysis mb is a constant and b, the
number of neighbors, is likely to be small in comparison with m.

7 Discussion and Related Work

The central results of this paper concern the relationship between the satisfaction
of temporal properties on the global state space of a process network and on
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individual local state spaces. We show that “balanced” processes have bisimilar
local spaces and therefore satisfy the same local mu-calculus formulas. We then
show that for a local formula f(n) that is universal in nature, the satisfaction of
f(n) on the local space of node n implies that f(n) holds of the global state space.
Thus, if universal formulas {f(n)} hold for all nodes n, then (

∧
i : f(i)) holds for

the global state space. This provides an approximate way to establish quantified
mu-calculus properties. Moreover, as balanced nodes satisfy the same formulas,
it is only necessary to model-check representatives of the balance equivalence
relation. For a fixed process network, the restriction to local state spaces can
result in exponential savings (in the number of nodes), and the further restriction
to representative spaces results in a further linear cost saving. More dramatically,
we show that network families constructed from building-block “tiles” have a
finite set of representative nodes, so the cost saving is unbounded for parametric
analysis. For process networks where processes communicate with their neighbors
in an outward-facing manner, these results carry over to the entire local mu-
calculus, not just to universal properties.

The results build on our earlier work on balance relations and local symme-
try [17, 18, 20]. That work focused on compositional invariants (in Owicki-Gries
style [21]), the central result being that the strongest compositional invariants
for balanced nodes are isomorphic. The results in this paper considerably gen-
eralize the isomorphism to apply to all local mu-calculus properties. The local
state spaces on which the mu-calculus properties are evaluated are built using
compositional invariants. An elegant methodology using 3-valued logic to com-
positionally verify mu-calculus properties is developed in [23]; however, it applies
to pairs of processes, and thus does not consider symmetries in larger networks.
The definition of network families through tilings has similarities to the net-
work grammars used in [24, 26]; however, the verification techniques are quite
different.

The framework of this paper considers the neighborhood of a single node.
Compositional invariants have been generalized to apply to groups of processes,
so as to accommodate properties stated over all pairs i, j, or over all neighbors
i, j; representative papers include [16, 6, 1, 13, 12]. Construction of a comprehen-
sive, elegant theory of neighborhood symmetry for groups of processes is still an
open question, one that has considerable potential for practical applications.

Global symmetry reduction, developed in [5, 8, 14], is based on a beautiful
mathematical theory of automorphisms in graphs. However, in practice, symme-
try reduction runs into difficulties, usually because there is not enough global
symmetry in a process network, but also because for even highly symmetric
networks, symbolic manipulation of symmetry reduced structures is difficult.
In fact [5] shows that any BDD-based representation of the global symmetry
group for any network with only transitive symmetry would likely incur a pro-
hibitive cost. By focusing on local similarities, a strict generalization of global
symmetries [17] [20], we can avoid these problems and obtain exponential im-
provements. The theory of local symmetries is based on network groupoids, with
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close connections to network automorphisms – any automorphism group induces
a balance relation.

The results in this paper also touch upon parameterized verification. For
network families built from building-block tiles, there is a finite set of represen-
tative neighborhoods, and it suffices to prove a parameterized local mu-calculus
property for each of those representatives to show that it holds for the entire
family. This is an approximate method for parameterized verification. In prior
work [20], we had introduced the local PCMCP (parameterized compositional
model-checking) question as a decision problem that is, in many cases, more
tractable than the global PMCP (parameterized model-checking) problem. De-
ciding PCMCP for local mu-calculus properties is a challenging open question.
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8 Appendix

8.1 Proof of preservation under stuttering simulation

Denote by α the simulation relation. The formula is universal, so its negation
contains only the E[U ] operator. We establish that if u satisfies the negated
formula and u, v ∈ α, then so does v. The proof is by structural induction on
the (negated) formula.

We say that sets S, T respect α if whenever u ∈ S and u, v ∈ α, then v ∈ T .
A pair of interpretations λP , λQ respect α if λP (Z), λQ(Z) respect α for all
variables Z.

The induction hypothesis is that for states s, t such that sαt, existential for-
mula f , and interpretations λP , λQ which respect α, the sets interp(f, λP ), interp(f, λQ)
also respect α.
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Consider u, v such that u, v ∈ α, and formula f .
(1) f is an atomic proposition or its negation. As the two states satisfy the

same atomic propositions, u ∈ interp(f, λP ) iff v ∈ interp(f, λQ).
(2) f is a variable Zi. Then the required property holds by the assumption

on λP , λQ.
(3) f = ¬ g. This case cannot occur for non-atomic g as the formula is

assumed to be in negation normal form.
(4) f = g ∨ h or f = g ∧ h. In the first case, state u ∈ interp(f, λP )

iff u ∈ interp(g, λP ) or u ∈ interp(h, λP ). As uαv, from the induction hypoth-
esis, it follows that either v ∈ interp(g, λQ) or v ∈ interp(h, λQ) holds, i.e.,
v ∈ interp(f, λQ). A similar reasoning establishes the property for the second
case.

(5) f = E[gUa h]. Suppose u ∈ interp(E[gUa h], λP ). Then there is a path σ
with labeling satisfying τ∗; a in P from u to u′ such that u′ satisfies h and all
intermediate states satisfy g. By stuttering simulation, there is a corresponding
path δ from v to v′ satisfying the same labeling such that u′, v′ ∈ α and all
intermediate pairs are also in α. From the induction hypothesis, all intermediate
states on δ satisfy g and the state v′ satisfies h, so that v ∈ interp(E[gUa h], λQ).

(6) f = (µZ.g). Let A = interp(f, λP ). By the Knaster-Tarski theorem, A is
the limit of the sequence A0 = ∅, Ai+1 = interp(g, λP [Z ← Ai]). Let Bi = ∅ and
Bi+1 = interp(g, λQ[Z ← Bi]). We show that Ai, Bi respect α for all i; hence, so
do A and B. (The proof is based on a finite limit for the fixpoint, the argument
generalizes easily to transfinite limits.)

This property is trivially true for A0, B0, which are empty. Suppose that it
holds for Ai, Bi. Then the interpretations λP [Z ← Ai] and λQ[Z ← Bi] also
respect α; hence, by the induction hypothesis, that is true as well of Ai+1, Bi+1.

A similar argument applies for the greatest fixpoint operator. Here the initial
conditions are A0 = SP and B0 = SQ, which trivially respect α.

8.2 Proof of preservation under stuttering bisimulation

This argument is similar to the earlier one. The definitions and induction hy-
pothesis are strengthened to the following.

We say that sets S, T respect bisimulation α if whenever u, v ∈ α, then
u ∈ S ↔ v ∈ T . A pair of interpretations λP , λQ respect α if λP (Z), λQ(Z)
respect α for all variables Z.

The induction hypothesis is that for states s, t such that sαt, formula f , and
interpretations λP , λQ which respect α, the sets interp(f, λP ), interp(f, λQ) also
respect α.

Consider u, v such that u, v ∈ α, and formula f .
(1) f is an atomic proposition or its negation. As the two states satisfy the

same atomic propositions, u ∈ interp(f, λP ) iff v ∈ interp(f, λQ).
(2) f is a variable Zi. Then the required property holds by the assumption

on λP , λQ.
(3) f = ¬ g. Then u ∈ interp(¬g, λP ) iff u ∈ SP \interp(g, λP ) iff (by induction

hypothesis) v ∈ SQ\interp(g, λQ) iff v ∈ interp(¬g, λQ).
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(4) f = g ∧ h. State u ∈ interp(f, λP ) iff u ∈ interp(g, λP ) and u ∈
interp(h, λP ). From the induction hypothesis, this is equivalent to v ∈ interp(g, λQ)
and v ∈ interp(h, λQ), i.e., v ∈ interp(f, λQ).

(5) f = E[gUa h]. Suppose u ∈ interp(E[gUa h], λP ). Then there is a path σ
with labeling satisfying τ∗; a in P from u to u′ such that u′ satisfies h and all
intermediate states satisfy g. By stuttering simulation, there is a corresponding
path δ from v to v′ satisfying the same labeling such that u′, v′ ∈ α and all
intermediate pairs are also in α. From the induction hypothesis, all intermediate
states on δ satisfy g and the state v′ satisfies h, so that v ∈ interp(E[gUa h], λQ).

(6) f = (µZ.g). Let A = interp(f, λP ). By the Knaster-Tarski theorem, A is
the limit of the sequence A0 = ∅, Ai+1 = interp(g, λP [Z ← Ai]). Let Bi = ∅ and
Bi+1 = interp(g, λQ[Z ← Bi]). We show that Ai, Bi respect α for all i; hence, so
do A and B. (The proof is based on a finite limit for the fixpoint, the argument
generalizes easily to transfinite limits.)

This property is trivially true for A0, B0. Suppose that it holds for Ai, Bi.
Then the interpretations λP [Z ← Ai] and λQ[Z ← Bi] also respect α; hence, by
the induction hypothesis, that is true as well of Ai+1, Bi+1.

8.3 Example

Consider a non-deterministic, token-ring example: P = ||i∈[0..k−1]Pi with k pro-
cesses. Each process, Pi = (Ii, Ti, xi, xi+1), is given as follows: the internal states
of Pi range over {T, H, E} and the variables xi and xi+1 range over {⊥, tok}.
Process and variable identifiers range over [0..k − 1] where addition and sub-
traction are assumed to be done mod k. In this way, as i ranges over [0..k− 1],
processes Pi and Pi+1 share variable xi+1. The initial condition for each Pi is:
Ii = T ∧ ((xi = ⊥ ∧ xi+1 = ⊥) ∨ (xi = tok ∧ xi+1 = ⊥) ∨ (xi = ⊥ ∧ xi+1 =
tok)). In addition, P = ||i∈[0..k−1]Pi operate under the global initial condition
∃i ∈ [0..k − 1] : (xi = tok ∧ ∀j ∈ [0..k − 1] : (j 6= i)→ xj = ⊥).

Processes execute asynchronously with the following non-deterministic tran-
sition relation for Pi given by pairs of local states, each state of the form
(internalstate, xi, xi+1). In this way we describe the internal transition relation
for Pi with the effect on the local state of Pi. Ti = {
((T,⊥,⊥), (T,⊥,⊥)),
((T,⊥, tok), (T,⊥, tok)),
((T, tok ,⊥), (T,⊥, tok)),
((T, tok ,⊥), (H, tok ,⊥)),
((T,⊥,⊥), (H,⊥,⊥)),
((T,⊥, tok), (H,⊥, tok)),
((H,⊥,⊥), (H,⊥,⊥)),
((H,⊥, tok), (H,⊥, tok)),
((H, tok ,⊥), (E, tok ,⊥)),
((E, tok ,⊥), (T,⊥, tok))}

Notice that a process in local state T that owns the token on the left either
transits to local state H, or passes the token to the neighbor on the right. In
additions, there are several interference transitions representing joint transitions
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that Pi shares with its neighbors. In these transitions, the role of Pi is passive,
therefore the internal state of Pi may not change, only the variables shared
between Pi and its neighbor may change. The interference transitions are given
below, in the first 4 the neighbor on the left passes the token to Pi and in the
second 4 transitions, the neighbor on the right finishes using the token and passes
the token further to the right:
{(((Ei−1, tok ,⊥), (Ti,⊥,⊥)), ((Ti−1,⊥, tok), (Ti, tok ,⊥))),
(((Ei−1, tok ,⊥), (Hi,⊥,⊥)), ((Ti−1,⊥, tok), (Hi, tok ,⊥))),
((Ti−1, tok ,⊥), (Ti,⊥,⊥)), ((Ti−1,⊥, tok), (Ti, tok ,⊥))),
(((Ti−1, tok ,⊥), (Hi,⊥,⊥)), ((Ti−1,⊥, tok), (Hi, tok ,⊥))),
(((Ti,⊥, tok), (Ei+1, tok ,⊥)), ((Ti,⊥,⊥), (Ti+1,⊥, tok))),
(((Hi,⊥, tok), (Ei+1, tok ,⊥)), ((Hi,⊥,⊥), (Ti+1,⊥, tok))),
(((Ti,⊥, tok), (Ti+1, tok ,⊥)), ((Ti,⊥,⊥), (Ti+1,⊥, tok))),
(((Hi,⊥, tok), (Ti+1, tok ,⊥)), ((Hi,⊥,⊥), (Ti+1,⊥, tok))), }

The first four of these transitions can be abstractly written as
{(((Ei−1, tok ,⊥), (internStatei,⊥,⊥)), ((Ti−1,⊥, tok), (internStatei, tok ,⊥))),
((Ti−1, tok ,⊥), (internStatei,⊥,⊥)), ((Ti−1,⊥, tok), (internStatei, tok ,⊥)))}.
While the later four can be abstractly written
{(((internStatei,⊥, tok), (Ei+1, tok ,⊥)), ((internStatei,⊥,⊥), (Ti+1,⊥, tok))),
(((internStatei,⊥, tok), (Ti+1, tok ,⊥)), ((internStatei,⊥,⊥), (Ti+1,⊥, tok))), }.
The point being that the protocol components interact uniformly.

Global system correctness is given by a safety property that says a process
is in local state E if and only if the variable on its left has value tok , that
is the process ‘owns’ the token. This global correctness is written as a safety
property: for all i ∈ [0..k − 1]: AG(Ei → (xi = tok)). In addition there is a
global system responsiveness property, a liveness property, that says that every
process in internal state H eventually enters internal state E, which is ensured if
every process that requires the token eventually receives the token. This liveness
property is written as: for all i ∈ [0..k − 1] : AG(Hi → AFEi).

The process templates for each of the Pi in P are identical up-to renaming
of the processes and their neighbors. That is, there is an isomorphism mapping
the local process neighborhood of Pm onto the local process neighborhood of Pn
for any m,n ∈ [0..k− 1]. The isomorphism exists for all k ∈ N. We can calculate
the local reachable states of Pn for any given network P = ||i∈[0..k−1]Pi. Then
it becomes clear that the local reachable states of Pn in P = ||i∈[0..k−1]Pi are
isomorphic to the local reachable states of Pm in P = ||i∈[0..k′−1]Pi as long as
k′ ≥ k ≥ 3. Given the results from earlier sections [20] [17] this implies full
local symmetry amongst the processes in the networks, as long as the networks
contain at least 3 processes.

We note that the minimal model with three nodes means that each process
may be in each of the following states (T, tok ,⊥), (T,⊥, tok), and (T,⊥,⊥). In
models with less than 3 nodes, the state (T,⊥,⊥) is unreachable.

Consider the model P = ||i∈[0..2]Pi. We can draw the local model for P1, this
model has 7 local states. There are 2 interference transitions where P0 passes
the token to P1, 2 interference transitions where P1 passes the token to P2, and
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2 interference transitions when P2 passes the token to its right. Process P1 must
pass the token to P2 when P1 is in local state E, but P1 may pass the token
when P1 is in local state T .

(Similarly, we can calculate the local reachable states of P1 in the model
P = ||i∈[0..3]Pi and again see that P1 has 7 reachable local states. Based on
the fixed point calculation of reachable states, it is clear that as the size of the
models increase past 3, the number of reachable local states is fixed.)

Directly from analysis of the local reachable states of P1 in P = ||i∈[0..2]Pi
we see that if P1 is in local state E then x1 = tok . This implies that P1 satisfies
the specification AG(E1 → (x1 = tok)). Given the local symmetry between all
processes in the model we have that the program P = ||i∈[0..2]Pi satisfies for
all i ∈ [0..k − 1]: AG(Ei → (xi = tok)). Again, by local symmetry between
models we have that for k > 3, P = ||i∈[0..k−1]Pi satisfies for all i ∈ [0..k − 1] :
AG(Ei → (xi = tok)). Thus establishing that the protocol is in fact ‘safe.’

In order to show the liveness property for all i ∈ [0..k− 1] : AG(Hi → AFEi)
we proceed as follows: first, show that the system satisfies the invariant that there
is exactly 1 token in the system. Then show every process that has the token
eventually passes the token to the neighbor on the right. Using the global system
fairness assumption that each process executes infinitely often we can chain these
proofs together to conclude that for any particular process Pn: AG(Hn → AFEn)
holds which by local symmetry implies for all i ∈ [0..k − 1] : AG(Hi → AFEi).

To that end we first show the global invariant that : it is always the case that
there is exactly one token in the system. Again, we prove the invariant locally as
follows: (i) notice that the global initial condition guarantees that the invariant
holds in the initial state; (ii) for all transitions of process P (n), if there was a
single token prior to the transition, there is a single token after the transition.
(ii) follows from a local inductive analysis, by examination of each transition
of Pn. Internal transitions of Pn do not create tokens, or destroy them. Joint,
interference transitions from Pn−1 to Pn transfer the token at Pn−1 to Pn, but
again tokens are neither created nor destroyed. Further, the inductive hypothesis
implies that Pn did not have a token before the transfer of the token from Pn−1.
Joint interference transitions from Pn to Pn+1 transfer the token from Pn to
Pn+1 where it must be that since Pn had the token to transfer then Pn+1 did
not have the token. Since the analysis looks at all possible transitions of Pn the
invariant holds locally. Again by local symmetry the combined local invariants
show the global invariant.

Analyzing the reachable states of P1 shows that when x1 = tok then P1

eventually passes the token to P2. This happens as follows: (i) if Pi is in local
state E then the only transition available for P1 is to transit to T , and in so doing
pass the token to P2. If P1 is in local state H and x1 = tok then P1 must perform
the following actions. First, P1 transits from H to E during which the variables
x1 and x2 do not change. Then, in local state E, P1 passes the token to P2. In the
case where P1 is in local state T , then P1 executes two possible transitions. P1

does a self-loop from T to T but at the same time passes the token to P2 or, P1

transits to H with the token remaining in x1. In either case, P1 eventually passes

21



the token to P2. Therefore, the local invariant AG((x1 = tok) → AF(x1 = ⊥))
holds of the local states of the P1. By local symmetry, this implies that: for all
i: AG((xi = tok)→ AF(xi = ⊥)).

Notice that as a side condition of the previous argument it also shown that
AG((H ∧ (x1 = tok))→ AFE), a fact that follows from a local invariant analysis
of the states of P1. Local symmetry then proves that for all i: AG((Hi ∧ (xi =
tok))→ AFEi).

The above facts, including the topological assumption that the processes
operate on a ring structure, that a process in state H with the token eventually
enters state E, and that a process with the token eventually passes the token to
the neighbor on the right, in conjunction with the assumption of global fairness,
that every processes executes its local program infinitely often, imply: for all
i ∈ [0..k − 1]: AG(Hi → (AFEi)), for all k ∈ N.

We now consider the cost of the analysis of the safety property and the
liveness property. For any fixed network, P = ||i∈[0..k−1]Pi, analysis of the global
safety properties discussed above costs time at most cubic in the size of the
reachable states of P1. This follows from the fact that the states of P1, that is θ∗1
are isomorphic to θ∗n for all n ∈ [0..k − 1] for all k ≥ 3. Analysis of the liveness
property can again be performed in time cubic in the size of θ∗1 as the process
of doing this analysis boils down to the analysis of θ∗n as well as the analysis of
several local CTL formulae, which can, using the results of the earlier sections,
and standard µ-calculus model checking algorithms be done in time linear in the
size of the local state space and length of the CTL formulae involved.

8.4 Multiple Tokens

We briefly sketch the application of the above proof technique to models with
several tokens. We point out that, in general, analysis of token passing models
on ring networks is undecidable when the tokens may take on boolean values
and the number of tokens in the network is not bounded. In the current work,
we restrict attention to parametrized systems with a fixed number of tokens that
do not cary values. In the next example we show that parametrized systems of
rings with two tokens are effectively decidable.

Consider a non-deterministic, token-ring example: P = ||i∈[0..k−1]Pi with k
processes. Each process, Pi = (Ii, Ti, xi, xi+1), is given as follows: the internal
states of Pi range over {T, H, E} and the variables xi and xi+1 range over {⊥, tok}.
Process and variable identifiers range over [0..k−1] where addition and subtrac-
tion are assumed to be done mod k. In this way, as i ranges over [0..k − 1],
processes Pi and Pi+1 share variable xi+1. The initial condition for each Pi is:
Ii = T ∧ ((xi = ⊥ ∧ xi+1 = ⊥) ∨ (xi = tok ∧ xi+1 = ⊥) ∨ (xi = ⊥ ∧ xi+1 =
tok)) ∨ (xi = tok ∧ xi+1 = tok)). In addition, P = ||i∈[0..k−1]Pi operate under
the global initial condition that there are exactly two tokens in the network:
∃i ∈ [0..k − 1] : ((xi = tok) ∧ ∃j ∈ [0..k − 1] : ((xj = tok) ∧ (j 6= i) ∧ (∀ι ∈
[0..k − 1] : (j 6= ι) ∧ (i 6= ι)→ (xι = ⊥)))).

Processes execute asynchronously with the following non-deterministic tran-
sition relation for Pi given by pairs of local states, each state of the form
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(internalstate, xi, xi+1). In this way we describe the internal transition relation
for Pi with the effect on the local state of Pi. Ti = {
((T,⊥,⊥), (T,⊥,⊥)),
((T,⊥, tok), (T,⊥, tok)),
((T, tok ,⊥), (T,⊥, tok)),
((T, tok ,⊥), (H, tok ,⊥)),
((T,⊥,⊥), (H,⊥,⊥)),
((T,⊥, tok), (H,⊥, tok)),
((H,⊥,⊥), (H,⊥,⊥)),
((H,⊥, tok), (H,⊥, tok)),
((H, tok ,⊥), (E, tok ,⊥)),
((E, tok ,⊥), (T,⊥, tok))},
((T, tok , tok), (T, tok , tok)),
((H, tok , tok), (E, tok , tok)),
((E, tok , tok , (E, tok , tok))}

The reachable states now include local states for each Pi where the shared
variables at Pi contain both system tokens. In order to deal with these possi-
bilities, Pi cannot pass the token on the left if the shared variable on the right
already contains the token.

The interference transitions are given below, they are similar to the inter-
ference transitions in the case with only a single token, but now we add cases
where interference occurs in the case where there are multiple tokens.
{(((Ei−1, tok ,⊥), (Ti,⊥,⊥)), ((Ti−1,⊥, tok), (Ti, tok ,⊥))),
(((Ei−1, tok ,⊥), (Hi,⊥,⊥)), ((Ti−1,⊥, tok), (Hi, tok ,⊥))),
((Ti−1, tok ,⊥), (Ti,⊥,⊥)), ((Ti−1,⊥, tok), (Ti, tok ,⊥))),
(((Ti−1, tok ,⊥), (Hi,⊥,⊥)), ((Ti−1,⊥, tok), (Hi, tok ,⊥))),
(((Ti,⊥, tok), (Ei+1, tok ,⊥)), ((Ti,⊥,⊥), (Ti+1,⊥, tok))),
(((Hi,⊥, tok), (Ei+1, tok ,⊥)), ((Hi,⊥,⊥), (Ti+1,⊥, tok))),
(((Ti,⊥, tok), (Ti+1, tok ,⊥)), ((Ti,⊥,⊥), (Ti+1,⊥, tok))),
(((Hi,⊥, tok), (Ti+1, tok ,⊥)), ((Hi,⊥,⊥), (Ti+1,⊥, tok))),
(((Ei−1, tok ,⊥), (Ti,⊥, tok)), ((Ti−1,⊥, tok), (Ti, tok , tok))),
(((Ei−1, tok ,⊥), (Hi,⊥, tok)), ((Ti−1,⊥, tok), (Hi, tok , tok))),
((Ti−1, tok ,⊥), (Ti,⊥, tok)), ((Ti−1,⊥, tok), (Ti, tok , tok))),
(((Ti−1, tok ,⊥), (Hi,⊥, tok)), ((Ti−1,⊥, tok), (Hi, tok , tok))),
(((Ti, tok , tok), (Ei+1, tok ,⊥)), ((Ti, tok ,⊥), (Ti+1,⊥, tok))),
(((Hi, tok , tok), (Ei+1, tok ,⊥)), ((Hi, tok ,⊥), (Ti+1,⊥, tok))),
(((Ti, tok , tok), (Ti+1, tok ,⊥)), ((Ti, tok ,⊥), (Ti+1,⊥, tok))),
(((Hi, tok , tok), (Ti+1, tok ,⊥)), ((Hi, tok ,⊥), (Ti+1,⊥, tok))),
(((Ei, tok , tok), (Ti+1, tok ,⊥)), ((Ei, tok ,⊥), (Ti+1,⊥, tok))),
(((Ei, tok , tok), (Ei+1, tok ,⊥)), ((Ei, tok ,⊥), (Ti+1,⊥, tok))), }

Again, we can see that the process interference is uniform. Similarly, global
correctness and liveness remain as: for all i ∈ [0..k − 1]: AG(Ei → (xi = tok))
and for all i ∈ [0..k − 1] : AG(Hi → AFEi).

We note that the minimal model with two tokens has 4 processes, and there
are 10 reachable local states include (T, tok , tok), (H, tok , tok), (E, tok , tok).
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A direct analysis of the reachable local states shows that the processes are
locally safe and since the processes are locally symmetric, the protocol itself is
globally safe. That is P1 satisfies: AG(E1 → (x1 = tok)) and therefore: for all
i ∈ [0..k − 1]: AG(Ei → (xi = tok)) is satisfied globally.

Showing that process P1 satisfies AG((H∧(x1 = tok))→ AFE), and therefore
that for all i: AG((Hi ∧ (xi = tok)) → AFEi) again follows similarly to the
case with one token. In this case we show that the global system satisfies the
invariant that there are always exactly two tokens in the system state space. This
is shown by a local, inductive proof that tokens are never created or destroyed.
Combined with a local proof that processes always eventually make progress
moving tokens from left to right, and that any each process makes transitions
infinitely often gives a proof of the liveness requirement. Again, the cost of the
combined proof steps is polynomial in the size of the local state space of a single
process neighborhood.

8.5 Multiple Equivalence Classes

Consider a ring P = ||i∈[0..3]Pi where the P0 and P2 are given color red and P1

and P3 are given color black.
In this case, the ring has rotational symmetries ι, (0 2)(1 3). Basically, ro-

tations that map red nodes to red nodes and that map black nodes to black

nodes.
However, this ring does not have transitive symmetry because a red node

cannot be mapped to a black node (and vice versa). We point out, however,
that for a ring of this structure, an even number of nodes, alternating red and
black colors, does have significant local symmetry. In fact, for a k node ring,
with k an even integer, there are exactly two local equivalence classes. For any
fixed sized ring, the red nodes form one equivalence class, and the black nodes
form the second equivalence class. Thus local analysis can be done on a fixed
size model, which is polynomial in the size of the local models of the red and
black nodes.
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