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Abstract. The Parameterized Compositional Model Checking Problem
(PCMCP) is to decide, using compositional proofs, whether a property
holds for every instance of a parameterized family of process networks.
Compositional analysis focuses attention on the neighborhood structure
of processes in the network family. For the verification of safety prop-
erties, the PCMCP is shown to be much more tractable than the more
general Parameterized Model Checking Problem (PMCP). For exam-
ple, the PMCP is undecidable for ring networks while the PCMCP is
decidable in polynomial time. This result generalizes to toroidal mesh
networks and related networks for describing parallel architectures. De-
cidable models of the PCMCP are also shown for networks of control
and user processes. The results are based on the demonstration of com-
positional cutoffs; that is, small instances whose compositional proofs
generalize to the entire parametric family. There are, however, control-
user models where the PCMCP and the PMCP are both undecidable.

1 Introduction

Distributed network protocols and shared-memory concurrent programs are of-
ten parameterized by the number of processes or threads in a configured instance.
State explosion generally limits model checking to protocol instances that are
much smaller than those that arise in practice. It becomes important, there-
fore, to consider the question of determining “once and for all” if the entire
unbounded family of instances satisfies a specification. This is referred to as
the parameterized model checking problem (PMCP). The problem is, however,
generally undecidable [5].

Faced with this obstacle, much of the work to date on the PMCP has explored
two avenues. One is to restrict the structure of processes or their communication
patterns in order to obtain decidability. Such restrictions, however, can limit ap-
plications to real protocols. The second is to analyze each protocol individually,
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with manually chosen abstractions applied to the global state space. In con-
trast, we explore a new and different form of parameterized verification, which
is based instead on restricting the shape of a correctness proof. The formulation,
which is referred to as the parametric compositional model checking problem
(PCMCP), asks whether a parameterized family has a compositional proof that
the specification is met for all instances.

Compositional analysis focuses the technical problem away from that of rep-
resenting global states to one of representing local, neighborhood states. One
might intuitively expect this to be easier to do. Indeed, our results show that
the PCMCP is much more tractable than the PMCP. The following results are
for the verification of quantified safety properties. To obtain precise statements
of complexity, the internal state space of a process is assumed to be finite, and
independent of the parameter n, the number of processes in an instance.

1. For regular network families, such as the ring, torus, and cube-connected
cycles, the PCMCP is decidable in polynomial time. In contrast, the PMCP
is generally undecidable and decidable only under strong restrictions [9].

2. For the synchronous control-user networks of German and Sistla [13], the
PCMCP is decidable in polynomial time. In contrast, deciding the PMCP
requires exponential time in the size of the processes.

3. For asynchronous shared-memory networks from [11], the PCMCP is decid-
able in polynomial time. The PMCP is decidable but coNP-complete.

4. For distributed memory control-user networks with an index-oblivious con-
trol process (defined later), the PCMCP is decidable in polynomial time.
Decidability of the PMCP is unknown.

The positive results are based on symmetry arguments that establish the exis-
tence of compositional cutoffs: small instances whose compositional verification
induces invariants that hold for the entire family. However, the PCMCP is not
always decidable: we show that for a control-user system with a non-oblivious
controller, both the PMCP and the PCMCP are undecidable.

As this is a new formulation of parameterized verification, we discuss some of
the implications in more depth. First, the notion of modular proof is of intrinsic
interest, practically as well as mathematically. In practice, several protocols have
modular proofs, a recent example is given by a verification of the AODVv2 rout-
ing protocol by the authors [24, 25]. Mathematically, modular proofs (e.g., in the
Owicki-Gries or assume-guarantee sense) are interesting as they limit the state
information which is correlated across processes. These limits make it possible
to find neighborhood symmetries which collapse the verification for an entire
family on to a smaller cutoff instance. The topology of neighborhoods is usually
less complicated than that of the entire graph, which simplifies verification.

Secondly, the PCMCP is an approximate form of the PMCP and could be
used as such. That is, if the PCMCP answer is “yes” (there is a modular proof),
then the PMCP answer must also be “yes”. Given the generally lower complex-
ity of the PCMCP, it is advantageous to try to answer that question before
attempting the PMCP. In this regard, the PCMCP is a new kind of approx-
imation: methods for approximating the PMCP, such as counter abstraction,
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abstract the global state space; while the PCMCP, in contrast, restricts the
structure of the proof. (Other restrictions on proof structure, such as bounding
proof depth, might also be worth consideration.)

Finally, the cutoff results and modularity of the PCMCP could form a new
basis for the synthesis of parameterized protocols, analogous to the application
of cutoff theorems for the PMCP for that purpose (cf. [17]).

2 Preliminaries

We base the PCMCP on the formulation of compositional reasoning for in-
variance by Owicki-Gries [26] and Lamport [19] (equivalently “Modular” or
“Assume-guarantee” reasoning). A compositional invariant is one where each
process in a process network has its own invariant assertion, which is also guar-
anteed to be preserved under the actions of neighboring processes. This immunity
to neighborhood “interference” (as it is called) ensures that the local per-process
invariants combine to form a global program invariant.

Processes and Inductive Invariants A process P is defined by a tuple
(V, I, T ), where V is a set of (typed) variables which induce a state space S
that is the set of all possible valuations to V ; I is a subset of S, the initial set of
states, represented in logic by a predicate I(V ); and T is a transition relation,
a subset of S × S, represented by a predicate T (V, V ′), where V ′ is a copy of V
describing a valuation to V in the next state. The transition relation and initial
condition induce a set of reachable states (i.e., states which are obtained from
an initial state through a sequence of transitions). An invariant is a predicate
(i.e., a set of states) which holds of all reachable states.

An inductive invariant is a predicate that includes all initial states and is
closed under the transition relation. That is3, θ is an inductive invariant of
P = (V, I, T ) if (1) θ includes all initial states, i.e., [I(V ) ⇒ θ(V )], and (2) θ is
closed under transitions, i.e., [θ(V ) ∧ T (V, V ′) ⇒ θ(V ′)]. To show invariance
of a predicate f , one determines an inductive invariant θ which is a subset of f ,
i.e., [θ(V ) ⇒ f(V )]. In the sequel, we focus on inductive invariants.

Interleaved Composition of Processes An asynchronous, interleaved compo-
sition of processes P1 = (V1, I1, T1) and P2 = (V2, I2, T2), written P = P1 //P2,
is defined as the process P = (V, I, T ), where:

– The set of variables, V , is V1 ∪ V2. The set of shared variables is V1 ∩ V2.
– I, the set of initial states, is a predicate on V such that its projection on V1

is in I1 and the projection on V2 is in I2.
– The transition relation T interleaves transitions of P1 and P2, where tran-

sitions of one process leave the internal variables of the other process un-
changed. That is, T (V, V ′) = (T1(V1, V

′
1) ∧ unch(V \V1)) ∨ (T2(V2, V

′
2) ∧

unch(V \V2)). The predicate unch(W ) says that the values of all variables in
the set W are unchanged, that is, it is the predicate (

∧
w : w ∈W : w′ = w).

3 The notation is from Dijkstra-Scholten [8]: [ϕ] means that ϕ is valid.
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This definition extends to compositions P1 //P2 . . . // PN in a similar manner.

Compositional Invariants There are several formulations of compositional
reasoning, but all share the crucial characteristic that the reasoning centers
on a process and its neighborhood. In the formulation we use here, there is a
predicate, θi, for each process Pi; this is a set of local states of Pi. Each local
state can be written in the form (x, y), where x is an internal state of Pi and y is
the state of the neighborhood of Pi. The neighborhood of a process is the set of
variables which are shared between the process and other processes. (E.g., the
neighborhood of a node i in a ring network of size n is defined by the variables
shared between that node and its left neighbor, with index (i−1)modn, and its
right neighbor, with index (i+ 1)modn.)

In a network of processes, the neighborhoods of processes overlap (e.g., in
a ring, nodes i and (i + 1)modn share state). Hence, the natural formulation
of the constraints on the θ’s is through mutual induction, often referred to as
(syntactically) “circular reasoning”. The constraints which the {θi} predicates
must satisfy to be called a compositional invariant are as follows.

– (init) θi includes the initial states of Pi. That is, [I(V ) ⇒ θi(Vi)], and
– (step) θi is inductive for Pi. That is, [θi(Vi) ∧ Ti(Vi, V

′
i ) ⇒ θi(V

′
i )], and

– (non-interference) the actions of a neighboring process, Pj , do not falsify θi.
That is, [θi(Vi) ∧ θj(Vj) ∧ Tj(Vj , V

′
j ) ∧ unch(V \Vj) ⇒ θi(V

′
i )].

The following theorem connects compositional to global invariance:

Theorem 1 If the set {θi} is a compositional invariant, then (∀i : θi) is a global
inductive invariant of the program ( // i : Pi).

Compositionality as a Fixed Point. Let Fi be the disjunction of the predicates
I, (θi ∧ Ti), and (θi ∧ θj ∧ Tj ∧ unch(V \Vj)) for all neighbors j of i. The
compositional constraints can be rearranged into the set of validities {[Fi(θ) ⇒
θi]}. Considering θ = (θ1, θ2, . . .) as a vector in the predicate lattice ordered by
implication, Fi is monotone in θ. By the Knaster-Tarski theorem, there is a least
fixpoint solution, which defines the strongest compositional invariant. This is
the limit of the sequence X0 = (false, false, . . .), Xi+1 = (F1(Xi), F2(Xi), . . .).
For finite-state processes, the limit can be computed in polynomial time in the
number of processes and in the size of the state spaces of each process.

Proving Invariance We focus on quantified assertions of the form (∀i : ξ(i)),
where ξ(i) is a predicate on the local state of process i. To compositionally
prove this assertion to be an invariant, one checks the constraints:

– (adequacy) θ(i) is a subset of ξ(i), for all i, written as [θ(i) ⇒ ξ(i)].

It follows that [(∀i : θ(i)) ⇒ (∀i : ξ(i))]. As (∀i : θ(i)) is a global inductive
invariant of the program (by Theorem 1), (∀i : ξ(i)) is a program invariant.
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Parameterized Compositional Invariants A compositional invariant for a
parameterized family is defined using an unbounded set of compositional con-
straints. There is a θ-component for each node i in each network N of the family;
this is denoted as θ(i,N). The components must meet the previously defined con-
straints for compositional invariance:

– (init) θ(i,N) includes the initial states of P(i,N),
– (step) θ(i,N) is inductive for P(i,N), and
– (non-interference) the actions of a neighboring process (j,N) in network N

do not falsify θ(i,N).

Although the vector θ is unbounded, there is still a strongest fixpoint solution.
As processes from different instances do not influence one another, this fixpoint is
the collection of strongest fixpoints for each instance. The decidability results in
this paper are obtained by collapsing the unbounded collection of constraints to a
bounded set through the identification of local (i.e., neighborhood) symmetries.
This leads to the concept of a compositional cutoff.

Compositional Cutoff Several of the network families examined in this paper
have the following property: there is a limit, say K, such that the strongest
compositional invariants in networks of size greater than K are identical (up
to neighborhood isomorphism) to the strongest compositional invariants in net-
works of size at most K. We then refer to K as a compositional cutoff.

As a concrete illustration, any pair of nodes in the family of ring networks
are locally symmetric – each has one neighbor to the left and one to the right –
so that the strongest compositional solutions are isomorphic across the family,
and the cutoff instance for the family is the smallest ring instance, of size 2.

3 Rings, Tori and other Regular Networks

We recall results connecting compositional verification to local symmetry given
in [22] and use those to show that the PCMCP is decidable in polynomial time
for arbitrary protocols on rings, tori and other regular networks.

Networks A network is formally defined as a pair (N,E) where N is a set of
nodes and E is a set of edges. Processes are placed on nodes, and shared state on
edges. Each edge, e, is associated with a set of input nodes, ins(e) ⊆ N and a set
of output nodes, outs(e) ⊆ N . For a node n, the set In(n) = {e | n ∈ outs(e)}
describes the input edges to n and Out(n) = {e | n ∈ ins(e)} describes the
output edges for n. The notation InOut(n) represents the union of those sets
and it forms the neighborhood of n. We say that node m points to node n
(written m ∈ pt(n)) if there is an output edge of m that is also in InOut(n).

Symmetry Groupoids Two nodes m and n are locally similar, written m 'IO

n, if there is a bijective function β that maps In(m) to In(n), and maps Out(m)
to Out(n). I.e., the neighborhood of m is isomorphic to the neighborhood of n
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through β. Tuples of the form (m,β, n) where β is a witnessing bijection for
m 'IO n, are called local symmetries. Following [14], we call this the symmetry
groupoid4 of the network and denote it by GIO.

A groupoid induces an orbit relation: nodes m and n are related if there is a
groupoid element (m,β, n). From the groupoid properties, this is an equivalence
relation. The orbit relation for the symmetry groupoid is 'IO.

For a local symmetry (m,β, n), the isomorphism β maps the neighborhood
of m onto the neighborhood of n. We now lift this definition on structure to
include the processes running at m and n. Thus β maps a local state (x, y) of
m to a local state (x, β(y)) of n (recall that x is the internal state and y is the
neighborhood state), and it similarly maps a local transition ((x, y), (x′, y′)) of m
to a local transition ((x, β(y)), (x′, β(y′))) of n. This is lifted to sets of states and
transitions in the standard way. An assignment of processes to nodes is valid for
B ⊆ GIO if it respects the local symmetries in B: that is, for every (m,β, n) ∈ B,
it should hold that [Tn ≡ β(Tm)] and [In ≡ β(Im)].

Balance Intuitively, as the compositional constraints for a node refer only to
its neighbors, one might expect that nodes that are locally symmetric have iso-
morphic invariants. This is not quite true: it is also necessary for the neighbors
related by the isomorphism to be (recursively) locally symmetric. That is cap-
tured in a bisimulation-like definition of balance.

Definition 1 (Balance) ([22, 14]) A balance relation B is a set of local sym-
metries satisfying the following properties. For any (m,β, n) in B:

1. Its inverse, (n, β−1,m), is also in B, and
2. For any j which points to m, there is k which points to n and δ such that

(a) (j, δ, k) is in B and (b) β and δ agree on common edges. I.e., for every
edge f in InOut(j) ∩ InOut(m), δ(f) = β(f).

We say that a vector θ of per-process predicates respects a balance relation
B if for all (m,β, n) in B, [θn ≡ β(θm)]. We can now state the main theorem
connecting balance and local symmetry to compositional reasoning.

Theorem 2 (Symmetry Reduction) [22] Given a balance relation, B, and a
valid program assignment, the strongest compositional invariant θ∗ respects B.

That is, balanced nodes have isomorphic strongest compositional invariants.
Hence, it suffices to find a balance relation that is a groupoid (there is always one
such, the greatest balance relation), pick one representative in each equivalence
class of its orbit and compute an invariant for that representative. The invariants
for all other nodes in the class will be isomorphic by Theorem 2.

4 A groupoid is roughly a group with a partial composition operation. The network
symmetry groupoid meets the conditions required of a groupoid: (1) (m, ι,m) is a
symmetry for each node m, where ι is the identity map; (2) if (m,β, n) is a symmetry
so is the inverse (n, β−1,m); and (3) the composition of symmetries (m,β, n) and
(n′, γ, o), given by (m, γβ, o) if n = n′, is also a symmetry.
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For example, ring networks have only O(n) global symmetries [10] [6] which
limits global state-space reduction. However, any two ring nodes are locally sym-
metric and, in fact, balanced. Thus, it suffices to compute a compositional in-
variant for a single node, the others will be isomorphic. To generalize this obser-
vation, we recall a result connecting global symmetry with balance.

Theorem 3 ([22]) For a network with global symmetry group G, the set Local(G)
= {(m,β, n) | β ∈ G ∧ β(m) = n} is a balance relation and a groupoid.

A network with a transitive global symmetry group of automorphisms (i.e.,
one where any pair of nodes is connected by an automorphism) is called vertex-
transitive. We have the following corollary.

Corollary 1 In a vertex-transitive network, any pair of nodes is balanced and
there is a single equivalence class.

Proof: Consider any pair of nodes m,n. As the network has a transitive sym-
metry group G, there is an automorphism β in G such that β(m) = n. In that
case, the triple (m,β, n) is in Local(G) by definition. As Local(G) is a balance
relation, m and n are balanced and, as it is a groupoid, the orbit relation is
an equivalence, so that m and n are in the same equivalence class of Local(G).
Hence, there is a single equivalence class. EndProof.

This corollary implies that for a vertex-transitive network, it suffices to com-
pute a compositional invariant for a single representative node in order to ob-
tain the compositional invariant for all other nodes. Such networks are common:
rings, tori, toroidal meshes, hypercube and cube-connected-cycles (CCCs) all
have transitive symmetry groups. In order to extend this symmetry reduction to
a whole family of networks, say that a family of process networks, N , is uniform
if (1) each network in the family is vertex-transitive, (2) for every pair (M,N) of
networks, there is a pair of nodes, m ∈M and n ∈ N , that are locally symmet-
ric, and (3) nodes that are locally symmetric are assigned isomorphic processes,
whose state space is independent of network size. We say that a quantified asser-
tion (∀n,N : n ∈ N : ξ(n,N)) is uniform if its components are locally symmetric.
I.e., for any pair of nodes (m,M) and (n,N) which are locally symmetric through
β, it is the case that [β(ξ(m,M)) ≡ ξ(n,N)].

Theorem 4 For a uniform family of networks, and a uniform quantified asser-
tion (∀n,N : n ∈ N : ξ(n,N)), the PCMCP is decidable in polynomial time.

Proof: By condition (1) of uniformity and Corollary 1, any pair of nodes in a
network N of the family are balanced. From condition (2), any pair of nodes in
the family are locally symmetric. To see this, consider a node n in network N
and m in network M . Then n (resp., m) is locally symmetric to all nodes in N
(resp., M), and condition (2) says that there is a pair of nodes from M and N
that are locally symmetric. Thus, m and n are locally symmetric by transitivity.

That, in turn, implies that all nodes in the family have isomorphic neighbor-
hoods, of a size which is a constant independent of the network size. Moreover,
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for a network M , its compositional invariant can be computed on the neigh-
borhood of a representative node m ∈ M , and similarly for network N and its
representative, n ∈ N . However, as m and n have isomorphic neighborhoods and
identical processes by condition (3), those invariants are isomorphic. Therefore,
it suffices to compute the strongest compositional invariant on a single represen-
tative node from a single network of the family. As the size of the neighborhood
is constant, this computation is in polynomial time in the local state space of the
process on the node. Hence, the strongest per-node compositional invariant can
be computed in polynomial time. As this is the strongest assertion, the adequacy
tests succeed for some invariant if, and only if, it succeeds for the strongest one.

Consider the unbounded number of adequacy tests, each having the form
[θ(n,N) ⇒ ξ(n,N)]. Let (r,R) be a representative node for the family. It suffices
to test whether [θ(r,R) ⇒ ξ(r,R)]. Assuming this holds, consider any node (n,N),
and let β be the local symmetry from (r,R) to (n,N). From the symmetry
properties, it follows that θ(n,N) ≡ β(θ(r,R)) ⇒ β(ξ(r,R)) ≡ ξ(n,N), so
that [θ(n,N) ⇒ ξ(n,N)] is also a validity. As the invariant computation and the
adequacy test can be performed on the representative node in polynomial time,
the PCMCP is decidable in polynomial time. EndProof.

This rather abstract result has a number of practical consequences. It implies
that the PCMCP is polynomial-time decidable for ring, tori, toroidal mesh,
and the hypercube-like cube-connected cycles (CCC) networks. The hypercube
networks are excluded as the degree of a node increases as log(k) with network
size k. We show below that the other networks meet the uniformity condition of
the theorem. Note that for each of these networks, the PMCP is undecidable,
which follows from the basic result on ring networks by Apt and Kozen [5].

Ring Networks The symmetry group of a ring network is transitive, as any
node can be mapped to any other by an appropriate circular rotation. Fur-
thermore, the nodes with index 0 in ring networks of size m and n are locally
symmetric. Hence, the family of bidirectional (and unidirectional) ring networks
is uniform and its PCMCP is decidable in polynomial time.

Mesh/Toroidal Networks Our next examples of regular topologies are gen-
eralizations of the mesh structure. For instance, the N (k, 2) meshes are the tori
formed by gluing together two k length cycles and wrapping the rings into a
cycle of length two at every interconnection point.

This parameterized topology can be extended for any k, a ∈ N, where 0 < k
and 0 < a so that N (k, a), is the parameterized set of wrap-around toroidal
meshes with a ring like sections, each section having k nodes, each node con-
nected to 4 neighbors. These mesh networks are examples of torus interconnec-
tion network architectures.

Here we generalize these structures to allow regular, but fixed rectangular
interconnection networks. Our first example is that of a wrap around, right
rectangular toroidal mesh, that contains arbitrary, parameterized numbers of
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nodes. For example, in N (k1, k2, k3), the ki range over positive elements of N.
For any fixed k1, k2, and k3, there are k3 toroidal mesh structures with k1k2
nodes, stacked on top of each other. For all a ∈ [0..k1 − 1], b ∈ [0..k2 − 1],
c ∈ [0..k3 − 1], node (a, b, c) of mesh c is connected to nodes (a, b, c + 1) and
(a, b, c − 1) (where addition and subtraction are modulo k3). Within mesh c,
the nodes are connected in the standard way, node (a, b, c) has neighbors (a +
1, b, c), (a− 1, b, c), (a, b+ 1, c), and (a, b− 1, c), where the addition, respectively
subtraction, are modulo k1, respectively k2. As in the tori of early sections we
require that they be wrap-around, so that, for instance, ((k1 − 1, b, c), (0, b, c))
is an edge in (N(k1, k2, k3), E). Note that for any fixed k1, k2 there are an
unbounded number of right rectangular tori (N(k1, k2, k3), E).

Theorem 5 Every wrap-around toroidal mesh network, (N(k1, k2, k3), E), is
vertex transitive.

Proof Sketch: Fix any of the two dimensions. Letting the third dimensional
variable vary, the edge set of (N(k1, k2, k3), E) forms a ring. For each pair of fixed
values of the two chosen dimensions, a ring is formed by the varying third dimen-
sion. Notice that for any two pairs of values the two rings are disjoint. In each of
the different rings, the nodes are related by cyclic permutations. By keeping all
other dimensional relationships constant, the cyclic permutations form automor-
phisms of the rings, and therefore the structure as a whole. Sequential compo-
sition of the ring-like automorphisms from the different dimensions, again form
automorphisms of the wrap-around, right rectangular toroidal mesh structure.
Thus for any (a, b, c) and (a′, b′, c′) in N(k1, k2, k3) there is an automorphism,
π, of (N(k1, k2, k3), E) such that π(a, b, c) = (a′, b′, c′). EndSketch.

From the definition of the mesh, each node in an instance, regardless of the
instance size, has degree 6. Hence, for a uniform family of mesh networks, all
nodes in different instances are locally symmetric. Therefore it follows that the
PCMCP is decidable, in polynomial time, for uniform families of mesh/toroidal
networks of the form N (k1, k2, k3). Similarly, the PCMCP is decidable in poly-
nomial time for uniform families of mesh/toroidal networks of the form N (k1, a)
for any fixed a. These results also generalize to uniform families of polytopes of
the form N (k1, . . . , ka), for fixed a.

Cube-Connected Cycles (CCC) CCC [28] are a parameterized topology used
to describe interconnections of processors in parallel computing networks.

For k ≥ 3 the CCC (k) has k2k nodes. The nodes are indexed by pairs (x, y)
where 0 ≤ x < 2k and 0 ≤ y < k. Each node (x, y) is connected to 3 neighbors:
(x, (y + 1)mod k), (x, (y − 1)mod k), and (x ⊕ 2y, y). Here, ⊕ denotes bitwise
exclusive-or on binary numbers. Nodes (x, (y + 1)mod k) and (x, (y − 1)mod k)
are on the same cycle as node (x, y), while node (x⊕ 2y, y) is on a neighboring
cycle. Intuitively, a CCC is obtained by taking a hypercube and expanding each
node into a cycle, so that each node has only a constant out degree of 3.

Theorem 6 ([3]) CCC (k) is vertex-transitive for all k.
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From the definition of the CCC, each node in an instance, regardless of
the instance size, has degree 3. Hence, nodes in different instances are locally
symmetric. From this, it follows that the CCC is a uniform family of networks
and, therefore, its PCMCP is decidable in polynomial time.

4 Control-User Networks

There are several decidability results on the PMCP for networks with a single
distinguished process (the “control” process) and many identical “user” pro-
cesses; however, the decision procedures have high complexity. We show that
the PCMCP is decidable efficiently, in polynomial time in the size of these
processes for two such network types. We prove decidability for a new index-
oblivious model. However, we also give an undecidability result for a stronger
control process.

4.1 Synchronized Control-User Networks

We consider the synchronized (CCS-like) control-user formulation analyzed by
German and Sistla in their pioneering paper on parameterized verification [13].
For this formulation, deciding whether the control process satisfies an invariant
can be done in double exponential time in the sizes of the control and user
processes. We show that the PCMCP is decidable in polynomial time in the
sizes of these processes. German and Sistla also define a simpler model without
a control process and show that the PMCP is decidable in polynomial time, it
is interesting that their algorithm5 is identical to the least fixpoint computation
of the compositional invariant, and therefore solves the PCMCP as well.

The control and user processes synchronize with CCS semantics. That is, a
step of the system consists of either an internal step by one of the processes,
or a pairwise synchronization of two processes (i.e., control-user or user-user).
In the simplest compositional formulation, we define two invariants: θC , which
represents local states of the control process, C, and θU , which represents local
states of the user processes, U . A compositional calculation for an instance of
the system with N users would have invariants θUi , for each of the user processes
with i ranging over 1 . . . N . However, we choose a formulation where the user
processes in each instance, and across instances, are treated alike, and therefore
have a single invariant, θU . This choice is justified by a “compositional cutoff”
result based on local symmetries showing that the user invariants for instances
of size 3 or more are identical.

The states in θC are control states, while those in θU are user states. As
the system is built around pairwise synchronization, the interference rules are
slightly different from those given in Section 2.

– (Initial) All initial states of C are in θC , and all initial states of U are in θU ,

5 The algorithm in [13] considers checking Linear Temporal Logic formulae on net-
works of processes, in contrast we restrict attention to checking safety properties.
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– (Step) If c ∈ θC and (c, τ, d) is an internal transition of C, then d ∈ θC .
Similarly, if u ∈ θU and (u, τ, v) is an internal transition of U , then v ∈ θU .

– (Interference) If c ∈ θC and u ∈ θU and (c, a, d) and (u, a, v) are transitions in
C and U respectively, then d ∈ θC and v ∈ θU . This represents control-user
interference. A similar clause applies to user-user interference.

Theorem 7 The PCMCP for the synchronous control-user system is decidable
in polynomial time for uniform quantified assertions.

Proof: The strongest (θC , θU ) pair can be calculated by turning the compo-
sitional rules into a simultaneous least fixpoint formulation, as described in
Section 2, and iterating until convergence. The computation time is polyno-
mial in the number of states of C and of U . The target invariant has the form
(∀n,N : n ∈ N : ξ(n,N)), which is uniform by assumption. With the strongest
compositional invariant in hand, it suffices to check adequacy for a representative
user node (r,R), i.e., to check [θU ⇒ ξ(r,R))], which can be done in polyno-
mial time. This suffices as, by the cutoff theorem, all other user nodes have
isomorphic values of θU , and ξ is invariant under isomorphism by the uniformity
requirement. Hence, the PCMCP is decidable in polynomial time. EndProof.

We now consider a different control-user model analyzed in [11]. Here, a
system has a single control process (a “leader” in [11]) and an unbounded number
of user processes (the “contributors”), that communicate only by reading and
writing to a shared memory. There are no locks or atomic test-and-set actions.
If the control and user processes are finite state, the PMCP is decidable and is
co-NP complete [11]. In contrast, using symmetry arguments similar to those
used above, the PCMCP is decidable in polynomial time.

Theorem 8 The PCMCP is decidable in polynomial time for the model of asyn-
chronous, shared-memory control-user networks and uniform assertions.

4.2 Asynchronous, Distributed Memory Networks

We consider a control-user network more akin to a client-server system. The
control maintains a finite, per-user state. Each user interacts with the control
process through their mutually shared state, but not directly with other users.
The network structure looks like a star, the control at the center and each user
at the end of a spoke, with the shared control-user state along the spoke6.

Within this general structure, many variations are possible based on the
capabilities given to the controller. We show that the PCMCP itself is undecid-
able for a rather reasonable variation. The control process has two capabilities.
First, it can perform a universal (dually, existential) test on its adjacent edges

6 Unlike the other cases, the local state space of the control process is unbounded as
it has the form (c, x) where c is its internal state (which is bounded), and x is the
vector of neighboring edge-values, which can have arbitrary length.
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of the form (∀i : f(ei)) (dually, (∃i : f(ei))). Second, it can carry out a non-
deterministic guarded command on its edges, of the form ([]i : f(ei)→ ei := v).
This chooses an edge-state ei for which f(ei) is true, and updates it to hold
a value v. The command blocks if no such edge can be found. Notice that all
guards and actions are fully symmetric. The user processes are finite-state. Still,
both the PMCP and the PCMCP are undecidable.

Theorem 9 Both the PMCP and the PCMCP are undecidable for this asyn-
chronous, distributed memory control-user system.

Proof Sketch: The proof is a reduction from the undecidability of halting for
two-counter machines (2CMs) [21]. We show how to simulate a 2CM using the
control process alone. The user processes do nothing; they have a single internal
state with a skip action. EndSketch.

4.3 A Decidable Asynchronous, Distributed Memory Network

We give a positive result for the PCMCP for a restricted control process, whose
actions are “oblivious” to the user indices, i.e., one cannot target a specific
index. The action either does nothing (skip) or it assigns a value v to all edges,
written as (Ai : ei := v) (or (Av) for short). This structure is inspired by that
of a specific Dining Philosophers protocol over arbitrary graphs, where nodes
are assigned philosophers and edges forks. A philosopher eats if it is hungry and
“owns all neighboring forks” (a universal guard); after eating, it “releases all
neighboring forks” (a universal action). Its compositional analysis [23] focuses
on a generic graph node with an arbitrary number of neighbors. This looks like
a control-user system. We now show that the PCMCP is decidable7.

The pair of invariants θC and θU apply to the entire family, so θC contains
local states for the control process over all instances, and θU contains neighbor-
hood states for all users in all instances. A state in θU is a pair (a, k) where a is
an edge value, and k is a state of the user process. A state in θC is a pair (c, x),
where c is an internal state of the control process, and x is a vector of values
for its adjacent edges. As θC represents local states in all instances, the length
of x is unbounded. We define an abstraction of the system and show that its
compositional invariant is sufficiently precise to solve the PCMCP.

The abstraction is only for the control process, user processes have finite
local state and are unabstracted. The abstraction is a Galois connection (α, γ),
where α(c, x) = (c, s), where s is the set of edge-values which are in x, and
γ(c, s) = {(c, x) | α(c, x) = (c, s)}. In the abstract system, the transitions of the
control process are abstracted to operate on sets in the standard manner: the
abstract version of transition t is given by α ◦ t ◦ γ. This can be simplified as

7 We do not know the status of the PMCP. The powerful WQO theory of [1] appears
not to apply due to the presence of universal guards. A more general assignment ac-
tion, (Ai : ei := h(ei)), also preserves the decidability of PCMCP. Allowing the dual
action of assigning a value to some edge makes the PMCP undecidable (a reduction
from 2CM). We do not know whether it also makes the PCMCP undecidable.
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follows. For a concrete transition from internal state c to c′ with guard g and
action act, the abstract equivalent is the following:

– If g is (∃i : f(ei)), then g applied to (c, s) is (∃a : a ∈ s : f(a)). Similarly, if
g is (∀i : f(ei)), then g applied to (c, s) is (∀a : a ∈ s : f(a)).

– If act is skip, then act is skip. If act is (Ai : ei := v) then act is s := {v}.

The abstract interference transitions operate in a similar manner. We refer to
the strongest compositional invariants on the abstract system as ∆C and ∆U .

– (control-to-user) If there is an abstract transition with action (Av) from (c, s)
to (c′, s′), and (a, k) is a state in ∆U and a ∈ s, the interference state is (v, k).

– (user-to-control) If there is an abstract user transition from (a, k) to (a′, k′),
and (c, s) is a state in ∆C , and a ∈ s, the interference successors are (c, s ∪
{a′}) (i.e., a′ is added to s) and (c, (s\{a}) ∪ {a′}) (i.e., a′ replaces a in s).

The connections between (θC , θU ) and (∆C , ∆U ) are laid out in the following
lemmas. The first lemma says that the compositional invariants of the abstract
system over-approximate those of the concrete one. This proof is by induction
on the fixpoint stages of the computation of θ.

Lemma 1 For each state in θC there is an α-related state in ∆C . Every state
in θU is in ∆U .

The next lemma shows that the abstraction is not too abstract. The simpler
statement γ(∆C) = θC need not hold, as some abstract interference transitions
are matched only by concrete states with sufficiently many components.

Lemma 2 For any k, ∆k
U ⊆ θU . For every state (c, s) in ∆k

C and any l ≥ 1,
there is a related state (c, x) in θC where for each value a in s, at least l edges
of x have value a.

Proof: By induction on k.
Basis (stage 0): ∆0

C is just the state (c0, {⊥}), while ∆0
U is the state (u0,⊥),

where c0 and u0 are the initial states of the control and user process. So∆0
U = θ0U .

By definition, θ0C consists of all states of the form (c0, x) where x is a vector of
⊥ entries. Hence, the hypothesis holds for ∆0

C .
Control Step (stage k + 1): Consider an abstract state (c′, s′) of stage

k + 1 obtained through a step by C from a state (c, s) at stage k. We consider
the various step transitions separately. We use the notation Σ(x) to represent
the set of values on the edge vector x. First, note that for any (c, x) related
by γ to (c, s), a concrete transition guard is enabled at (c, x) if and only if the
corresponding abstract guard is enabled at (c, s), because Σ(x) = s. Hence, we
can focus on the effect of the actions.

(1) the action is “skip”. Then s′ = s. Consider any l > 0. By inductive hy-
pothesis, there is a state (c, x) related to (c, s) where x has at least l components
with value a for all a in s. Construct the state (c′, x). This is a step-successor
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of (c, x) by the skip action, so it is in θC by closure under step. As s′ = s, the
vector x in (c′, x) satisfies the condition required of l.

(2) the action is an (Av) action. Then s′ = {v}. Consider any l > 0. By the
inductive hypothesis, there is a state (c, x) related to (c, s) by γ, with at least l
components for x. Let (c′, x′) be its successor with the Av action. Then this state
belongs to θC and x′ is a vector of v-values of length at least l, so it satisfies the
condition required.

User Step (stage k+ 1): Consider an abstract state (a′,m′) of stage k+ 1
obtained through a step by U from a state (a,m) at stage k. As (a,m) is in θU
by assumption, the state (a′,m′) is also in θU by closure under step transitions.

User-to-Control Interference (stage k + 1): Suppose there is a user
transition from (a,m) to (a′,m′), and (c, s) is a state in ∆k

C with a ∈ s. There
are two interference successors: (c, s ∪ {a′}) and (c, (s\{a}) ∪ {a′}).

Consider the first successor. Let l > 0. By the inductive hypothesis, there
is a state (c, x) in γ(c, s) and in θC , where x has at least 2l components with
value w for every w in s. Apply a sequence of l concrete interference steps to x,
each changing one of the components in x with value “a” to “a′”. The end state,
(c, x′), is in θC , by closure under interference. Notice that Σ(x′) = s ∪ {a′} by
construction, and that every value in x′ is replicated at least l times. Hence, the
inductive hypothesis holds for the first successor.

Now consider the second successor, and let l > 0. By the inductive hypothesis,
there is a state (c, x) in γ(c, s) and in θC , where x has at least l components with
value w for every w in S. Apply a sequence of concrete interference steps to x,
each changing one of the a components in x to a′ until all a-values are converted
to a′. The result of this sequence, (c, x′), is in θC , by closure under interference.
Notice that Σ(x′) = s\{a} ∪ {a′} by construction, and that every value in x′ is
replicated at least l times. Hence, the inductive hypothesis holds for the second
successor.

Control-to-User Interference (stage k + 1): Consider an (Av) abstract
transition from (c, s) to (c′, s′) in ∆k

C , let (a, k) be in ∆k
U , with a ∈ s. Let (v, k) be

the interference state. By inductive assumption, there is a state (c, x) in γ(c, s)
which is in θC , and therefore an (Av) successor (c′, x′) that is in γ(c′, s′) and in
θC . Also by the inductive assumption, the state (a, k) is in θU . Hence, there is a
matching interference transition in the concrete system, so that (v, k) must be
in θU , by closure under interference. EndProof.

Theorem 10 The PCMCP is decidable for this control-user system for proper-
ties on the internal state of the control process.

Proof: The decision procedure is to (1) construct ∆U and ∆C through the
standard fixpoint calculation; then (2) to check if all states of ∆C satisfy the
invariant ϕ. (Note that ϕ is a predicate on the internal state of C.)

Soundness: We show that all states of θC also satisfy ϕ. By way of contra-
diction, suppose there is a state (c, x) in θC for which ϕ(c) is false. By Lemma
1, there is an α-related state (c, s) in ∆C , so the check in step (2) would not
succeed, a contradiction.
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Completeness: If there is a compositional proof of ϕ, then, as θ is the strongest
compositional invariant, all states (c, x) in θC must satisfy ϕ(c). Consider a state
(c, s) in ∆C . By Lemma 2, there is a state (c, x) in θC which is α-related to (c, s).
Hence, (c, s) satisfies ϕ(c) as well, so step (2) succeeds. EndProof.

The complexity of calculating ∆ is polynomial in the number of internal states
of the control and user processes, and exponential in the number of edge values.

5 Related Work and Conclusions

Analysis questions for families of regular networks running locally symmetric
progrrams were studied. In particular, the algorithms introduced here are de-
signed to decide whether all processes in a protocol family satisfy local safety
properties expressed as local invariants. This form of local invariant analysis is
related to the global invariant analysis techniques studied in [20]. The focus on
local reasoning allows for relatively efficient analysis, given that the processes
and neighborhoods are all finite state. For the protocols studied here, the local
symmetry conditions ensure that all processes of the parametrized family are
locally symmetric.

The work in [29] and [30] uses satisfiability modulo theories in the design
of parametrized reasoning techniques for systems of many processes. That work
provides semi-decision procedures and is designed for situations where the many
different process types may not be locally (or globally) symmetric.

We have shown that by restricting attention to modular proofs, parameter-
ized verification problems become simpler and more decidable. There are several
positive results on the PMCP, however they require limits on process structure
or communication patterns. Examples are the requirement of a single token for
a token-ring [9] – two tokens result in undecidability – and the requirement of
a well-quasi-ordered global state set and monotonic transition functions in [1].
Modular proofs create a number of advantages. First, there is less need to con-
strain process structure or communication. Second, compositional analysis nat-
urally splits a global state into a number of local process neighborhoods, which
are considered more or less independently. As neighborhood structure is typically
simpler than global structure, this suggests that the decision problem should be
easier. The results in this paper show that to be the case.

The PCMCP requires a choice of the modular proof system. We have con-
sidered the Owicki-Gries kind of proof system, based on local invariance. This
is known to be incomplete, in that it may be necessary to expose auxiliary state
in order to obtain a correctness proof. A fascinating question for future work
is to consider variants of the PCMCP which search for modular proofs with
limits on auxiliary state (e.g., “at most k bits of auxiliary state”). Alternative
modular proof systems are based on auxiliary automata (which implicitly in-
clude auxiliary state) as in [18, 4]. The shape of these proof rules is usually as
follows: in order to show P1||P2 |= ϕ, one finds auxiliary automata A1 and A2

such that P1||A2 � A1, P2||A1 � A2, and A1||A2 |= ϕ, where � is usually the

15



simulation pre-order, or language inclusion. The PCMCP formulation for this
strategy would be to decide whether there are automata A1, A2, . . . which meet
the conditions of such a rule.

Motivation for introducing the PCMCP as a decision problem also comes
from results on approximate procedures for obtaining parameterized proofs, sev-
eral of which are based on localized analysis. For instance, environment abstrac-
tion methods [7] analyze a process along with an abstraction of its environment;
the method of invisible invariants [27] and invisible ranking [12] generalizes in-
variants and rank functions from small instances to the parameterized family;
and the work in [2] uses abstract interpretation on views, typically single pro-
cesses or pairs of processes, to obtain a parameterized invariant. In our own
work [22–24] we have used compositional methods along with localized symmetry
and abstraction to build parametric proofs of protocols or families. By turning
from such approximate constructions to a decision problem, the PCMCP offers
a different perspective on the parameterized verification question.

Our results on the decidability of the PCMCP in the cases of mesh and
CCC architectures cover two forms of parallel communication architectures. In
the future, we plan to investigate PCMCP approaches for related architectures,
including hypercubes (c.f. [16], [31]) and Message Passing Interface designs that
are built on mesh architectures (c.f. [32], [33], [15]).

There are several promising directions to pursue. One that has already been
mentioned is to strengthen the modular reasoning methods by allowing for auxil-
iary state and extending the decision procedures to liveness properties. Another
is to examine whether abstraction methods, such as those developed in Section
4.3, lead to decision procedures for regular networks such as hypercubes where
the degree of a node depends on the parameter n. A third direction is to explore
other constraints on proof structure, such as depth or context-switch bounds.
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