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Abstract. We formulate a method to compute global invariants of dy-
namic process networks. In these networks, inter-process connectivity
may be altered by an adversary at any point in time. Dynamic networks
serve as models for ad-hoc and sensor-network protocols. The analysis
combines elements of compositional reasoning, symmetry reduction, and
abstraction. Together, they allow a small “cutoff” network to represent
arbitrarily large networks. A compositional invariant computed on the
small network generalizes to a parametric invariant of the shape “for all
networks and all processes: property p holds of each process and its local
neighborhood.” We illustrate this method by showing how to compute
useful invariants for a simple dining philosophers protocol, and the latest
version of the ad-hoc routing protocol AODV (version 2).

1 Introduction

For communication protocols, model checking is typically applied to small net-
work instances to detect errors. Full correctness requires analyzing networks of
arbitrary size. This is, in general, an undecidable problem. Our work considers
the question of analyzing the behavior of a dynamic process network. In a dy-
namic network, an adversary can modify the structure of the network at any
time by adding or dropping nodes and connections. Dynamic process networks
are practically relevant, as they may be used to model ad-hoc and sensor-network
protocols, which usually operate under adversarial conditions.

The analysis question is mathematically challenging, as verification of a dy-
namic network requires showing correctness for an unbounded family of net-
works. Consider, say, a dynamic ring network. Starting with a two-node ring,
dynamic changes result in rings of arbitrary size. It is interesting that showing
parametric correctness (i.e., for all fixed rings) does not suffice. For instance,
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consider a valid state of a dining philosophers’ protocol where eating philoso-
phers are separated by a non-eating philosopher. Removing the middle node
and collapsing the ring creates an invalid state with adjacent eating philoso-
phers. Protocols on dynamic networks typically incorporate recovery actions to
be taken on adjacency changes so as to avoid such erroneous outcomes.

In this work, we propose a new approach to this challenging verification
question. Our analysis method combines elements of compositional reasoning,
symmetry reduction and abstraction. To motivate these ingredients, consider
that in a dynamic network, global invariants must be maintained in the face of
adversarial, unpredictable changes. Hence, the coupling between process states
is likely to be weak, which is just the situation where compositional analysis is
most effective. In order to obtain a uniform invariant which applies to all nodes,
it is necessary to abstract from differences between node neighborhoods (such as
the number of neighbors). This is achieved by neighborhood abstraction, which
induces local symmetries between nodes. Local symmetries suffice to ensure that
compositional invariants are isomorphic across all nodes in a network family.

In a nutshell, the method works as follows: First, one picks a small representa-
tive instance R, and sets up a collection of local (i.e., neighborhood) symmetries
between nodes from arbitrary instances and nodes of R. Next, a compositional
invariant is calculated for R. Local symmetries guarantee that the compositional
invariant for R generalizes appropriately to all instances. Dynamic changes are
handled by showing that they do not violate the compositional invariant. For
a property P that is preserved by the symmetries, it follows that P holds of
all instances if it holds for R. The result is a universally quantified, inductive
invariant, of the form “for all networks and all processes: property P holds of
each process and its local neighborhood.”

The method is only partly automated. The specification of symmetries is
done manually, while the compositional calculation on R is automatic. As the
symmetries concern only the neighborhood of a node, in our experience, it is not
too difficult to determine a good set of symmetries. We illustrate this through
two protocols: the first is a Dining Philosophers protocol, modified to operate
over dynamic graphs; the second is a model of the AODV protocol used for
routing in ad-hoc networks (we analyze the latest version, AODVv2 [2]).

Known methods for analyzing dynamic networks operate with sets of graphs
of arbitrary size. Termination is ensured either through heuristics which recog-
nize graph patterns [27] or through results from the theory of well quasi ordering
(WQO) [13]. Our method is rather different, simpler to implement and, we be-
lieve, closer to intuition. Many interesting parametric verification questions are
undecidable on general graphs and ad-hoc networks [14]. The AODV proto-
col has gone through several versions. Earlier analyses targeted AODV [1] and
DYMO [27]. We analyze the latest version (AODV version 2), which is quite
different from the original. In the course of constructing a formal model, we
noticed a correctness issue, which has been acknowledged by the authors. Our
proofs apply to the corrected protocol.



2 Dynamic Networks and Compositional Reasoning

We define the computational model of a dynamic process network, focusing on
dynamic changes. We then define the rules to validate a proposed compositional
invariant. Abstraction and symmetry properties are treated in Section 3.

Fig. 1. A ring network. Nodes are represented by circles, edges by boxes, and links by
lines connecting them. The neighborhood of a node is shown as a dashed ellipse.

We begin with an informal overview. A process network is defined by a process
template and a way of instantiating the template on a communication graph.
Every node of the graph is associated with a process. The transitions of a process
depend on its internal state and the state on its adjacent edges. Hence, processes
communicate by reading and modifying state on shared edges. In a dynamic
setting, at any point in time, an adversary can modify the network by adding or
deleting a node-edge link, or by adding or removing isolated nodes and edges. A
process has the capability to react instantaneously and atomically to a change in
the neighborhood of its node. In the following, we define these concepts precisely.

2.1 Networks, Assignment, and States

A network, G, is defined as the tuple (N,E,L), where N is a set of nodes, E is
a set of edges, and L ⊆ (N × E) ∪ (E × N) is a set of node-edge links. (Note
that an edge is not just a pair of nodes, but an element in its own right.) The
network in Figure 1 shows a ring system. Each element has a color. Edge e is
an output edge for node m if (m, e) is a link, and an input edge if (e,m) is a
link. In either case, we say that e is adjacent to m. The neighborhood of a node



m, written nbd(G,m), is formed by m together with its adjacent edges. Node m
points to node n if an output edge of m is adjacent to n.

An assignment to a network specifies a domain of values for each edge, and
a process for each node. A process assigned to a node n with k adjacent edges
has the structure (S, S0, T ), where S is a set of states defined as the Cartesian
product SI × E1 × . . . Ek, where SI is the internal state set, and E1, . . . , Ek

are the domains of the adjacent edges, S0 is a set of initial states, and T is a
transition relation, a subset of S × S. We refer to several types of states:

– A global state is a vector formed by specifying an internal state for the
process on each node and by a value from the domain of each edge

– A local state for node n with adjacent edges e1, . . . , eK is a vector formed
by specifying an internal state for the process assigned to n, and by a value
from the domain of each of the edges e1, . . . , eK

– An internal state for node n is an internal state of the process assigned to n
– A joint state for nodes m,n is written as a pair [a, b] where a is a local state

for m, and b is a local state for n, and a and b have identical values for every
edge e that is adjacent to both m and n. Joint states are used to formulate
interference between processes.

For a global state s, we write s[n] for the internal state of node n, s[nbd(G,n)]
for the local state of node n, and s[e] for the value on edge e.

2.2 Semantics: static and dynamic

A network can transition from a global state s to global state t by the action of a
single process, say at node n. This action may change at most the local state of
node n, so Tn relates s[nbd(G,n)] to t[nbd(G,n)]. Moreover, t[e] = s[e] for every
edge that is not adjacent to n, and t[m] = s[m] for every node m 6= n. The set of
initial global states is denoted I. For a family of networks, we assume that there
is an initial global state for every network in the family. The projection of states
in I on m, the set of initial local states for m, is denoted by Im, which must
be a subset of the initial states of that process. The global transition graph is
induced by interleaving transitions from individual processes, starting from an
initial state.

Adversarial actions change the underlying network graph. We consider the
following actions:

– addition or removal of a link
– addition or removal of an isolated node (i.e., one without adjacent edges)
– addition or removal of an isolated edge (i.e., one without adjacent nodes)

To allow a process to react to a link addition or removal, we specify transitions
link(n, e) (link addition) and unlink(n, e) (link removal) for node n and edge e.
These transitions operate on the local state of node n after the change.

To account for graph (and hence, state vector) changes, we introduce the
concept of a configuration, which is a pair (G, s), where G is the network graph



and s is a global state of G. In a static transition, the graph stays constant, so
the corresponding change is from a configuration (G, s) to (G, t). For a dynamic
change, the graph also changes as does the global state. This is detailed below
for two representative changes, the other cases are similar.

– Addition of a link (n, e) in a graph G = (N,E,L) and state s. The new
configuration is (G′, s′). The new network G′ is given by N ′ = N , E′ = E,
and L′ = L∪{(n, e)}. The new state s′ is the successor of s by the link(n, e)
transition at node n, taken in the configuration (G′, s).

– Addition of an isolated node n in a graph G = (N,E,L) and state s. The
new configuration is (G′, s′). The new network G′ has node set N ′ = N∪{n},
edge set E′ = E and links L′ = L. The new state s′ is such that s′[x] = s[x]
for each element (node or edge) of G, and s′[n] is an initial state of the
process assigned to n.

2.3 Inductive and Compositional Invariants

An invariant for a dynamic network is a set of configurations which includes
all the configurations reachable from a set of initial configurations. This set is
inductive if it is closed under all transitions. A compositional invariant is an
inductive invariant of a special shape and satisfying a special set of constraints.
It is formed as the conjunction of a number of local invariants, one for each
process in a network. Thus, we use (G,n) to identify the process at node n in
network G, and write θ(G,n) as the set of local states for (G,n) which form its
local invariant. These sets (viewed equivalently as predicates) must satisfy the
following conditions. For all (G,n):

– (Initiality) All initial states of the process at (G,n) are in θ(G,n)
– (Step) θ(G,n) is closed under transitions of the process at (G,n)
– (Non-interference) If node m points to node n in G, for any joint state [b, a]

of (m,n) where a ∈ θ(G,n) and b ∈ θ(G,m): if T(G,m) transforms [b, a] to
[b′, a′], then a′ ∈ θ(G,n).

Remark 1. Notational conventions are inspired by [15]. Sets are represented as
predicates. The notation [ϕ] indicates that the formula ϕ is valid.

In addition, there are conditions to be met for dynamic changes. Let G be
the original network and let G′ be the network obtained by adding a (fresh) link
between node n and edge e. Two constraints arise from link addition (similar
constraints arise for other dynamic actions):

– θ is preserved by the action link(n, e) at n. I.e., for any valuation a for
nbd(G,n) and any value v for edge e: if a ∈ θ(G,n) and link(n, e) transforms
(a, v) to (a′, v′), then (a′, v′) ∈ θ(G′, n).

– Interference due to the link action must preserve θ for any node m that is
pointed to by n. I.e., for any joint state [b, a] of (m,n) where a ∈ θ(G,n) and
b ∈ θ(G,m), and any valuation v for edge e: if link(n, e) transforms ([b, a], v)
to ([b′, a′], v′), then b′ ∈ θ(G′,m).



Theorem 1 If the compositional constraints hold, the assertion ξ = (∀G,n :
θ(G,n)) is an inductive invariant of the dynamic network.

Consider θ as a vector (or a map) from network-node pairs (G,n) to sets of
local states. The set of vectors forms a complete lattice, with vectors ordered
point-wise by the subset relation. The constraints form a set of simultaneous im-
plications of the form [F(G,n)(θ) ⇒ θ(G,n)], where F is monotonic in θ. Hence,
there is a least solution by the Knaster-Tarski theorem. The least solution to
the first three constraints alone is the strongest “non-dynamic” compositional
invariant, denoted Σ∗. The least solution to all constraints is the strongest dy-
namic compositional invariant, which we denote by ∆∗. Note that ∆∗ is weaker
than Σ∗ as it must satisfy the non-dynamic constraints.

3 Symmetry Reduction

We show how to define and use localized neighborhood symmetries to reduce
the computation of a compositional invariant to a small set of representative
processes. This technique applies equally well to a single network or to a family
of networks.

3.1 Fixed Networks

Fix a network G and a process assignment. The local symmetries of the network
are defined as a relation B with entries of the form (m,β, n), where β is itself
a relation between the local state spaces of processes m and n. Intuitively, β
relates similar neighborhood states. The relationB should satisfy some structural
properties:

– (Identity) For every m, there is an entry (m,β,m) in B. For every such entry,
β is an equivalence relation

– (Symmetry) If (m,β, n) ∈ B then (n, β−1,m) ∈ B
– (Transitivity) if (m,β, n) and (n, γ, k) are in B, then (n, β; γ, k) is in B

It follows that the orbit relation m ∼ n, which holds if (m,β, n) is in B for some
β, is an equivalence.

Definition 1 Local Symmetry

A relation B satisfying the structural conditions forms a local symmetry if, for
every (m,β, n) in B, any step or interference transition of m can be simulated
by a step or interference transition of n. More precisely, the following forward-
simulation properties hold.

– (initial match) For every initial state x of the process at m, there is an initial
state y of the process at n such that (x, y) ∈ β.



– (local simulation) If (x, y) ∈ β and there is a transition (x, x′) in Tm, then
either there is y′ such that (y, y′) is in Tn and (x′, y′) ∈ β, or there is a
neighbor j of n and a state b of j which is reachable by j-steps alone such
that there is a joint (j, n) transition ([b, y], [b′, y′]) due to Tj and (x′, y′) ∈ β.

– (interference simulation) If (x, y) ∈ β, and i is a neighbor of m, and there is a
joint (i,m) transition ([a, x], [a′, x′]) due to Ti, then either there is a neighbor
j of n for which (i, γ, j) is in B and for every b such that (a, b) ∈ γ, there
is a joint (j, n) transition ([b, y], [b′, y′]) due to Tj , such that (x′, y′) ∈ β, or
there is a transition (y, y′) in Tn such that (x′, y′) ∈ β.

Remark 2. We refer to this notion as a symmetry as it is the semantic form of a
structural local symmetry definition formulated in [23]. The earlier formulation is
in terms of network structure, as a groupoid, a set of tuples of the form (m,β, n),
where β is an isomorphism on the graph neighborhoods of nodes m and n. While
that is more obviously a structural symmetry, it is limiting since it does not allow
defining symmetries up to an abstraction.

Definition 2 For a relation R and a set Y , let 〈R〉Y be the set of elements
which have an R-successor in Y . I.e., 〈R〉Y = {x | xRy for some y in Y }.

Theorem 2 (Symmetry Theorem) Let B be a local symmetry on G. Let θ∗

be the strongest compositional invariant on G. Then, for every m,n such that
(m,β, n) is in B, it is the case that [θ∗m ⇒ 〈β〉θ∗n].

Proof: From the chaotic iteration theorem [9], every fair schedule of updates
computes the least fixpoint. We use a schedule where the initialization is done
first; then the schedule alternates a single transition step for all processes, and
a single interference step for all processes. This proof applies to a non-dynamic
network.

The proof is by induction on fixpoint stages. Assume that the statement is
true for every state in θk. Now consider m,n such that (m,β, n) is in B and let
x′ be in θk+1

m but not in θkm.
[Basis] If x′ is an initial state of m, the claim holds by the initial match condition.
[Induction: Step] Suppose that x′ is a successor of a state x in θkm. By the
inductive hypothesis, there is a state y in θ∗n such that xβy. In the first case of
local simulation, there is a transition (y, y′) in Tn such that x′βy′. In that case,
y′ is also in θ∗n by its closure under step transitions. In the other case, there is a
neighbor j of n and a reachable state b of j such that there is a joint transition
([b, y], [b′, y′]) of Tj and (x′, y′) ∈ β. As b is reachable through step transitions
alone, it must be in θ∗j , so that [b, y] is a joint state which satisfies θ∗j and θ∗n.
By closure of θ∗ under interference, the state y′ is in θ∗n.
[Induction: Interference] Now suppose that x′ is obtained through interference.
I.e., there is a transition Ti, for some neighbor i of m, from a joint state [a, x]
to joint state [a′, x′], where a ∈ θki and x is in θkm. By the inductive hypothesis,
there is a state y in θ∗n such that xβy. The first case of interference simulation
ensures that there is a neighbor j of n such that (i, γ, j) is in B, and for all b such
that (a, b) ∈ γ, there is a transition ([b, y], [b′, y′]) due to Tj where (x′, y′) ∈ β.



By the induction hypothesis, as a ∈ θki , there is some b ∈ θ∗j which is related to
a by γ. For that b, the joint state [b, y] satisfies θ∗j and θ∗n so, by closure under
interference, y′ is in θ∗n. The other case of interference simulation ensures that
there is a transition (y, y′) in Tn such that (x′, y′) ∈ β; in that case, y′ is in θ∗n
by closure under step transitions. EndProof.

Note that the claim holds also if single-step conditions are replaced with
stuttering (i.e., where a single step is matched by a possibly empty path). We
will use this relaxation for the examples.

Corollary 1 Let P be a property of local states. If (m,β, n) is in symmetry B,
and P is invariant under β, then [θ∗m ⇒ P ] if, and only if, [θ∗n ⇒ P ].

Equivalence reduction. From the structural properties of B, the relation ∼ is an
equivalence relation. Hence, in order to check a property that is invariant under
all the β-relations in B, by Corollary 1, it suffices to compute the θ components
for a representative of each equivalence class of ∼. Therefore, for a fixed network,
the use of local symmetries can substantially reduce the number of fixpoint
computations. (We show in an earlier work [23] that for a ring network with K
nodes, it suffices to compute only one component of the fixpoint instead of all K.)
Moreover, it suggests that, for a parameterized or dynamic network, symmetries
that span members of a network family can be used to reduce the problem of
checking a property for all instances to checking it for a small, fixed-size set of
representative instances. We consider this next.

3.2 Parameterized and Dynamic Network Families

We apply the local symmetry definitions to a family of networks by redefining
the symmetry relation to relate two nodes in (possibly) different networks. I.e.,
the relation consists of triples ((G,m), β, (H,n)). We immediately obtain the
analogues of Theorem 2 and Corollary 1 for a parametric network family.

Theorem 3 Let B be a local symmetry on a parametric network family. Let θ∗

be the strongest compositional invariant. Then, for every (G,m) and (H,n) such
that ((G,m), β, (H,n)) is in B, it is the case that [θ∗(G,m) ⇒ 〈β〉θ∗(H,n)].

Corollary 2 Let P be a property of local states. If ((G,m), β, (H,n)) is in sym-
metry B, and P is invariant under β, then [θ∗(G,m) ⇒ P ] if, and only if,
[θ∗(H,n) ⇒ P ].

An example of this reduction is as follows. Consider a family of ring networks
{Ri}, where the process at each node is the same regardless of ring size. Then
the relation β connects (Rk,m) with (Rl, n) precisely if the local state of m in
the ring Rk is identical to the local state of n in ring Rl. For any property P
which depends only on local states, the two nodes will satisfy P in the same way,
by Corollary 2. Moreover, as any two nodes are connected by a local symmetry,
all nodes in the family fall into a single equivalence class. Hence, it suffices



to compute a compositional invariant for a 2-node ring instance and check the
property P for that instance in order to deduce that it holds for the entire family.

We would like to extend this form of reasoning to dynamic networks. In order
to do so, we make the following assumption:

– (React) Any reaction to a dynamic change preserves the non-dynamic invari-
ant. Formally, let Σ∗ be the strongest non-dynamic compositional invariant.
Consider a node (G,m) and a dynamic change at m or at one of its neigh-
bors which changes the graph to G′. If, before the reaction, (G,m) and its
neighbors have local states in Σ∗, then the local state of m after the reaction
is in Σ∗(G′,m).

We believe that this is a reasonable assumption. A protocol designer must
place a node in a “safe” local state after a dynamic change. It is reasonable to
imagine that this safe state is one that is known to be a locally reachable state
and, therefore, belongs to Σ∗. As we show in the following section, our example
protocols satisfy this assumption.

Theorem 4 Under the React assumption, the strongest compositional invariant
for the non-dynamic and the dynamic systems are identical.

Proof Sketch: Recall that Σ∗ denotes the strongest non-dynamic compositional
invariant, and ∆∗ the strongest dynamic compositional invariant. As the initial
configurations cover all graphs, Σ∗(G,m) and ∆∗(G,m) are non-empty for all
nodes (G,m).

The constraints defining validity of a compositional invariant for the dynamic
case are an extension of those for the non-dynamic case. Hence, ∆∗ is also a non-
dynamic compositional invariant. Therefore, Σ∗ is below ∆∗ (point-wise).

We use React to show the other direction. The proof is by induction on the
fixpoint stages. The claim is that, at stage k, ∆k is below Σ∗ for all components.
This is true initially as ∆0 is the set of initial states. Assume that it is true
at stage k. The step and interference updates are common to both and, as the
update function is monotonic, the hypothesis continues to hold at the next stage.
In the dynamic setting, ∆k+1 is also updated as the result of reactions to network
changes at node (G,m) or at one of its neighbors. By the induction hypotheses,
the originating states are in ∆k, and therefore in Σ∗. By the React assumption,
the resulting local state for (G′,m) is also in Σ∗(G′,m). Hence, the hypothesis
continues to hold at stage k + 1. A newly added node begins at an initial state,
which is already covered in Σ∗; a deleted node has no effect. EndProof.

This theorem lets us reduce the dynamic case to the non-dynamic, parame-
terized case. I.e., we can apply symmetry reductions as illustrated by the ring
network example. We show in the following section how this applies to the two
protocols we consider in this work.

4 Applications

In this section, we show how two dynamic protocols may be analyzed using the
following procedure, based on the theory laid out in the previous sections:



1. Define a symmetry B for the entire network family, with finitely many equiv-
alence classes

2. Find a representative network instance, R, whose nodes cover all of the
equivalence classes

3. Compute the strongest non-dynamic compositional invariant for R.
4. Check that the React assumption is satisfied for all nodes in the family. In

order to do so, it suffices to show that every reaction which results in a state
of (G′,m) is related to a state in the invariant of the representative instance.

Let property P be invariant under the symmetries in B. By Corollary 2, if P
holds of Σ∗(R, k) for all nodes k in R, it holds of all nodes in the entire family.

The first two steps are not automated, but one may consider some guidelines.
If the network family has graphs with nodes of arbitrary degree, the symmetry
relation must abstract from the degree of the node. A localized abstraction of
the state space may be needed if the space is large or unbounded. The symmetry
and React conditions could be checked with an SMT solver or a theorem prover.
The fixpoint computation of Σ∗ for the representative network can be done
automatically if the local state space is finite.

4.1 Dynamic Dining Philosophers Protocol

A non-dynamic version which operates on arbitrary networks was analyzed in
[24]; here, we consider modifications to respond to dynamic network changes.

The basic protocol. The protocol has a number of similar processes operating on
an arbitrary network. Every edge on the network models a shared “fork”. The
edge between nodes i and j is called fij or, equivalently, fji. Its value is one of
{i, j,⊥}. Node i is said to own the fork fij if fij = i; node j owns this fork if
fij = j; and the fork is available if fij = ⊥. The process at node i goes through
the internal states T (thinking), H (hungry), E (eating), and R (release). Let
nbr(i, j, G) be a predicate true for nodes i, j in network G if the two nodes share
an edge. The transitions for the process at node i are as follows.

– A transition from T to H is always enabled.
– In state H, the process acquires forks, but may also choose to release them

• (acquire fork) if nbr(i, j, G) and fij = ⊥, set fij := i,
• (release fork) if nbr(i, j, G) and fij = i, set fij := ⊥, and
• (to-eat) if (∀j : nbr(i, j, G) : fij = i), then change state to E.

– A transition from E to R is always enabled.
– In state R, the process releases its owned forks.

• (release fork) if nbr(i, j, G) and fij = i, set fij := ⊥
• (to-think) if (∀j : nbr(i, j, G) : fij 6= i), change state to T

The initial state of the system is one where all processes are in state T and all
forks are available (i.e., have value ⊥). The desired safety property is that there
is no reachable global state where neighboring processes are in the state E.



Responding to Dynamic Network Changes. The protocol is safe for a fixed net-
work. It is, however, unsafe under dynamic changes. For instance, the addition
of a fresh link changes the nbr relation, and can cause two processes both of
which are in their eating (E) state to become adjacent, violating safety. To
avoid this possibility, the link transition is defined so that if a process is eating,
it moves back to hungry (H), without releasing its forks; otherwise, the state is
unchanged. The removal of a link cannot violate safety; in fact, it may make a
hungry process eligible to eat, if all remaining edges are owned by that process.
Hence, the unlink transition keeps the local state unchanged. The initial state
of a newly added node is thinking (T ).

Symmetry Reduction We show (informally) how to carry out the steps described
previously. Define the symmetry B with entries ((G,m), β, (H,n)) for all G,H
and nodes m in G and n in H, where β is defined as follows. Local states x of
(G,m) and y of (H,n) are related by β if they have the same internal state (i.e.,
one of T,H,E,R), and node m owns all of its neighboring forks if, and only if,
node n owns all of its neighboring forks. This meets the structural conditions on
B, and there is a single equivalence class for the orbit relation (as every node is
related to every other node).

We now sketch the check for simulation, which holds under stuttering. For
instance, state x of (G,m) may be one where node m is hungry and has acquired
2 out of 4 neighboring forks, while state y of (H,n) is a state where node n is
hungry and has acquired 6 out of 7 neighboring forks. An interference transition
of m which results in it being granted one additional fork is matched by y (i.e., by
a stuttering step), while an interference transition of n which results in it being
granted the last remaining fork is matched by a sequence of two interference
transitions from x.

The representative system consists of the smallest instance, a two-node ring.
Its strongest compositional invariant can be calculated automatically. This as-
serts (cf. [24]) that, for each node, if the node is in state E, it owns all neighboring
forks. By Theorem 3, this assertion holds for all nodes in the family.

Finally, we have to check the React assumption which allows a reduction
from dynamic to parametric analysis. As outlined earlier in this section, we con-
sider dynamic transitions where the origin state is related to the invariant of the
representative system. For a link removal, the local state does not change. The
interesting case is where the local state is E. Since the origin state of node m
is related to the representative invariant, node m must own all forks. Removing
one fork does not change this property, and the resulting state is also in the rep-
resentative invariant. For link addition, the protocol moves to a non-E internal
state, which trivially belongs to the representative invariant.

It follows by Theorem 4 that the same invariant holds for the dynamic system.
It follows that neighboring nodes cannot be in state E, as that would imply (from
the invariant) the existence of a shared edge which is owned by both nodes, a
contradiction.



4.2 Analyzing The AODV Protocol

AODV is used to establish routes in a mobile ad-hoc network. The first version
of this protocol [1] was analyzed in [6] with theorem proving, model checking and
(manual) abstraction, in [10], using predicate abstraction on the global state (al-
though this version omits sequence numbering, which is used to handle dynamic
changes) and recently in [19], using process algebra. The property of interest is
whether the protocol can be put into a state where there is a routing loop. We
analyzed the latest version of AODV, called AODVv2 [2]. Enough has changed
that these earlier proofs are no longer applicable to the new version. In the course
of our modeling, we discovered an error in the AODVv2 protocol (in the han-
dling of broken routes) and suggested a fix. The authors have acknowledged the
error, and accepted the fix. The following analysis is for the corrected protocol.

The AODV protocol is used in a network where nodes are mobile, so that
connectivity between two nodes may change at any time. The protocol is used to
establish a route from a source node S to a target node T . The source floods the
network with RREQs (route requests). When an RREQ reaches T , it responds
with an RREP (route reply) message, which makes its way back to S through the
request tree created during the RREQ flood. Unlike the earlier version, AODVv2
maintains two entries for each route: one pointing back to S, the other pointing
back to T . Each entry has a next-hop field, a hop-count (more generally, a route
cost), and a sequence number. The intuition is that higher sequence numbers
indicate newer routes, while lower hop-counts indicate shorter routes. Thus, there
is a natural way to compare routes. We say that a route x is “better than” a
route y if (seqx,−hopx) is lexicographically strictly greater than (seqy,−hopy).
I.e., if seqx > seqy or if seqx = seqy and hopx < hopy. In this situation, we also
say that route y is “worse” than route x. We write this relationship as y ≺ x.

The methodology developed so far considers a node as the focal point. One
could as well consider a pair of adjacent nodes as the focal point, so that the
invariant assertions have the form θ(G, (m, e, n)) where m and n are adjacent in
G with a single shared edge e. The concepts, compositional constraints, and the-
orems carry over in a straightforward way. For instance, a local state of (m, e, n)
is interfered with by transitions at nodes which are adjacent to m and n.

As sequence numbers and hop-count are both unbounded, we need to com-
pute compositional invariants under an abstraction. The natural abstraction,
given the intuition, is to relate routes using the better-than relation, and to
keep track of whether m is the next-hop of n. We define a relation β between
(G, (m, e, n)) and (H, (k, f, l)) as follows. Local states x and y are related in β
if, and only if, the internal states are the same, and corresponding pairs of route
entries (e.g., those for (m,n) and (k, l); and for (m, e) and (k, f)) are related
in the same way using the better-than relation, and next-hop relations are also
comparable. For a small, 3 process network, the compositional invariant shows
that rm � re, and if m is the next-hop for n, then rm � rn. (The notation ri
represents the route entry for node or edge i.)

We then check that the symmetry simulation conditions hold, limiting atten-
tion to states which are related by β to states in the compositional invariant for



the representative. The React conditions also hold, as the only reaction of the
protocol to a deleted edge is to mark a route which follows that edge as being
broken, and to send RERR (error) messages to adjacent nodes. As the reactions
do not modify the actual route entries, they preserve the compositional invari-
ant. From the symmetry theorem, the invariant for the representative network
extends to the entire dynamic system.

5 Related Work and Conclusions

Compositional analysis has a long history and a large literature (cf. [11]); we
refer here only to the most directly related work. The fixpoint definition used in
this paper is a fully compositional (i.e., assume-guarantee) form of the Owicki-
Gries method [25]. Parameterized verification is undecidable in general [5], but
decidability results are known (cf. [18, 16]), and several semi-decision procedures
have been developed. Typically, these approximate the infinite family of net-
works with finitary objects, for instance, the finite basis for upward-closed sets
from well-quasi-orderings [3] and finite-state transducers [20]. These objects are,
however, complex: mathematically and in terms of practical manipulation. A
number of recent papers [26, 22–24, 4] have shown that the substantially simpler
methods of localized analysis can be used to show parametric correctness for a
number of non-trivial protocols.

The new contribution of this work is to provide a localized method to show
the correctness of protocols which operate on dynamic networks. This requires
two key steps. First, it is necessary to define new compositional constraints which
correspond to actions taken by a protocol in response to dynamic changes. Sec-
ond, as the set of possible networks is infinite, it is necessary to collapse the rea-
soning on to a representative network through the use of localized symmetries,
induced by abstractions. The result of compositional analysis on the represen-
tative generalizes to a quantified inductive invariant which holds for the entire
dynamic network family.

There are several other approaches to the analysis of dynamic and ad-hoc
networks. The work in [7] shows that Hoare triples for restricted logics are de-
cidable. Work in [14, 12] applies well-quasi-ordering (wqo) theory to ad-hoc net-
works, while the algorithm of [13] relies on symbolic forward exploration. Reason-
ing with these approaches is in terms of global states. The methods given here
are localized in nature, which ensures simple representation and calculations,
carried out with a small number of abstract processes. Also, as argued in the
introduction, the dynamic nature of the changes contributes to the effectiveness
of compositional reasoning.

The single abstract process view is also found in the network grammar
method [28] and the environment abstraction method [8] for analysis of paramet-
ric protocols. In [21], the techniques in [17] are extended to dynamically changing
systems represented with graph grammars. Despite the high-level similarities to
these methods, our approach differs in being grounded in compositional analysis
and in its ability to analyze dynamic changes.



In this work, we put forward a straightforward analysis framework for dy-
namic network protocols, and show that it suffices to construct correctness proofs
for two non-trivial protocols, over an infinite set of possible networks. This
strengthens the conjecture which originally inspired this work: that dynamic
network protocols must be loosely coupled, and hence especially amenable to
compositional analysis. The simplicity and naturalness of the symmetry relations
for the two protocols lead us to believe that there is much scope for heuristic
methods which automatically determine an appropriate symmetry relation.
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