
A Witnessing Compiler: A Proof of Concept

Kedar S. Namjoshi1, Giacomo Tagliabue2, and Lenore D. Zuck2

1 Bell Laboratories, Alcatel-Lucent, kedar@research.bell-labs.com
2 University of Illinois at Chicago, giacomo.tag@gmail.com,lenore@cs.uic.edu

Abstract. In prior work we proposed a mechanism of “witness genera-
tion and propagation” to construct proofs of the correctness of program
transformations. Here we present a simpler theory, and describe our ex-
perience with an initial implementation based on the LLVM open-source
compiler and the Z3 SMT solver.

1 Introduction

Ensuring the correctness of an optimizing compiler is a classic question in com-
puting. Compilers are very large programs – for instance, GCC is over 7 million
lines of code, and LLVM is near a million – and they carry out the essential task
of transforming other programs (often themselves large) into executable machine
code. Ensuring the correctness of compiler transformations is thus a critical ques-
tion; however, manual inspection is impossible, which has led to much work on
the construction of automated proofs of correctness.

In [5] we proposed a methodology for creating such a proof. There, each
optimization procedure in the compiler is augmented with an auxiliary witness
generator. For every instance of optimization, the generator constructs, at run
time, a witness relation between its target and source programs. The conditions
for a relation to be a proper witness are checked off-line, using an automated
theorem prover. Thus, when a witnessing compiler is used on a source program,
it generates a chain of witnesses, one for each optimization, which connects the
source program with the final target program. Each link of the chain may be
verified independently of the compiler code.

Witness generation can be positioned in-between two well known methods of
compiler verification: machine-checked proofs of correctness (e.g., [4]) and Trans-
lation Validation (TV) (e.g., [8]). It is substantially simpler to define a witness
generation procedure than to prove an optimization correct, as the definition
does not require one to show (or assume) the correctness of the analysis phase
of an optimization. Moreover, as the generating procedure is written with full
knowledge of the optimization, one avoids the heuristic constructions which limit
the scope of translation validation. The potential drawback to witness generation
is the run-time overhead of generation and checking.

In this paper, we report on early experiments with witness generation. The
implementation is carried out using the LLVM compiler framework [3]. It cur-
rently supports a limited set of instructions (enough to represent while pro-
grams over the integers) and a small set of transformations (simple constant



propagation, dead-code-elimination, loop invariant code motion). The generated
witnesses are checked for validity with the Z3 SMT solver [2]. Our experience
has been encouraging: the witness generation approach is feasible and requires
only small amounts of additional code. The overhead of witness checking is high,
but we expect this to reduce with better implementation techniques.

2 Transformations and Witnesses

This section summarizes ideas described in more depth in [5].

Definition 1 (Program) A program is described as a tuple (V,Θ, T ), where

– V is a finite set of (typed) state variables, including a distinguished program
location variable, π,

– Θ is an initial condition characterizing the initial states of the program,
– T is a transition relation, relating a state to its possible successors.

A program state is a type-consistent interpretation of its variables. The tran-
sition relation is denoted syntactically as a predicate on V and V ′, which is a
primed copy of V . For every variable x in V , its primed version x′ refers to the
value of x in the successor state.

To match the LLVM structure, we consider programs described by a control
flow graph (CFG), where each node is a basic block (BB) consisting of a single-
entry single-exit straight line code. The transition relation of the program can
thus be viewed as a disjunction of transition relations Tij , each describing the
transition between basic block i (BBi) and basic block j (BBj) such that BBj
is an immediate successor of BBi. The program location variable π ranges over
the set of basic block identifiers. We assume that a CFG has a unique initial BB
with no incoming edges, and a unique terminal BB without outgoing edges.

A witness relation connects the values of source and target program locations
at corresponding basic blocks. In the simplified view, we define a witness relation
to have two components:

– A control mapping κ from the basic blocks of T to those of S. The function
κ maps the initial block of T to the initial block of S, and the terminal block
of T to that of S.

– A data relation, ϕi,κ(i)(VT , VS), which connects the values of target and
source variables at corresponding blocks i and κ(i). For this paper, it suffices
to have relations which are defined as conjunctions of the form v = e where
v is a program variable and e is an expression, over variables of either S or
T . For instance, one can define equality of corresponding source and target
variables by a set of conjunctions of this form.

There are three conditions, shown in Figure 1, which are checked to ensure
that a relation is a proper witness (i.e., it ensures the correctness of the transfor-
mation). The first checks that the witness relation is a (stuttering) simulation;
the second, that source and target variables match at initial and final blocks.

2



The stuttering simulation check allows infinite stuttering on the source program
side; this can be fixed, as described in [5], by generating an auxiliary ranking
function. As our current implementation does not do that, we omit it from the
rule. The predicate oeq(VT , VS) (read as “observably equal”) asserts that corre-
sponding target and source variables are equal in value. The correspondence is
specific to the optimization. (Hence, a witness is correct up to a correspondence.)

1. For every target block i, the following implication must be valid.
[ϕi,κ(i)(VT , VS) ∧ T T

ij (VT , V
′
T ) ⇒ (∃V ′

S : (T S
κ(i),κ(j)(VS , V

′
S) ∧ ϕj,κ(j)(V

′
T , V

′
S))) ∨

ϕj,κ(i)(V
′
T , VS)]

2. For the initial block a, [(∃VS : ϕa,κ(a)(VT , VS) ∧ oeq(VT , VS))] must be a validity.
3. For the final block f , [ϕf,κ(f)(VT , VS) ⇒ oeq(VT , VS)] must be a validity.

Fig. 1. Witness Checking

Typically, a witness relation encodes invariants about the source and target
programs, which are inferred during the analysis phase of an optimization. For
instance, constant propagation generates assertions about which variables of the
source program are constant, and dead-code elimination depends on a liveness
analysis that generates assertions about the live variables at each program point.
The witness relation for constant propagation, for example (see [5]), states that
(xT = xS) for every variable x and that (xS = c) for those variables x which are
known to have constant value c at the source location κ(i).

3 Implementation

The source code of the implementation is a fork from LLVM, and is available
as a git repository at https://bitbucket.org/itajaja/llvm-csfv. Currently,
the implementation targets the intra-procedural optimization passes in LLVM,
defined over its intermediate representation (IR). Programs in the IR are in SSA
(single static assignment) form for each function.

The process that is followed to build a witnessing pass is similar for every
pass. The starting base is the LLVM source code for an optimization pass. First,
the analysis phase of the pass is augmented – if needed – to store all the invariants
found by the analysis for each program location (or basic block). These invariants
are used for the witness generation. To validate a witness, it is necessary to
build the transition relations for the source and target programs. The validation
checks implement the proof rule in Fig. 1 using the Z3 SMT solver. As basic
blocks are (guarded) deterministic code fragments, the existential quantification
in the simulation check can be eliminated, which simplifies the check.

The framework design is based on the following main components: Op-
timizer/Analyzer, Witness Generator, Translator, Witness Checker, Invariant
Propagator. The Optimizer/Analyzer augments the LLVM pass to store the anal-
ysis invariants; the Witness Generator takes care of generating the optimization-

3



Pass Original Witness Avg. runtime in
LOC Gen. LOC ms (overhead multiple)

Simple Constant Propagation 99 118 101.36 (12x)

Dead Code Elimination 135 37 41.71 (10x)

Loop Invariant Code Motion 895 65 200.03 (31x)
Table 1. Measurements

specific witness using the invariants found during the analysis; the Translator
builds the transition relation of a given CFG and is usually run over the target
and the source of every optimization pass; and the Witness Checker combines
the generated witness and the target and source transition relation to verify
that the witness is a stuttering simulation using Z3. In addition, an Invariant
Propagator uses the witness relation and symbolic manipulations using Z3 to
propagate invariants (computed during analysis or externally supplied) from a
source program to the target. Out of these five components only the first two
are optimization-specific.

Table 1 gives measurements which show (a) the effort required to write a
witness generator and (b) the overhead incurred to check the correctness of
witnesses. The implemented passes are chosen by their commonality, ease of
study and for clearly highlighting some of the critical parts of the framework. The
lines of code (LOC) for witness generation are those that are required specifically
for that optimization. In addition, there is code which is common to all passes,
and implements a witness checker, the invariant propagator, the translator, and
basic definitions, amounting in total to approximately 1 KLOC.

The LOC numbers are encouraging: compared to the effort required to define
the optimization, the effort required to define a witness generator is high only
for the simple constant propagation pass, but is much lower for the other two
passes. The run-time overhead measures the overhead of witness generation and
checking compared to the optimization time, measured with the time-passes

tool of the LLVM optimizer. The current runtime overhead for witness checking
is very high. However, this is a rough, unoptimized implementation, so we expect
this overhead to reduce substantially as the implementation is improved.

4 Conclusion and Related Work

The implementation described here is a work in progress, and is currently at an
early stage. Support for the instruction set of the IR is limited to binary oper-
ations over integers, return, branch (conditional and unconditional), compare,
and φ nodes. (This set suffices to describe while programs over the integers.) For
this reason, it is not possible yet to test the framework against “real” programs
that contain many currently unsupported instructions and data types.

Formal verification of a full-fledged optimizing compiler is often infeasible,
due to its size, evolution over time, and, possibly, proprietary considerations.

4



Translation Validation offers an alternative to full verification. A primary as-
sumption of this approach is that the validator has limited knowledge of the
transformation process. Hence, a variety of methods for translation validation
arise (cf. [7, 6, 9, 11, 12, 10]), each making choices between the flexibility of the
program syntax and the set of possible optimizations that are handled. As de-
tails of the optimization are assumed to be unknown, heuristics are used, which
naturally limits the scope of the method. Recently, [1] proposes a method for
proving equivalence based on relational Hoare logic; it resembles our witnesses,
yet is closer to translation validation and has similar limitations.

Since we assume the optimization process is visible to the witness generator,
the generator is able to make use of auxiliary invariants derived by the opti-
mizer in order to produce a witness. This implies that witness generation is, in
principle, applicable to any optimization.

References

1. G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric product
programs for relational program verification. In LFCS, pages 29–43, 2013.

2. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. web:

http://z3.codeplex.com/.
3. C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO, pages 75–88, 2004. Webpage at llvm.org.
4. X. Leroy. Formal certification of a compiler back-end or: programming a compiler

with a proof assistant. In POPL, pages 42–54. ACM, 2006.
5. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In Proc.

20th Static Analysis Symposium. To Appear.
6. G. Necula. Translation validation of an optimizing compiler. In Proceedings of the

ACM SIGPLAN Conference on Principles of Programming Languages Design and
Implementation (PLDI) 2000, pages 83–95, 2000.

7. A. Pnueli, M. Siegel, and O. Shtrichman. The code validation tool (CVT)- auto-
matic verification of a compilation process. Software Tools for Technology Transfer,
2(2):192–201, 1998.

8. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In B. Steffen,
editor, Proc. 4th Intl. Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’98), volume 1384 of Lect. Notes in Comp. Sci.,
Springer-Verlag, pages 151–166, 1998.

9. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the Run-Time Result Verification Workshop, July 2000.

10. J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation
validation for LLVM. In PLDI, pages 295–305, 2011.

11. L. D. Zuck, A. Pnueli, and B. Goldberg. Voc: A methodology for the translation
validation of optimizing compilers. J. UCS, 9(3):223–247, 2003.

12. L. D. Zuck, A. Pnueli, B. Goldberg, C. W. Barrett, Y. Fang, and Y. Hu. Transla-
tion and run-time validation of loop transformations. Formal Methods in System
Design, 27(3):335–360, 2005.

5


