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Abstract. This paper presents a system, Loopy, for programming loop
transformations. Manual loop transformation can be tedious and error-
prone, while fully automated methods do not guarantee improvements.
Loopy takes a middle path: a programmer specifies a loop transforma-
tion at a high level, which is then carried out automatically by Loopy,
and formally verified to guard against specification and implementation
mistakes. Loopy’s notation offers considerable flexibility with assembling
transformations, while automation and checking prevent errors. Loopy is
implemented for the LLVM framework, building on a polyhedral com-
pilation library. Experiments show substantial improvements over fully
automated loop transformations, using simple and direct specifications.

1 Introduction

Restructuring loops in programs to match a target architecture can yield dra-
matic improvements in run-time, e.g., by exploiting parallelism, by matching the
pattern of memory accesses to cache sizes and memory layout, and through ju-
dicious placement of prefetching instructions. Re-structuring a loop is, however,
a difficult task to do manually – it is tedious and error-prone, and the resulting
code is difficult to understand and to maintain. This problem has long been
recognized, and it has led to decades of work on sophisticated algorithms which
automatically optimize loops. An optimal transformation algorithm remains out
of reach, though, as the underlying optimization questions are computationally
difficult, having to balance a number of potentially conflicting objectives such as
code size, parallelism, and cache locality. Performance gains are, therefore, quite
variable, even with state-of-the-art compilers.

A remedy to these problems is a semi-automatic optimization approach,
where the work is split between the programmer and the compiler: the trans-
formation is specified at a high level by the programmer, but the task of im-
plementing it falls to the compiler and is done fully automatically. We explore
this approach in our work. The approach has multiple benefits. In comparison
with manual optimization, first, the programmer is relieved from the manual
effort of rewriting the program and the possibility of introducing errors. Second,
the specification or parts of it can be re-used, resulting in a library of transfor-
mations which further reduces manual effort. Third, the specification acts as a



certificate for the transformation, it can be verified during application by the
compiler, and even checked independently as a further guarantee of correctness.

In comparison with automatic optimization, significant performance gains
can be achieved using fairly simple specifications, as we observe in our exper-
iments, and has also been observed previously [6,12,9]. An alternate approach
often used to optimize programs is via calls to hand-optimized libraries like In-
tel’s MKL [13] and ATLAS [27]. A semi-automatic optimization approach can
complement these approaches and be useful when they do not produce the de-
sired performance improvement.

An effective semi-automatic optimization framework must (1) provide source-
code level semantics for the specifications, so that a programmer can easily
describe and reason about a transformation, and (2) automatically check the
correctness of a specification, so that incorrect transformations are not imple-
mented. Most existing works fall short on at least one of these. CHiLL [6,22],
POET [28], Orio [12] and X Language [7] allow program-level transformations,
but do not check correctness. On the other hand, URUK [9] verifies transfor-
mations, but the specification is on the underlying mathematical representation,
which can be too abstract for a programmer. Our work ensures both, by ex-
posing a small set of basic operators, which can be combined together to form
complex transformations, and by associating a formal declarative semantics to
each operator, which is used for automation and checking.

A transformation in our language is specified as a composition of (instances
of) primitive, building-block operations. The language supports four basic op-
erations, which allow arbitrary affine transformations on loop nests and flexible
ways of splitting and merging loops. Programmers label loops and sections of
loops with loop tags, which are used as handles to describe focused piece-wise
transformations on the loop components. The combination of powerful primi-
tive operations with piece-wise application makes it easy for a programmer to
assemble a complex loop transformation.

We define formal semantics for each of the basic operations via polyhedral
representation of programs. These semantics are used to implement the trans-
formations on the source program, and to ensure that the transformed program
is semantically equivalent to the original program.

We have implemented a prototype tool, Loopy3, building on a polyhedral
library for the LLVM compiler framework. Loopy is essentially an interpreter for
the specification language, it carries out the specified transformation and verifies
its correctness. We have evaluated Loopy on Polybench, a benchmark suite for
polyhedral model based tools. The experiments show significant improvements
in performance over fully automated methods, with simple specifications.

3 The name is an obvious pun on ‘loop’ transformation. Moreover, “loopy” is slang for
“crazy”, which we hope is not how this work strikes the reader!



for(i=0;i<N;i++){
for(j=0;j<N;j++){

{
Init: C[i][j] = 0;

}
for(k=0;k<N;k++){

Mult:
C[i][j] += A[i][k]*B[k][j];

}
}

}

(a) C++ matrix multiplication fragment

for(i=1;i<N;i++){
Div:

A[i] = A[i]/A[i -1];
}

(b) Correctness Checking

Fig. 1: Illustrative Programs to compare Loopy with URUK and CHiLL

2 Illustrative Example

We use simple C/C++ programs, shown in Figure 1, to illustrate capabilities
of Loopy as compared to two other semi-automatic optimization approaches,
CHiLL [6] and URUK [9]. CHiLL is representative of systems that specify trans-
formations at source program level, however do not provide any correctness guar-
antees. URUK is representative of the systems that provide correctness guaran-
tees but operate on alternate representations of programs.

We first focus on improving cache usage on a single-core machine for a ma-
trix multiplication program, shown in Figure 1a. A multidimensional array in
a C/C++ program is stored in row-major order and thus, accesses to elements
of array B exhibit poor spatial locality as consecutive accesses occur along the
column. Also, accesses to both A and B exhibit poor temporal locality, as each
element is accessed repeatedly in different iterations of the outer loops. We would
like to reorder these accesses to improve locality. A sequence of loop transforma-
tions that would achieve this is: the loop is first split into its component sections,
Init and Mult, the loop indices j and k are interchanged in Mult and finally,
the resulting loop is tiled. The first transformation enables the subsequent op-
erations on Mult, the second operation improves spacial locality for B and the
last operation improves temporal locality for arrays A and B.

We present optimization scripts in Loopy and URUK to implement these loop
transformations. Figure 2a shows the Loopy script. The first operation, realign,
readjusts the number of common loops between two adjacent loop components.
Here, the number of common loops is set to 0, which results in complete splitting
of the loops. The second one, affine, applies the specified affine transformation
to the iterators of a loop component. As is well known, affine transformations
can be used to represent common transformations such as loop permutations,
loop reversal, loop shifting, loop scaling, and loop tiling. For this example, the
affine transformations permute loop indices and tile the loop.



realign(Init, Mult, 0)
affine(Mult, {[i,j,k] -> [i,k,j]})
affine(Mult, {[i,j,k] -> [i1,j1,k1,i2,j2,k2]:

i1 = [i/64] and i2 = i%64 and
j1 = [j/64] and j2 = j%64 and
k1 = [k/64] and k2 = k%64})

(a) Loopy script

FISSION([0], [0], [1])
INTERCHANGE([1, 0])
TILE([1, 0], 64, 64)
STRIPMINE([1], 64)
INTERCHANGE([1, 0])
INTERCHANGE([1, 0, 0])

(b) URUK script

Fig. 2: Optimization scripts for program in Fig. 1a.

In URUK, the transformations are applied on a polyhedral representation
of programs, where each statement is represented by a vector of integers (we
refer to this representation in more detail in Section 3.2). Figure 2b shows a
script that is input to URUK. The FISSION operation splits the loop into com-
ponent sections. The first INTERCHANGE operation interchanges loop indices. The
remaining operations implement tiling. The TILE operation tiles the two inner
loops, while STRIPMINE sections the outermost loop. The INTERCHANGE opera-
tions are used to permute loop indices in correct order. In our view, the script
for Loopy is simpler and more direct than that for URUK. Loop tags Init and
Mult make it possible to focus the transformations on specific parts of the loop,
without referring to cryptic representations of statements.

We now use a sample loop, shown in Figure 1b, to illustrate requirements for
verifying correctness of transformations. It is easy to see that reversing the loop
Div is incorrect. Suppose the loop is executed with A initialized to [1, 2, 3, 4]. On
executing the loop, A is updated to [1, 2, 3/2, 8/3]. However, on executing the
reverse loop, A is updated to a different array [1, 2, 3/2, 4/3]. Hence, a transfor-
mation that reverses this loop is incorrect. Our experiment with CHiLL shows
that it implements this transformation without complaint. Loopy, on the other
hand, does not carry out the transformation, it generates a violation that points
to the execution order dependency that is not preserved. As mistakes such as
this are easy to make when complex transformations are involved, correctness
checking is essential.

3 Design

We describe the design of Loopy. The tool represents a point in the trade-off
between manual optimization (much effort for good performance) and automatic
optimization (little manual effort but variable performance).

Loopy may be viewed as a compiler extension that reads in and interprets a
transformation script. A script is a sequence of (instances of) primitive building-
block transformations. Loopy’s interpreter carries out the transformation defined
by the composition of the sequence of operations in the script. Loopy contains
a verifier, which checks the script and informs the user of an error if carrying it
out may result in a program with differing semantics.



In more detail, the transformation process works as follows. Initially, the poly-
hedral model (parameterized statements, iteration domains, initial schedules and
dependency maps) is constructed from the program. Loop components and their
domains are identified and computed from the loop tags in the program. Follow-
ing that step, the transformation script is read in, one operation at a time, and
interpreted. The interpretation of each operation results in a new schedule and
(possibly) the update of existing loop components and the creation of new loop
components. After all of the transformations are completed, the final program
schedule is checked by the verifier against the execution order dependency maps,
and any dependency violations are reported to the programmer.

This section presents the specification language (Section 3.1) with the formal
semantics for the building blocks (Section 3.2). Verification of transformations
is described in Section 4.

3.1 Specification Language

We give an overview of the operations available to a programmer to identify loop
components and specify transformations.

Loop Tagging Users may label loops or loop sections with tags and use those
as handles in a script. With tags, transformations can be focused on specific
portions of a loop. We re-use the idea of scope blocks from C and C++, and
define a block of code surrounded by curly braces ({ }) as a loop component. We
also assign a label to the first statement of the component and use it as the loop
tag and a handle in the optimization script. Labels Init and Mult in Figure 1a
are examples of loop tags. This re-purposing of scope blocks and labels avoids
the need for modifications to the source language.

Building-block Operations Next, we define the primitive operators currently
supported in Loopy. (We expect to add more as we gain experience with the tool.)
The operators are illustrated by the examples in Figure 3.

realign. The realign operator, written as realign(l1, l2, n), is used to split or merge
two adjacent loop components l1 and l2. This operator realigns the loop com-
ponents so that the number of common loops in the loop nests of l1 and l2 is
n. Consider the program in Figure 3a which consists of loops L1 and L2 with
indices i and j sharing one common loop. The result of applying the operators
realign(L1, L2, 0) and realign(L1, L2, 2) are shown in Figures 3b and 3c respec-
tively. The first splits the components into independent loop nests, while the
second merges them into a single loop nest.

lift. The lift operator, written as l2 = lift(l1, n), returns a handle l2 to the nth
level loop in the loop nest of l1. It does not transform the program schedule.
The ability to select a sub-loop is useful when a subsequent operator is to be
applied to an outer loop of the component. For example, applying the operator



for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: ....
....

}
for(j=0;j<N;j++){

L2: ....
....

}
}

(a) P

for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: ....
....

}
}
for(i=0;i<N;i++){

for(j=0;j<N;j++){
L2: ....

....
}

}

(b) Q

for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: ....
....

L2: ....
....

}
}

(c) R

for(i=0;i<N;i++){
for(j=0;j<N;j++){

L: ....
....
....
....

}
}

(d) S

for(i=0;i<N1;i+=2){
for(j=i/2;j<N2;j++){

L: ....
....
....
....

}
}

(e) T

for(i=0;i<N;i++){
for(j=0;j<N/2;j++){

L3: ....
....

}
for(j=N/2;j<N;j++){

L4: ....
....

}
}

(f) U

Fig. 3: Examples of basic operations: (a) P: original program (b) Q:
realign(L1, L2, 0) on P (c) R: realign(L1, L2, 2) on P (d) S: L = lift(L1, 2) on
R (e) T: affine(L, {[i, j]→ [2i, i+j]}) on S (where, N1 = 2N and N2 = N+ i/2)
(f) U: (L3, L4) = isplit(L, {[i, j] : j < N/2}, 1) on S.

L = lift(L1, 2) to the program in Figure 3c returns handle L to the merged loop
as shown in Figure 3d, which is used for further transformations.

affine. The affine operator, written as affine(l, f), is used to restructure the loop
nest of l according to a general affine function f . A new set of iterators is defined,
and each new iterator is assigned an affine function of old iterators, which is given
by the function f . As is well known, affine functions can be used to represent a
number of useful transformations, such as loop reversal (with {[i, j]→ [−i, j]}),
loop permutation (with {[i, j, k] → [j, k, i]}), loop scaling and shifting (with
{[i, j]→ [2i+ 1, j]}) and loop rotation (with {[i, j]→ [i+ j, i− j]}). Further, we
also allow integer division by a constant which further enables loop tiling (as in



{[i, j] → [i/32, j/32, i%32, j%32]}). Figure 3e shows an affine transformation of
program S in Figure 3d.

isplit. The isplit operator, written as (l1, l2) = isplit(l, p, n), is used to split the
index set of the loop nest of l to create two new loop nests given by handles l1
and l2, such that the indices in l1 satisfy the predicate p and those in l2 satisfy
¬p. The value n specifies the loop nest level at which the splitting occurs or the
number of common loops after the splitting. For example, consider the operator
(L3, L4) = isplit(L, {[i, j] : j < N/2}, 1) on program S in Figure 3d. The result
is shown in Figure 3f, where L3 consists of iterations of j with values less than
N/2 and L4 consists of those with values greater than N/2.

3.2 Formal Semantics

We use the polyhedral model of programs to define the semantics of these oper-
ators. The polyhedral model represents a program as a collection of statements
each of which is parameterized by the iterators of its enclosing loop nest. This
model is easy to manipulate via algorithms and hence, is widely used in auto-
mated analysis and optimization tools. It allows a rich class of transformations,
including the ones expressed in our specification language. We briefly describe
the model and follow that with a precise formulation of each operator.

Polyhedral model The polyhedral model represents a program as a collection
of statement instances, S, defined over an iteration space formed by the possible
values of iteration variables. A statement instance has the form s[i1, i2, . . . , iM ],
where s is a statement in the program, and i = (i1, . . . , iM ) is a vector of integer
variables representing the iterators of the loop nest which contains s. The set
of valid instances of statement s is given by constraining i, in terms of affine
inequalities on the iterators and the external parameters of the program; the set
of valid vectors is called the iteration domain of the statement.

A partial schedule function, denoted θ, maps a statement and a point in the
iteration space to a linearly ordered (abstract) “time” domain. The time value
given by θ(s, i) is referred to as the schedule vector of instance s[i]. We use a
schedule vector of the following shape: for statement instance s[i],

θ(s, i) = (p0, j1, p1, . . . , jM , pM )

The p-entries represent positions, the j-entries the iteration number, as explained
next. For convenience, we sometimes separate the position and iteration entries
in a vector, representing this as the pair of vectors (p, j).

Consider the abstract syntax tree of a loop nest. Each node represents a
basic program statement or a loop; its children (if any) represent nested sub-
statements of that statement, and are ordered by their sequence in the program.
The natural number p0 identifies a top-level loop or statement; the number p1
identifies one of the sub-statements of the p0’th statement. Thus, the sequence
of numbers p0, p1, p2, . . . fixes a path from root to leaf in the abstract syntax tree



of the outermost loop. The integer jk+1 fixes a particular iteration of the loop
statement at position p0, p1, . . . pk.

To simplify manipulation, we fix the dimension of the schedule vector to the
length of the longest root-to-leaf path in the abstract syntax tree, filling missing
entries with 0’s. As a convenient notation, let posθ(s, i) denote the position vector
(p0, p1, . . . , pM ), and let itθ(s, i) denote the iteration vector (j1, j2, . . . , jM ) in
the schedule vector θ(s, i).

Let u = θ(s, i) and v = θ(t, j) be schedule vectors for statement instances
s[i] and t[j] in the current schedule θ. If u is lexicographically smaller than v i.e.
u ≺ v then s[i] is executed before t[j]. Every loop transformation alters only the
schedule θ; the original set of statement instances and iteration domains remains
unchanged. I.e., only the execution order of the same set of statement instances
is rearranged.

As an example, consider the program in Figure 1a. The program consists
of statements sInit[i, j] and sMult[i, j, k]. The iteration domains of these state-
ments are 0 ≤ i < N ∧ 0 ≤ j < N and 0 ≤ i < N ∧ 0 ≤ j < N ∧ 0 ≤ k < N
and their initial schedule is (0, i, 0, j, 0, 0, 0) and (0, i, 0, j, 1, k, 0) respectively.
The corresponding position vectors in the initial schedule are [0, 0, 0, 0] and
[0, 0, 1, 0]. The execution order of the program is implicitly captured in the sched-
ule vectors: for an iteration [i0, j0], sInit[i0, j0] is executed before sMult[i0, j0, k]
since, [0, 0, 0, 0] ≺ [0, 0, 1, 0] and similarly, for two iterations [i0, j0] and [i1, j1] if
[i0, j0] ≺ [i1, j1], then sInit[i0, j0] is executed before sInit[i1, j1].

Consider program A in Figure 4a. Each statement is annotated with its
position vector. For example, statement s4 is annotated with vector [1, 1, 0], as
the outermost loop with iterator i is at position 1, the second loop with iterator
j is again at position 1, while the statement itself is at position 0.

Loop Component Let L denote the set of loop components in the program.
Let P (l) be the set of positions represented by component l. I.e., P (l) is the set
of positions of statements in the subtree rooted at l. Given P and schedule θ,
let Dθ(l) denote the set of statement instances contained in the scope block of
the component. I.e., s[i] is in Dθ(l) if and only if its position vector posθ(s, i) is
in P (l). In Figure 4a, for loop component L1, P (L1) = {[0, 0, 0], [0, 0, 1]}, and
Dθ(L1) = {s0[i, j], s1[i, j]} for the implied schedule θ.

Basic Transformations Now, we define the semantics of each basic operation.
This is defined as a change of the schedule of the program. I.e., a basic trans-
formation only rearranges the execution order of statements, it does not change
the set of statements. In each case, we specify the semantics of an operation as
a map from a current schedule θ to the new schedule θ′.

realign. In a realign(l1, l2, n) operation, the position vector of statements in loop
component l2 is updated so that, statements in l1 and l2 share the first n loops,
and l2 is next to l1 in the nth loop after the update. To define this, we first
compute the current gap between the positions of statements in l1 and l2. Let



for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: <s0 >[0,0,0]
<s1 >[0,0,1]

}
}
for(i=0;i<N;i++){

for(j=0;j<N;j++){
L2: <s2 >[1,0,0]

<s3 >[1,0,1]
}
for(j=0;j<N;j++){

L3: <s4 >[1,1,0]
<s5 >[1,1,1]

}
}

(a) A

for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: <s0 >[0,0,0]
<s1 >[0,0,1]

L2: <s2 >[0,0,2]
<s3 >[0,0,3]

}
for(j=0;j<N;j++){

L3: <s4 >[0,1,2]
<s5 >[0,1,3]

}
}

(b) B

for(i=0;i<N;i++){
for(j=0;j<N;j++){

L1: <s0 >[0,0,0,0]
<s1 >[0,0,1,0]

}
}
for(i=0;i<N;i++){

for(j=0;j<N1;j++){
for(k=0;k<N2;k++){

L2: <s2 >[1,0,0,0]
<s3 >[1,0,0,1]

}
}
for(j=0;j<N;j++){

L3: <s4 >[1,1,0,0]
<s5 >[1,1,1,0]

}
}

(c) C

Fig. 4: Examples illustrating semantics of basic operations (a) A: original pro-
gram with statements labeled with position vectors (b) B: realign(L1, L2, 2) on
A (c) C: affine(L2, {[i, j]→ [i, j/32, j%32]}) on A (where N1 = N/32 + 1, N2 =
min{32, N − j ∗ 32}). Note the change in position vectors in programs B and C.

the lexicographically largest position in l1 be p1 i.e. p1 = max(q), q ∈ P (l1) and
the lexicographically smallest position in l2 be p2 i.e. p2 = min(q), q ∈ P (l2)
and let gap, g be their difference, i.e. g = p2 − p1. For example, in Figure 4a,
the largest position in L1 is [0, 0, 1] and the smallest position in L2 is [1, 0, 0]
and their gap is [1, 0,−1]. Now, to get the desired update, this gap should be
removed, and thus, g must be subtracted from position vectors of statements in
l2. To position statements in l2 next to those in l1 at the nth loop, the nth value
in their position vectors must be incremented by 1. Therefore, for a statement
s[i] ∈ D(l2), the new position vector, posθ′(s, i) is posθ(s, i) − g + I(n), where
I(n) is an indicator vector with component Ij(n) = 1 if j = n and 0 otherwise.

In a realign operation, the positions of statements with positions after those
in l2 must also be updated by the same amount as statements in l2. This is be-
cause, the relative difference between the positions of statements in l2 and those
after l2 must remain same. For example, consider the operation realign(L1, L2, 2)
on program A in Figure 4a. The resulting program is shown in Figure 4b. To
preserve the relative position with respect to L2, the statements in L3 must also
be moved inside the loop with iterator i.



The overall transformation is:

φrealign(p, j) =
{

(p + p1 − p2 + I(n), j) p � p2

(p, j) otherwise

Note that, p � p2 denotes all position vectors lexicographically greater than
or equal to p2 and thus, represents all statements in l2 or those after l2 in the
syntax tree. Now, the new schedule θ′ = φrealign◦θ and for each component l ∈ L,
P ′(l) = φrealign(P (l)).

lift. The operation l2 = lift(l1, n) is different from the others in that it is only
definitional, it does not alter schedules. This operation adds a new component l2
to L. This component consists of all statements within the nth outer loop of l1.
These are precisely the statements in the program for which the position vectors
match those in P (l1) on the first n values. Hence, the operation returns a loop
component l2 such that,

P (l2) = {q : (q0, q1, . . . , qn−1) ≡ (p0, p1, . . . , pn−1) for some p ∈ P (l1)}

affine. The operation affine(l, f) applies function f to the iteration vector of
statements in l. As f may increase the number of iterators, it may be required
to update the position vectors of statements as well. Let f take a iterators and
generate b iterators as output, i.e. f : Za → Zb, b ≥ a. First, the number of
dimensions of position vectors must be increased by b−a dimensions to account
for the additional iterators. Next, the dimensions of old position vectors must be
mapped to the new set of dimensions, such that the relative position difference
between statements in l and those outside l remains the same and also, the
statements in l are contained inside the new iteration set.

The position of statements outside l remains the same with only zeros padded
in the end. However, the position vectors of statements within l is updated as
follows. To preserve the relative position difference, we map the first a dimen-
sions of old position vector to the a dimensions of the new one. To contain the
statements inside the new iteration set, every subsequent dimension is shifted
to the right by b− a positions and thus, kth dimension of old position vector is
mapped to (k + b − a)th dimension in the new position vector. The remaining
dimensions are filled with zeros. For example, Figure 4c shows the result of op-
eration affine(L2, {[i, j] → [i, j/32, j%32]}) on program in Figure 4a. As can be
seen, for statements in L1 and L3, a zero is added in the last dimension, while
for L2, zero is added in the third dimension of the position vector.

The overall transformation is:

φaffine(p, j) =


((p0, . . . , pa,

(b-a)︷ ︸︸ ︷
0, . . . , 0, pa+1, . . . , pM ), f(j)) p ∈ P (l)

((p,
(b-a)︷ ︸︸ ︷

0, . . . , 0), (j,
(b-a)︷ ︸︸ ︷

0, . . . , 0)) otherwise

As in the case of realign, θ′ = φaffine ◦ θ and for each component l ∈ L, P ′(l) =
φaffine(P (l)).



isplit. The operation (l1, l2) = isplit(l, pred, n) splits the iteration domain of the
loop component l into two new components, l1 and l2. Component l1 consists
of statements in l whose current iteration vector satisfies the predicate pred, i.e.
pred(itθ(s, i)) = true, while l2 consists of the remaining statements. Note that
the first component l1 takes the place of l, while l2 is inserted after l1 in the
nth loop. To accommodate this, statements in l2 and all subsequent statements
must be moved down by one position. This is done just as in the case of realign
operation. Let the lexicographically smallest schedule vector in P (l) be pm. The
transformation here is

φisplit(p, j) =
{

(p, j) p ≺ pm ∨ p ∈ P (l) ∧ pred(j)
(p + I(n), j) otherwise

As in the previous cases, θ′ = φisplit ◦ θ and for each component l ∈ L, P ′(l) =
φisplit(P (l)). Further, the new components l1 and l2 are defined as follows:

P ′(l1) = {(p) : p ∈ P (l)}

P ′(l2) = {(p + I(n)) : p ∈ P (l)}
Note that, φisplit ensures that statements in l1 and l2 correspond to those at
locations in P ′(l1) and P ′(l2) respectively.

4 Verification

The loop transformation operates in three stages. First, the program text is
turned into a polyhedral model. Then the model is transformed according to the
specified script. Finally, the resulting model is turned back into a program text.
The first (and more important in practice) check is to ensure that an incorrect
script specified by a programmer is never executed. We do so by verifying certain
conditions at the polyhedral level. The second is to ensure consistency between
the execution semantics of the polyhedral model and its associated program.
In our experience with Loopy, the first check has proved to be invaluable, pre-
venting us from performing transformations that seemed correct but violated
dependencies in subtle ways. The second check is not yet implemented.

4.1 Verifying the polyhedral transformation
Programmers have full freedom to specify transformations and may, therefore,
specify incorrect ones. An incorrect specification will lead to a schedule that
suffers from one of two possible problems:
– The schedule may not be a one-to-one map. I.e., more than one statement

instance could be mapped to the same time in the new schedule.
– The new schedule may not respect execution order dependencies between

statement instances. A transformation is guaranteed to be correct if it re-
arranges execution order only for independent statement instances. (Two
statement instances are independent if they refer to disjoint variables, or if
all common references are reads.)



The verifier in Loopy checks the correctness of a transformation by checking
that it is a one-to-one map, and that it preserves dependencies. We assume
that the original schedule is one-to-one and Loopy only checks one-to-oneness
of the overall transformation function φ. Since φ is a linear transformation,
Loopy uses a linear algebra library, ISL [26] to do this check. Loopy relies on
the polyhedral model to supply the original execution order dependency maps
between statement instances. If there is a dependency s[i]→ t[j], then s[i] must
be executed before t[j]; a transformation that does not preserve this dependency
is likely to be faulty. Let the final schedule of the transformed program be given
by the function θ′. Loopy checks that θ′(s, i) ≺ θ′(t, j) holds for all dependencies
s[i]→ t[j]. If this check fails, the violated dependencies are reported to the user
as a source of potential incorrectness.

The checks are performed only after composing the sequence of transfor-
mations in the specification. This is because dependencies can be temporarily
violated in the middle of a sequence but established at the end. A check per-
formed after every transformation would (incorrectly) mark such sequences as
invalid. The situation is similar to that commonly encountered in establishing
an inductive loop invariant, which may be temporarily violated within the loop
body while being re-established at the start of the next iteration.

4.2 Verifying the program-model correspondence

We formulate the consistency question as follows. A program has a natural oper-
ational semantics, where the program is represented by a state transition system.
The state is a map from variables to values, while a transition corresponds to
execution of a statement instance. In the polyhedral model, on the other hand,
statement instances are executed according to the specified schedule. The ques-
tion is to formulate conditions under which the scheduled ordering coincides with
the natural ordering. As will be apparent, the conditions have a strong similar-
ity to invariants and ranking functions. This analysis is valid only for sequential
programs, checking parallelizing transformations is a topic for future work.

As formulated in the previous section, polyhedral execution is defined over
an iteration space I (the set of all valid iteration vectors). Each statement is
associated over a subset of that space, called its domain (denoted dom(s), for
statement s). The schedule function, θ : stmt × I → T , maps a statement and
a point of the space to an element of a totally ordered set, T (“time”). The
schedule function is partial; however, for a statement s it is defined for all points
in dom(s). The operational model executes statement instances in the order
defined by the schedule. I.e., in a computation following the schedule, instance
t[j] occurs after instance s[i] if θ(s, i) ≺ θ(t, j).

As programs are sequential, one must rule out the possibility of concurrent
execution. This is done by checking that the schedule is a one-to-one map, so
that different instances are not mapped to the same time.. I.e., the following is
valid:

[(s 6= t) ∧ (i 6= j) ∧ i ∈ dom(s) ∧ j ∈ dom(t) ⇒ θ(s, i) 6= θ(t, j)]



Next, we present conditions which ensure that every natural execution is
a scheduled execution. To simplify the presentation, we suppose that there are
empty statements, entry and exit, at the start and end of the loop, with scheduled
time ⊥ (the minimum of the time domain) and > (the maximum of the time
domain) respectively. Let ps,t represent the path transition relation from the
state before statement s to the state before statement t.

(Inv) If an instance of t follows an instance of s in the program semantics,
its iteration vector should belong to the domain of t. The following validity
expresses the constraint.

[ps,t(i, j) ∧ i ∈ dom(s) ⇒ j ∈ dom(t)]

Note that this implies that the collection of statement domains is a mutual
inductive invariant.

(Rank1) The instance of t must have a scheduled time after that of the
instance of s. I.e., the following should be valid:

[ps,t(i, j) ∧ i ∈ dom(s) ⇒ θ(s, i) ≺ θ(t, j)]

(Rank2) The instance of t must have the minimum scheduled time after
that of the instance of s. I.e., the following should be valid:

[ps,t(i, j) ∧ i ∈ dom(s) ∧ u 6= t ∧ k ∈ dom(u) ∧ θ(s, i) ≺ θ(u,k)
⇒ θ(t, j) ≺ θ(u,k)]

These are implicitly universally quantified expressions in the free variables.
As the domain and schedule functions are given by affine expressions, if the path
conditions can be represented in an SMT-supported logic, the validity checks can
be carried out automatically using an SMT solver.

To illustrate this further, consider the program in Figure 1a. As noted in the
previous section, it has two statements, sInit[i, j] and sMult[i, j, k]. The iteration
domains of these statements are 0 ≤ i < N ∧0 ≤ j < N and 0 ≤ i < N ∧0 ≤ j <
N∧0 ≤ k < N and their initial schedule θ is (0, i, 0, j, 0, 0, 0) and (0, i, 0, j, 1, k, 0)
respectively. Now consider a path from sInit[i, j] to sMult[i, j, 0]:

– Inv: For each (i, j) ∈ dom(sInit), (i, j, 0) ∈ dom(sMult)
– Rank1: θ(sInit, (i, j)) = (0, i, 0, j, 0, 0, 0) ≺ (0, i, 0, j, 1, 0, 0) = θ(sMult, (i, j, 0))
– Rank2: sMult[i, j, 0] has the minimum scheduled time after sInit[i, j]

We similarly check paths entry to sInit[0, 0], sMult[i, j, k] to sMult[i, j, k+ 1], k <
N − 1, sMult[i, j,N − 1] to sInit[i, j + 1], j < N − 1, and sMult[N,N,N ] to exit.

Theorem 1. For a schedule meeting the conditions above, the scheduled com-
putations are precisely the program computations.

For any natural program computation, conditions (Inv), (Rank1) and (Rank2)
ensure that there is a corresponding scheduled computation with the same se-
quence of actions. The other direction follows by determinism, non-blocking, and
the 1-1 nature of θ. A detailed proof is presented in the appendix.



5 Implementation

We have implemented Loopy in Polly [10], a polyhedral library for LLVM [17].
LLVM is a popular compiler framework used to generate optimized code for var-
ious front-end high level languages and back-end platforms. LLVM converts the
high-level program into an intermediate representation, known as the LLVM IR,
that goes through a sequence of compiler analysis and transformations and is
then converted into an executable for a back-end platform. Polly is a sophisti-
cated library of transformations used to extract polyhedral models from LLVM
IR, transform the extracted model, and convert it back to LLVM IR. Loopy is im-
plemented as an optimization phase within Polly that transforms the polyhedral
model of the program provided by Polly. Polyhedral models can be extracted
for a wide variety of programs containing structured and unstructured loops [4].
Code is generated from the polyhedral model for various kinds of schedules [11].
By basing itself on Polly, Loopy becomes immediately applicable to a large class
of programs and transformations.

ISL [26] is a library for representing and manipulating integer sets and re-
lations; it supports various operations and decision procedures on these. This
library is used to represent the components of polyhedral model, such as the
set of statements, their iteration domains, and schedules. We further use ISL to
implement the basic transformations, apply them on the polyhedral model, and
to verify the final model for correctness. Verification checks the polyhedral trans-
formation; the program-model correspondence is not yet implemented. Most of
the operations used in defining our transformations can be mapped directly to
an operation in ISL, which simplifies the implementation.

The optimization script is stored in a separate file, which is read in through a
parser that extracts the type and inputs for each transformation to be applied on
the program. Further, we rely on the ISL parser to parse the affine transformation
and predicate representations for the affine and isplit operators.

To implement loop tags and extract domains of loop components in the poly-
hedral model, we do the following. The front-ends for LLVM do not necessarily
preserve scope blocks while generating LLVM IR from the source code. There-
fore, we surround a loop component block with a dummy for loop containing a
single iteration, if there is not one already present. This helps identify the block
of tagged code in the corresponding LLVM IR. While we currently perform this
manually as needed, this will be automated in the future. The label of the first
statement in a loop block is read during the construction of polyhedral model
in Polly to get the desired loop component handle. We augment the polyhedral
construction phase to construct a map from the handle to the initial schedule
of all statements contained within the loop component, which gives the required
domain of the loop component. This works well in general. However, we did find
a few cases where prior optimization to LLVM IR either modified the label of the
loop component or the loop itself and thus, domains could not be constructed
for some of the loop components. We plan to resolve this issue in future.



6 Evaluation

In this section, we present a preliminary evaluation of Loopy. We had multi-
ple goals while evaluating Loopy. First, we wanted to understand the amount
of speed-up that can be achieved using Loopy as compared to state-of-the-art
optimizing compilers. Second, we wanted to assess the amount of effort that is
required to achieve these significant speed-ups. Third, we wanted to understand
what kind of optimizations are applicable and which basic transformations get
used most often. Lastly, we wanted to understand the overall experience of using
this tool. We present our observations here.

We evaluated Loopy on Polybench 4.1 [19], a benchmark suite maintained
by the polyhedral compilation community. This is a collection of 30 programs
from various domains, which provides a diverse set of benchmark programs.
The programs expose only the kernels that need to be optimized and thus, are
easy to work with. We optimize these programs for performance on single cores,
focusing on improving cache usage. We compare Loopy with the PLUTO [5] based
optimizer in Polly (LLVM version 3.7.0), with LLVM/Clang (version 3.7.0), and
with the Intel C++ Compiler (version 16.0.2) under -O3 optimization.

For each program in the suite, we labeled the program with loop tags, and
wrote an optimization script. We experimented with different combinations of
transformations to improve performance of the programs, selecting those which
showed significant improvements. All scripts together were written and analyzed
in a week’s time. They required combining specifications of loop splitting, loop
merging, loop interchange, loop shifting and loop tiling. The specifications are
included in the appendix. Most of the programs have simple optimization scripts.

The experimental setup used is as follows. We ran experiments on a Macbook
Pro with Intel i5 processor (2.6 GHz, 3MB L3 Cache, 256KB L2 Cache) and 8
GB 1600 MHz DDR3 RAM. Polybench comes with data sets of different sizes,
we use the standard data set here. We report execution times that are average
of 3 runs of the programs, though we found them to be fairly consistent. The
verification step does not noticeably influence the compilation time, therefore,
we do not report the compilation times here.

The results of the experiments are shown in Figure 5. The benchmarks are
split into different categories, with a sub-plot for each category. Each sub-plot
shows the speed up achieved using Loopy-specified optimizations as compared
to those performed by ICC, Polly and LLVM/clang, respectively. The number
of basic transformations used by Loopy is annotated on top of the bars, for each
benchmark.

As can be seen from the figure, we achieve significant speedups for Linear
Algebra Kernels and Solvers and Data Mining applications. We found that most
of these programs were variants of matrix multiplication program from Figure 1a,
and similar ideas worked to improve the performance. In particular, improving
spatial locality of data accesses resulted in a significant speed up. Tiling the
iteration space was also useful in improving the temporal locality, although it
improved the performance only slightly. In this class, the optimization scripts
were fairly small and involved realigning loops followed by affine transformations.
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Fig. 5: Speed-ups with Loopy vs ICC, Polly, and LLVM/clang on Polybench
programs. The number of basic transformations used by Loopy is anno-
tated on top of the bars, for each benchmark. Speed-ups are ratios of ex-
ecution times of the kernels: e.g., speedup in Loopy vs ICC is given by
(ICC optimized execution time)/(Loopy optimized execution time).

We did not achieve significant speedups for Stencils, as the data-accesses
were already aligned well and hence exhibited good spatial locality. Most of the
speed up came from shifting loops and then merging adjacent loops that led



to reuse of data elements across loops and hence improved temporal locality.
In some cases, it is possible to tile the loops; however, this required complex
skewing transformations, which we found hard to specify manually. Specifically,
in seidel-2d, it took multiple iterations to find the right transformation and
verification came handy in this search. We plan to experiment with new operators
which address loop skewing directly, which should simplify this process in future.

Lastly, for some benchmarks, we did not find any transformation (in the lim-
ited time spent optimizing the scripts) that improved the performance of the
application. In Figure 5, those are applications where the number of transforma-
tions is 0. Note that in all cases, our performance is almost equivalent or better
than the other compilers. This indicates that those programs were difficult to
optimize automatically as well. Further in certain cases, automatic optimization
deteriorated performance. For example in linear algebra kernels gesummv and
bicg, Polly tiles a key loop in the program which already exhibits good spatial
and temporal locality. This transformation, therefore, only adds an overhead of
additional checks and leads to poor performance.

We now detail some of experiences with using the tool. First, we found ver-
ification to be helpful in finding bugs in our optimizations. In particular, while
optimizing lu, we received an error on merging adjacent loops, which we had
thought initially was possible. On further inspection, we realized that Polly nor-
malizes iterators to start from 0 and increment by 1, which caused the problem
with our strategy. After modifying the transformation to take this into account,
we obtained a correct optimization. The feedback about which dependencies were
violated in the initial strategy was helpful in understanding the source of the
mistake. For programs 3mm and ludcmp, we found that Polly does not produce
dependency maps between statements, which prevents Polly from optimizing the
program. For Loopy, on the other hand, dependency maps are only necessary to
check correctness at the final step, and are not needed for the actual trans-
formation. We were able to transform those programs and achieved significant
speedup for 3mm. Lastly, for durbin and ludcmp, we found that some of the loop
tags in the source program are not preserved in the conversion to LLVM IR.
This prevented us from applying certain optimizations.

7 Related Work

Our system builds upon a considerable body of work on automated loop trans-
formation methods, which is covered in a number of excellent books [2,1,18,3],
papers and tools. In particular, we build upon the theory of polyhedral loop
transformation (cf. [8,14]) – which grew out of earlier work on algebraic repre-
sentations of iteration spaces [16] and other influences – and its implementation
in the Polly system for LLVM [10]. A well studied means for automated opti-
mization (e.g., followed in PLUTO [5]) is to convert the problem into an integer
linear programming (ILP) formulation and optimize an objective function. A
different approach (cf. [28,9,15,25,24]) is a search through the space of sequences
of transformations: the search process generates sequences of transformations



formed from a basis set and chooses those which maximize performance based
on run-time tests. These automatic approaches work well in a variety of situa-
tions, though not all situations, primarily due to the computational hardness of
the underlying problems. Loopy relies on programmers to specify transformations
and programmer insight can often supersede these sophisticated algorithms.

A few domain specific works have also been developed along similar lines: SPI-
RAL [20] for digital signal processing, Halide [21] for image processing pipelines
and BLAC [23] for linear algebra expressions. However, first, they are specific
to a domain, and second, they require programmers to express computation in
a new language which might be a steep learning curve.

Other systems have been developed with goals similar to ours. CHiLL [6,22]
is a system which makes available a rich set of affine transformations to the
programmer. POET [28], Orio [12] and X Language [7] also provide similar
facilities. However, as noted in Section 2, these systems do not guard program-
mers against incorrect specifications, which may hinder usability. Another sys-
tem from ALCHEMY group, URUK [9] provides transformation primitives that
operate on polyhedral representation of loops and also checks transformations
for correctness. However, polyhedral representation can be too abstract for a
programmer to use efficiently. In fact, the primary motive of this work was to
provide a structured transformation space for automatic methods to search effi-
cient implementations, and not direct usage by programmers. Loopy represents
the best of both worlds with clean programmer semantics and strong correctness
guarantees.

8 Conclusion and Future Work

The Loopy framework gives full freedom to a programmer’s ingenuity while en-
suring that every transformation is correctly implemented. The key insight is
that the combination of flexibility, automation and checking (“trust but verify”!)
is powerful and enjoyable to work with. Our experiments show that simple, di-
rect specifications can result in significant improvements over fully automated
methods. In future work, we plan to explore this combination for the paralleliza-
tion of loops for multi-core and GPU platforms. Here, verification becomes even
more essential, in order to catch subtle errors that can arise from weak memory
models. We hope to be able to make use of the considerable literature on weak
memory model verification to ensure correct transformations.

Acknowledgements. We would like to thank our colleagues at Bell Labs
and at the University of Pennsylvania for their helpful comments on this re-
search. This work was supported, in part, by DARPA under agreement num-
ber FA8750-12-C-0166. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.



References
1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,

and Tools. Addison Wesley (2006)
2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann (2001)
3. Banerjee, U.: Dependence analysis. Loop transformations for restructuring com-

pilers, Kluwer (1997)
4. Benabderrahmane, M., Pouchet, L., Cohen, A., Bastoul, C.: The polyhedral model

is more widely applicable than you think. In: Compiler Construction, 19th In-
ternational Conference, CC 2010, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings. pp. 283–303 (2010), http://dx.doi.org/10.
1007/978-3-642-11970-5_16

5. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical au-
tomatic polyhedral parallelizer and locality optimizer. In: Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Im-
plementation, Tucson, AZ, USA, June 7-13, 2008. pp. 101–113 (2008), http:
//doi.acm.org/10.1145/1375581.1375595

6. Chen, C., Chame, J., Hall, M.: CHiLL: A framework for composing high-level loop
transformations. Tech. Rep. 08-897, University of Southern California (2008)

7. Donadio, S., Brodman, J., Roeder, T., Yotov, K., Barthou, D., Cohen, A.,
Garzarán, M.J., Padua, D., Pingali, K.: A language for the compact represen-
tation of multiple program versions. In: Proceedings of the 18th International
Conference on Languages and Compilers for Parallel Computing. pp. 136–151.
LCPC’05, Springer-Verlag, Berlin, Heidelberg (2006), http://dx.doi.org/10.
1007/978-3-540-69330-7_10

8. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time. International Journal of Parallel Programming 21(6), 389–
420 (1992), http://dx.doi.org/10.1007/BF01379404

9. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. International Journal of Parallel Programming 34(3), 261–317
(2006), http://dx.doi.org/10.1007/s10766-006-0012-3
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A Proofs

The computation graph induced by a schedule function θ from a state s0 is
defined as follows. Graph nodes are called configurations, each is a pair: (state,
time). The initial configuration is (s0, 0). A configuration (s′, T ′) is a successor
of configuration (s, T ) by an instance (a, k) if (1) (a, k) has the least scheduled
time beyond T , (2) s′ = a(s[I ← k]). I.e., s′ is obtained by applying action a
to a modification of state s where the iteration variables I are given values by
vector k, and (3) T ′ = θ(a, k).

Proof of Theorem 1. The proof shows that the natural and scheduled
computations are identical from a common initial state, s0. There is a single
natural computation, η, from s0, as the program is deterministic. There is also a
single scheduled computation, σ, from s0, as the schedule function is 1-1, so there
is a unique next action at each step. Let η = s0; a0; s1; a1; . . ., where the si’s are
states and the ai’s are actions. For any k, let η[k] denote the prefix of η with
the first k actions, and similarly for σ[k]. (For values of k that are greater than
the number of actions on a (finite) computation, the prefix is the computation
itself.) Let the iteration vector at state x be denoted by iv(x).

The proof is by induction. The inductive claim is that for every k, the prefixes
η[k] and σ[k] are identical, and that for each i (with 0 ≤ i < k), if ai is defined,
then iv(si) is in dom(ai), and the action in σ corresponding to ai is (ai, iv(si)).

This claim is true trivially for k = 0. It is also true trivially for k = 1, as
the first action must be the entry action, which has the smallest scheduled time
and whose domain contains only the initial iteration vector at s0. Let k > 0 and
assume that the inductive claim holds for all values up to k. Consider the claim
for k + 1. There are three cases:

(a) The natural computation has l actions, where l < k. Then η[k + 1], η[k]
and η[l] are identical. From the inductive assumption, η[l] = σ[l] and η[k] = σ[k],
so that σ[l] = σ[k]. Hence, the scheduled computation has l actions as well,
which implies that σ[k + 1] = σ[k]. Therefore, σ[k + 1] = η[k + 1] and the claim
is established for k + 1.

(b) The natural computation has k actions, so that η[k + 1] = η[k]. Then
sk is the final state on η, and the last action on η[k] and σ[k] – which are
identical by the induction hypothesis – must be the exit action. As this action
has the maximum scheduled time, there is no successor to sk on the scheduled
computation, either. Thus, σ[k + 1] = σ[k]; hence, σ[k + 1] = η[k + 1] and the
claim is established for k + 1.

(c) The natural computation has more than k actions, so that sk is not
the final state. Let a = ak−1 and b = ak. The path condition pa,b holds for
(iv(sk−1), iv(sk)). By the inductive assumption, iv(sk−1) is in dom(ak−1) so, by
(Inv), iv(sk) is in dom(ak). By (Rank1) and (Rank2), (ak, iv(sk)) is the action
instance with the least scheduled time after θ(ak−1, iv(sk−1)). Hence, (ak, iv(sk))
is the k’th next action on σ, with successor state sk+1. This re-establishes the
inductive claim for k + 1. EndProof.



B Optimization Scripts

We present here some optimization scripts used to optimize Polybench programs.
We also present the annotated kernels corresponding to the optimization scripts.
The benchmarks presented here are: gemver, trmm, 2mm, doitgen, 3mm, mvt,
gramschmidt, lu, adi, fdtd-2d, heat-3d, jacobi-2d, seidel-2d and covariance.

1. linear-algebra / blas / gemver:
Annotated Kernel:

Optimization:
affine(Second, {[i,j]->[j,i]})

2. linear-algebra / blas / trmm:
Annotated Kernel:

Optimization:
realign(Mult, Alpha, 0)
affine(Mult, {[i,j,k]->[i,k,j]})
affine(Mult, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32 and k1=[k/32] and k2=k%32})

3. linear-algebra / kernels / 2mm:
Annotated Kernel:



Optimization:
realign(Init, Mult, 0)
affine(Mult, {[i,j,k]->[i,k,j]})
affine(Mult, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32 and k1=[k/32] and k2=k%32})

realign(Scale, Sum, 0)
affine(Sum, {[i,j,k]->[i,k,j]})
affine(Sum, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32 and k1=[k/32] and k2=k%32})

4. linear-algebra / kernels / doitgen:
Annotated Kernel:

Optimization:
realign(Init, Mult, 2)
affine(Mult, {[r,q,p,s]->[r,q,s,p]})
affine(Mult, {[r,q,s,p]->[r,q,s1,p1,s2,p2]: p1=[p/64] and p2=p%64 and s1=[s/64]
and s2=s%64})

5. linear-algebra / kernels / 3mm:
Annotated Kernel:



Optimization:
realign(InitE, CompE, 0)
affine(CompE, {[i,j,k]->[i,k,j]})
affine(CompE, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and
j1=[j/32] and j2=j%32 and k1=[k/32] and k2=k%32})

realign(InitF, CompF, 0)
affine(CompF, {[i,j,k]->[i,k,j]})
affine(CompF, {[i,j,k]->[i1, j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and
j1=[j/32] and j2=j%32 and k1=[k/32] and k2=k%32})

realign(InitG, CompG, 0)
affine(CompG, {[i,j,k]->[i,k,j]})
affine(CompG, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and
j1=[j/32] and j2=j%32 and k1=[k/32] and k2=k%32})

6. linear-algebra / kernels / mvt:
Annotated Kernel:



Optimization:
affine(Second, {[i,j]->[j,i]})

7. linear-algebra / solvers / gramschmidt:
Annotated Kernel:

Optimization:
realign(InitR, UpdateR, 1)
realign(UpdateR, UpdateA, 1)
affine(InitR, {[i,j,k]->[i,k,j]})
affine(UpdateR, {[i,j,k]->[i,k,j]})
affine(UpdateA, {[i,j,k]->[i,k,j]})

8. linear-algebra / solvers / lu:
Annotated Kernel:

Optimization:
affine(Right, {[i,j,k]->[i,j+i,k]})
affine(Norm, {[i,j,0]->[i,j,j]})



realign(Norm, Right, 3)
realign(Left, Norm, 3)
L = lift(Left, 3)
affine(L, {[i,j,k]->[i,k,j]})
affine(L, {[i,j,k]->[i1,j1,k1,i2,j2,k2]:
i1=[i/128] and i2=i%128 and j1=[j/128] and j2=j%128 and k1=[k/128] and
k2=k%128})

9. stencils / adi:

Annotated Kernel:

Optimization:

realign(Vinit, V, 1)
affine(V, {[i,j,k]->[i,k,j]})
affine(V, {[t,i,j]->[t,i1,j1,i2,j2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32})

10. stencils / fdtd-2d:

Annotated Kernel:



Optimization:
realign(EY, EX, 3)
affine(HZ, {[t,i,j]->[t,i+1,j]})
realign(EX, HZ, 3)

11. stencils / heat-3d:
Annotated Kernel:



Optimization:

affine(LoopA, {[t,i,j,k]->[t,i+1,j,k]})
realign(LoopB, LoopA, 4)

12. stencils / jacobi-2d:

Annotated Kernel:

Optimization:

affine(LoopA, {[t,i,j]->[t,i+1,j]})
realign(LoopB, LoopA, 3)

13. stencils / seidel-2d:

Annotated Kernel:

Optimization:

affine(Loop, {[t,i,j]->[t,i+t,j+i]})
affine(Loop, {[t,i,j]->[t,i1,j1,i2,j2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32})

14. data-mining / covariance:

Annotated Kernel:



Optimization:
realign(Init, Mult, 0)
realign(Mult, Final, 0)
affine(Mult, {[i,j,k]->[k,i,j]})
affine(Mult, {[i,j,k]->[i1,j1,k1,i2,j2,k2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32 and k1=[k/32] and k2=k%32})
affine(Final, {[i,j]->[i1,j1,i2,j2]: i1=[i/32] and i2=i%32 and j1=[j/32]
and j2=j%32})
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