
The Impact of Program Transformations on
Static Program Analysis

Kedar S. Namjoshi1 and Zvonimir Pavlinovic2

1 Bell Labs, Nokia kedar.namjoshi@nokia-bell-labs.com
2 New York University zvonimir@cs.nyu.edu

Abstract. Semantics-preserving program transformations, such as those
carried out by an optimizing compiler, can affect the results of static
program analyses. In the best cases, a transformation increases preci-
sion or allows a simpler analysis to replace a complex one. In other
cases, transformations have the opposite effect, reducing precision. This
work constructs a theoretical framework to analyze this intriguing phe-
nomenon. The framework provides a simple, uniform explanation for
precision changes, linking them to bisimulation relations that justify the
correctness of a transformation. It offers a mechanism for recovering lost
precision through the systematic construction of a new, bisimulating
analysis. Furthermore, it is shown that program analyses defined over
a class of composite domains can be factored into a program transforma-
tion followed by simpler, equally precise analyses of the target program.

1 Introduction

It has been empirically observed that a semantics-preserving program transfor-
mation may alter the outcome of a static analysis, making the results more or
less precise. Consider, for instance, the program on the left in Figure 1. A stan-
dard odd-even parity analysis will deduce that x is odd and y is even at the end
of the program; but the parity of z is unknown, as the value of y div x could
have either parity (consider y = 10, x = 5 and y = 10, x = 3). An application
of constant propagation and folding, a standard compiler optimization that re-
places expressions with equivalent constant values, produces the program on the
right. Parity analysis on that program will deduce that z is even.

x := 3;

y := x * 4;

z := (y div x)*z;

x := 3;

y := 12;

z := 4*z;

Fig. 1: A constant propagation transformation: source on left, target on right.

In this instance, the transformation enhances precision. Several tools (e.g.,
SMACK [4] and SeaHorn [17]) use transformations for this purpose. But not



all transformations enhance precision: as pointed out in [22], a translation to 3-
address code can render certain relational analyses imprecise. Program analyses
are, therefore, not robust under semantics-preserving transformations.

This observation raises three central questions: (1) How does an (arbitrary)
transformation affect the results of an (arbitrary) analysis? (2) Is there a mech-
anism to recover lost precision? and (3) Are there systematic ways to simplify
analysis through program transformation? In this work, we set up a mathemat-
ical framework to analyze these questions, and provide some answers.

The framework is built as follows. Static program analyses are modeled with
standard concepts from abstract interpretation [7, 8]. Crucially, a semantics-
preserving transformation is modeled as a proof-generator. In transforming a
source program S to a program T , we suppose that a transformation also pro-
vides a bisimulation relation, B, which justifies the semantic equivalence between
the two programs. The bisimulation links the state spaces of S and T , making
it possible to transfer invariants (in particular, static analysis results) from one
side to the other, allowing their relative precision to be compared. Using this
framework, we establish general results that explain why precision is gained or
lost, and how it may be regained.

We show that an analysis with domain D on program T can be converted to a
bisimulating analysis on S, producing results that are (near-)equivalent – after
transferring through the bisimulation – to the results on T . The bisimulating
analysis is defined over a new abstract domain, D′, constructed in terms of B and
D. One can explain the effect of a transformation on precision by comparing the
relative strengths of D and D′. This provides a uniform explanation of precision
changes observed in different settings, including the ones discussed above.

Moreover, the analysis designed in [22] to counteract the loss of precision
is essentially the analysis induced by the new domain D′. The construction of
D′ thus provides a systematic, general method to form a new domain and its
associated analysis to recover from a loss of precision.

Finally, we establish that any analysis over a one-way reduced product of
domains C and D can be factored into a program transformation defined using
C, followed by an analysis of the resulting program over domain D, with equally
precise results. This provides a systematic method to design transformations
which simplify analysis without losing precision.

Together, these results provide a firmer understanding of how transforma-
tions influence precision. This should help in practice to choose (or construct)
the right set of transformations to simplify an analysis task.

2 Overview

In this section we provide a high-level overview of how we model the effect of
program transformations on static analyses. Table 1 summarizes the transfor-
mation and parity analysis for the introductory constant propagation example.
Parity domain elements E and O represent even and odd numbers, respectively,

2



and > represents all integers. The analysis maintains an abstract state for ev-
ery location, a map from variables to elements of the parity domain. To avoid
clutter, we show only the changes to the abstract state.

x′:O x’ := 3 x′=x=3 ∧ y′=y ∧ z′=z x := 3 x:O x:O

y′:E y’ := 12 x′=x=3 ∧ y′=y=12 ∧ z′=z y := x * 4 y:E y:E

z′:E z’ := 4*z’ x′=x=3 ∧ y′=y=12 ∧ z′=z z := (y/x)*z z:> z:E

a) b) c) d) e) f)
Table 1: a) the results of the parity analysis for the optimized program, b) the optimized
program, c) the bisimulation relation witnessing the correctness of the optimization,
d) the original program, e) the results of the parity analysis on the original program,
f) the results of the bisimulating parity analysis

.

Bisimulation relation. The relation is symbolically presented in Table 1c).
The bisimulation relates corresponding program states iff (1) they share the
same location and (2) their variable valuations satisfy the predicates appearing
on the horizontal line connecting identical program locations.

Bisimulating analysis. The new bisimulating analysis combines the parity
domain and the bisimulation relation. It operates on the original program as fol-
lows. In each step, the analysis uses the bisimulation to move from the source to
the transformed program, transforming the current abstract state through the
bisimulation. Parity analysis on the optimized program with the transformed
state produces a new abstract state, which is back-propagated to the source,
again using the bisimulation (technically, its inverse). In effect, this process re-
fines abstract states using bisimulation information.

Consider the point just before the last line of the source. The current abstract
state, [x : O, y : E, z : >], is transferred to the same location in the transformed
program using the middle horizontal line. This results in the abstract state [x′ :
O, y′ : E, z′ : >], which parity analysis uses to analyze the last command. This
produces [x′ : O, y′ : E, z′ : E], which is back-propagated using the bottom
horizontal line, resulting in the state [x : O, y : E, z : E], as shown in Table 1f).

Precision. One can view the bisimulating analysis, roughly speaking, as oper-
ating on a domain that is a product of the parity domain and the domain used
for constant analysis. That is, to obtain the same precision as on the transformed
program, one must analyze the source with a domain that combines constants
and parity. This explains the gain in precision provided by the transformation.
One can reverse this view, and consider that a source analysis with a product
domain (constants × parity) is factored into a transformation based only on the
constants domain, and analysis based only on parity. These intuitions are made
precise in the rest of the paper.

3



3 Preliminaries

For convenience, we abstract from programming syntax and represent programs
by their induced transition systems and program transformations as transition
system transformations. Representing program transformations semantically is
uncommon, but was also followed in, e.g. [9], for similar reasons. We represent
static analyses formally using the framework of abstract interpretation [7].

3.1 On Notation

We follow the notation of Dijkstra and Scholten from [12] for algebraic cal-
culations. Sets are identified with predicates, Boolean operators stand for set
operations, e.g., A ∩ B is written as A ∧ B, and the “boxed” form [ϕ] rep-
resents that the predicate ϕ is true (equivalently, that the set ϕ is universal).
Thus, [X → Y ] expresses that set X is a subset of set Y . A calculational proof
is a sequence of proof steps, each one being a weakening (indicated by → ) or
an equivalence (indicated by ≡ ). A proof step establishing [f → g], say, is
displayed as follows.

f

→ g { hint why f is stronger than g }

3.2 Programs and Program Transformations

Transition Systems. A program is represented by its induced transition sys-
tem [3]. A transition system is defined by a tuple (S, I,Σ, δ), where S is a set
of states, I is a non-empty subset of initial states, Σ is a set of actions, and
δ ⊆ S × Σ × S is the transition relation. For a triple (s, a, s′) ∈ δ, we say that
s′ is a successor to s on a. We use the notation δ(Y ), for a set of states Y , to
denote the successors of Y by δ, i.e., s′ ∈ δ(Y ) if, and only if, there is a state
s in Y such that δ(s, a, s′) holds for some action label a. An execution of the
transition system from state s is a sequence of alternating states and actions,
of the form s = s0, a0, s1, a1, . . ., where for each i, (si, ai, si+1) is a transition
in δ. Its trace is the sequence a0, a1, . . .. A computation is an execution from
some initial state. A state is reachable if it appears along some computation.
The language of a transition system T , denoted as L(T ), is the set of traces of
its finite and infinite computations.

Program Transformations and Correctness. A program transformation, viewed
semantically, is a function mapping one transition system to another with the
same action set. A transformation from S to T is correct if L(T ) ⊆ L(S). I.e.,
for every computation x of T , there is a computation y of S such that x and y
have the same3 trace.

3 To allow stuttering, one may define a subset of actions to be observable, and let the
trace of an execution be the sequence of observable actions on it.

4



Simulation and Bisimulation. A relationR connecting states of transition system
T to states of transition system S is a simulation (of T by S) – also called a
“refinement mapping” – if:

– For states t, s such that (t, s) ∈ R, for every action a, and every successor t′

of t on a, there is a successor s′ of s on a such that (t′, s′) ∈ R, and
– For every initial state t of T , there is an initial state s of S where (t, s) ∈ R.

Relation R is a bisimulation if both R and its inverse relation, R−1 are sim-
ulations. Establishing (bi)simulation is a standard proof technique for showing
correctness, thanks to the following standard results.

Theorem 1. Let S, T be transition systems, and let R be a relation connecting
states of T to those of S. If R is a simulation, then L(T ) ⊆ L(S). If R is a
bisimulation, then L(T ) = L(S).

Relational Operators. For any relation R on any domain, the modal operators
preR and postR, are defined as follows. For any set S,

u ∈ preR(S) = (∃v : uRv ∧ v ∈ S) postR(S) = preR−1(S)

I.e., preR(S) is the pre-image of S under R; it is the set of all elements that are
related by R to some element of S. Likewise, postR(S) is the image of S by R;
it consists of all elements that are connected to elements in S by R.

A set of states, X, is an inductive invariant of a transition system (S, I,Σ, δ)
if it includes all initial states, i.e., [I → X], and is closed under the transi-
tion relation, i.e., [postδ(X) → X]. Invariants of S can be transformed into
invariants of T through a simulation B, as follows.

Theorem 2. (cf. [27]) Let R be a simulation from T to S. For any inductive
invariant ϕ of S, the set preR(ϕ) is an inductive invariant of T .

Transformation Witnesses. We assume that every semantic-preserving program
transformation has an associated bisimulation relation which acts as a “witness”
(i.e., a proof) for correctness. Common compiler transformations, e.g., constant
propagation, dead store removal, static single assignment (SSA) conversion and
loop invariant code motion have simple witnesses [2, 28]. Abadi and Lamport’s
result [1] shows that every language inclusion has a simulation witness (after
adding auxiliary history and prophecy information).

3.3 Static Program Analysis

We briefly review standard notions. A static program analysis is usually defined
by specifying (1) a concrete domain as a partial order (C,≤C), (2) an abstract
domain as a partial order (A,≤A), and (3) a pair of functions (α, γ), called
a Galois connection, between the two domains where [α(c) ≤A a ≡ c ≤C
γ(a)]. The concrete semantics of a program is defined as the least fixpoint of a
transformer τ : C → C. The Galois connection induces a transformer α ◦ τ ◦ γ

5



whose least fixpoint over A defines the most precise abstract semantics, which
is an over-approximation of the concrete one [7].

In this work, the concrete domain consists of sets of states ordered by sub-
set inclusion. As we combine aspects of static analysis with those of invariants
and (bi)simulation, it is convenient to work entirely within the concrete domain
instead of carrying around an abstract domain and a Galois connection. We use
an equivalent formulation of abstract domains in terms of closure operators on
the concrete domain. An operator cl is a (up-)closure if it is monotonic, i.e.,
[X → Y ] implies that [cl(X) → cl(Y )]; increasing, i.e., [X → cl(X)]; and
idempotent, i.e., [cl(cl(X)) ≡ cl(X)]. Given a Galois connection (α, γ), the
operator γ ◦ α is a closure, with closed sets corresponding to abstract elements.

The set of reachable states of a transition system (S, I,Σ, δ) is the least
fixpoint of the concrete transformer δ+(X) = X ∨ δ(X) that includes the initial
states, I. Following [8], we write this as lfp (δ+, I). The general form lfp (f, a)
denotes the least fixpoint of f above a, which exists if a ≤ f(a) for monotone f ,
cf. [5]. The reachable states can also be expressed as lfp ((λX : I ∨ δ(X)), ∅).
In the abstract setting, we look for closed sets as solutions. Thus, we construct
lfp (cl ◦ δ+, I) or, equivalently, lfp ((λX : cl(I ∨ δ(X))), ∅).
Theorem 3. lfp (cl ◦ δ+, I) is well defined. It is the least closed set that is an
inductive invariant of the transition system.

Proof. As both cl and δ+ are increasing, [I → cl ◦ δ+(I)]. Thus, the least
fixpoint exists. Let L = lfp (cl ◦ δ+, I). Then [I → L] by definition of L.
Moreover, [cl(δ+(L)) ≡ L] by the fixpoint property; hence, L is closed, and
[δ(L) → L]. Thus, L is a closed inductive invariant.

To show the minimality of L, let Y be any closed set that is also an inductive
invariant. From inductiveness, [I → Y ] and [δ(Y ) → Y ] holds. Hence,
[δ+(Y ) ≡ Y ]; since Y is closed, [cl(δ+(Y )) ≡ Y ] holds. Thus, Y includes I
and is a fixpoint of cl ◦ δ+. As L is the least such set, [L → Y ]. ut

More approximate closed invariants are provided by lfp (η, I), where η is
monotone, [I → η(I)], and η maps to closed sets of cl. To be sound, lfp (η, I)
must be a superset of the reachable states. That is guaranteed if η(X) is a
superset of δ+(X) for all X. We say that such η are adequate.

One mechanism to achieve finite convergence of the fixpoint computation is
widening [9, 6, 7]. Let D be an abstract domain with elements denoted by D. A
widening operator is a function O : D× D→ D such that:

• [D2 ⊆ D1OD2]
• [D2 ⊆ D1 → D1OD2 = D1]
• Let D0, D1, . . . be an increasing chain of abstract elements. Let D′0, D

′
1, . . .

be a chain of elements such that Di ⊆ D′i for every i. Then there exists
n ∈ N such that ∀k ≥ n : DkOD′k = Dn.

Given an adequate transformer η and a widening O, the new transformer ηO(X) ,
X O η(X) is adequate and for every initial approximation D ∈ D the se-
quence 〈ηiO(D), i ∈ N〉 becomes stationary [6]. The least fixpoint of ηO is an
over-approximation, sacrificing precision for guaranteed eventual termination.

6



4 Relating Analyses Under Bisimulation

In this section, we formulate a framework for analyzing the effect of transfor-
mations on static analysis results. For the remainder of this paper, we assume
a source program S, a transformed program T , and a bisimulation B between
T and S semantically modeling a semantic-preserving program transformation.
We further assume an abstract domain underlying the desired analysis in terms
of closures clS and clT for the source and transformed program, respectively, and
corresponding widening operators OS and OT .

The above assumptions fit the setting in which program verification tools
such as SMACK [4] and SeaHorn [17] operate. Programs S and T are available
in practice as the mentioned tools anyhow run the transformations. Also, tools
performing semantic-preserving transformations implicitly have all of the infor-
mation necessary to generate the underlying bisimulation information [33, 28,
18]. Lastly, the assumed closure and widening operators are essentially program-
specific lifts of corresponding operators defined over readily available program-
agnostic domains such as intervals, octagons [25], polyhedra [11], etc.

4.1 Comparing Invariants of S and T

Let G denote the invariant on S computed with clS , and let H denote the
invariant on T computed with clT . In order to compare the relative strengths of
the two invariants, we have to transform them from one state space to the other,
as the state spaces of S and T may, in general, be different. The bisimulation B
is used to perform this transformation, using Theorem 2.

Informally, we would consider H to be stronger than G if, after transferring
H from T to S via B−1, the resulting invariant in S is stronger than G, i.e., if
[postB(H) → G]. By the symmetry of bisimulation, we should also require that
the invariant obtained by transferring G in the other direction, from S to T , is
weaker than H. I.e., we want [H → preB(G)] to also hold.

Thus, we take the two conditions (a) [postB(H) → G] and (b) [H →
preB(G)] as the definition of the property “H is stronger than G”. Condition (a)
is equivalent to [clS ◦ postB(H) → G], a form that is used in the proofs below.

4.2 Induced Closure for S

Suppose that H is stronger than G. In order to explain the precision gain T
exhibits compared to S (equivalently, the precision loss of S subject to T ), we
formulate a new abstract domain on S (via a new closure operator) such that an
analysis on S with this operator produces an invariant that is at least as strong
as the transferred invariant postB(H).

A natural way to reflect the computation from T into S is as follows: given a
subset X of the states of S, its closure is computed by mapping X to its image Y
in T through the relation B−1; forming Y ′, the closure of Y in T through clT ; and
finally, mapping Y ′ back to a set X ′ in S through B. The new operator clB,H is
formulated using this intuition. It is defined as a least fixpoint, (λX. lfp (g,X)),

7



where the function g is given below. The key to g is the composition postB ◦preB
(ignoring the intervening closures); this composition formalizes the intuition of
moving from S to T and back again.

g(Z) , Z ∨ postB ◦ clT (H ∩ preB ◦ clS(Z)) (1)

The function g is increasing by its first term and monotone as all operators
are monotone. It follows from standard arguments that

Lemma 1. clB,H = (λZ. lfp (g, Z)) is a closure operator on S.

4.3 Induced Static Analysis

We now turn to the invariants computed with static analysis using the new
closure operator on S and the best abstract transformer, clB,HS ◦δ+S . We show that
the resulting inductive invariant is at least as precise as the invariant postB(H)
obtained by transferring the analysis result H from T to S.

Theorem 4. Let G = lfp (clS ◦ δ+S , IS) be the result of the static analysis on S.
Let H = lfp (ηT , IT ) be the result of a sound static analysis on T with closure clT .

Let GB,H = lfp (clB,HS ◦ δ+S , IS) be the invariant computed on S with the newly
defined closure operator. If H is stronger than G, then [GB,H → postB(H)].

Proof. We prove the claim by showing that postB(H) is a superset of IS , and a

pre-fixpoint of the function clB,HS ◦ δ+S .
As postB(H) is an inductive invariant of S, it includes the initial states;

hence, [IS → postB(H)].

Next, we establish that [clB,HS ◦ δ+S (postB(H)) → postB(H)]. As postB(H)

is inductive for S, this is equivalent to [clB,HS (postB(H)) → postB(H)], which

holds if postB(H) is a pre-fixpoint of the function g used to define clB,HS (in
Equation 1). By the form of g, we only need to consider its second term:

postB ◦ clT (H ∩ preB ◦ clS(postB(H)))

→ postB ◦ clT (H ∩ preB(G)) {H is stronger than G, condition (a) }
≡ postB ◦ clT (H) {H is stronger than G, condition (b) }
≡ postB(H) {H is closed under clT by property of ηT }

ut

Discussion This theorem shows how to construct a new domain on S that
matches (or improves) the gain of precision obtained by transforming S to T . The
new domain is constructed from the bisimulation B, the abstract domain of T ,
as well as its invariant H. The structure of clB,HS shows how a transformation, in
the form of its bisimulation relation, influences the precision of an analysis. This
is a somewhat indirect demonstration: an intriguing open question is whether it
is possible to determine directly from B and clT if precision is lost or gained.

8



As bisimulation is symmetric, a loss of precision in a transformation from S to
T is a gain of precision when viewed from T towards S. Therefore, if precision is
lost, this theorem can be applied to construct a new domain in T which recovers
the greater precision of analysis in S – for instance, in the introductory 3-address
code translation example.

The reason why the new analysis in S can be strictly more precise than the
back-propagated invariant of T is that some transformations can introduce com-
plexity in the transformed program. For instance, envision a transformation that
replaces a constant in the program with, say, a binary expression that provably
always evaluates to that constant. The induced analysis reaps the benefits of the
bisimulation and the simplicity of the original program for such transformations.

5 Practicality Extensions

If verification tools were to implement the induced analysis, the only new opera-
tion they are required to implement is refinement of an abstract domain element
with the bisimulation information postB ◦ preB (modulo intervening closures).
This operation is often feasible as the bisimulation for many common trans-
formations is essentially a conjunction of equalities between the variables and
expressions of T and S at corresponding points in the two programs [28, 22, 18].
However, the induced analysis has several shortcomings that hinder its usability.

First, the results of Section 4.3 hold for the best transformer δ+S of the source
program, which might not be easily computable. In fact, the abstract transformer
for the source program might not be even available in some cases. Several veri-
fication frameworks translate programs written in higher-level source languages
to a bytecode representation to support multitude of different programming lan-
guages [22, 13]. In that case, only the transformer for program T is available.
Second, the analysis operates and produces results over the new (induced) ab-
stract domain. The widening operators for this domain are not immediate. Third,
the closure operator clB,HS is defined as a fixpoint which might be expensive to
compute in practice. Lastly, the new domain relies on the precomputed invariant
H of T . We now address these practical limitations of the induced analysis.

5.1 Bisimulating Analysis

The results in Section 4.3 show that the least fixpoint of the best transformer
induced by clB,HS is at least as strong as the back-propagated invariant from
T . In this part, we exhibit a simpler bisimulating analysis with a similar prop-
erty. In essence, the new transformer ηS uses the bisimulation to jump to the
transformed program, makes an analysis step there, and then comes back to the
source program.

ηS(X) , clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(X)) (2)

An important property of ηS is that, although it is defined over the source
program, the analysis uses only the provided adequate transformer ηT for the

9



transformed program. Hence, it does not depend on the source transformer that,
as pointed our earlier, sometimes might not be even available in practice. We also
remind the reader that this is the analysis we used in our example of Section 2.
Furthermore, this analysis avoids the fixpoint calculation in the closure operator
clB,HS .

The new analysis is step-wise more precise than the provided analysis on the
transformed program. That is, in each iteration the bisimulating analysis does
not lose precision. The following results formalize this intuition.

Lemma 2. The new bisimulating analysis operator ηS is sound for S.

Proof. The operator ηS is monotonic, as all operations in its defining expression
are monotonic. We show that lfp (ηS , IS) is well-defined and that the result
over-approximates the reachable states.

We first establish that [IS → ηS(IS)], to ensure that lfp (ηS , IS) is defined.
AsH is an invariant of T andB is a bisimulation, IT is a subset of (H ∩ preB(IS)).
By adequacy of ηT , it follows that IT is a subset of ηT ◦clT (H ∩ preB(IS)). As B
is a bisimulation, IS is a subset of postB ◦ ηT ◦ clT (H ∩ preB(IS)), and therefore
of ηS(IS).

Next, we establish that [Rk+1 → ηS(Rk)] for all k, which establishes that
lfp (ηS , IS) includes all reachable states. Consider a state s′ in Rk+1 = δ+S (Rk).
There are two cases.

(i) s′ is in Rk. Then s′ is also in postB(H), as that is an invariant of S.
Hence, there is a state t′ in T such that t′Bs′ holds, and t′ ∈ H. Therefore, t′ is
in H ∩ preB(Rk) and thus in the closure of that set under clT . By adequacy of
ηT , the state t′ is in ηT ◦ clT (H ∩ preB(Rk)). As t′ is related to s′ by B, s′ is in
clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(Rk)), i.e., s′ is in ηS(Rk).

(ii) s′ is a successor of a state s in Rk. As s is in postB(H), there is a state
t of T such that tBs and t is in H ∩ preB(Rk). As B is a simulation relation,
this state has a successor, t′, such that t′Bs′ holds. By adequacy of ηT , t′ is in
ηT ◦ clT (H ∩ preB(Rk)). As t′ is related to s′ by B, s′ is in clS ◦ postB ◦ ηT ◦
clT (H ∩ preB(Rk)), i.e., s′ is in ηS(Rk). ut

We now show that the result of analyzing program S with ηS is as precise
as the transferred invariant postB(H), when expressed as a closed set using clS .
Note that as H is presumed to be stronger than G, by condition (a) of that
definition, clS ◦ postB(H) is stronger than G.

Theorem 5. Let G = lfp (clS ◦ δ+S , IS) be the result of the original analysis on

S, and Ĝ = lfp (ηS , IS) be the result of the analysis on S using the new ηS.
Let H = lfp (ηT , IT ) be the result of the static analysis on T using an adequate
transformer ηT . If H is stronger than G, then [Ĝ → clS ◦ postB(H)].

Proof. We prove this by showing that clS ◦ postB(H) is a pre-fixpoint of ηS and
that it includes IS . As postB(H) is an invariant of S, we have that [IS →
postB(H)]. Hence, [IS → clS ◦ postB(H)]. Now consider the pre-fixpoint claim.

10



ηS(clS ◦ postB(H))

≡ clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(clS(postB(H)))) { definition }
→ clS ◦ postB ◦ ηT ◦ clT (H ∩ preB(G)) {H is stronger than G, condition (a) }
→ clS ◦ postB ◦ ηT ◦ clT (H) {H is stronger than G, condition (b) }
≡ clS ◦ postB(H) {H is closed under clT and is a fixpoint of ηT }

ut

Widenings By relying on the abstract domain and transformer of T , we can also
use the widening operator for T to ensure finite convergence of the bisimulating
analysis. We assume the abstract transformer on T is ηOT (Y ) , Y OT ηT (Y ),
where ηT is an adequate monotone function as usual. We therefore use ηT to
define ηS , as shown above, and then define the widened bisimulating transformer
as ηOS (X) , X OS ηS(X). The analysis based on this transformer is guaranteed
to converge in a finite number of steps but it may be less precise than the
propagated invariant computed by ηOT . The reason for this is that, although
ηS is more precise than the back-propagated ηT , the widening operators are not
necessarily monotone [6]. We leave for future work the investigation of the actual
ramifications of this imprecision in practice as well as the construction of more
precise bisimulating widening operators.

5.2 Optimizing Domain Calculations under Bisimulation Closure

The formulations of the new closure operator (Section 4.3) and the bisimulating
analysis (Section 5.1) rely on the invariant H on T . We show below that this
dependence can be removed if H is known to be closed under bisimulation within
T – i.e., if state s is in H, so is any other state s′ that is bisimular to s. This is
guaranteed if all closed sets in T are closed under bisimulation, as H is one such.
Intuitively, bisimulation-closure asserts that indistinguishable concrete states do
not negatively effect the precision of an abstract domain. Formally, we define

Assumption 1 (Bisimulation closure) [preB ◦postB(Y ) → Y ] holds for all
closed sets Y of clT .

Assuming bisimulation-closure, the definitions can be simplified by eliminat-
ing H, as shown below, while retaining the properties shown previously.

clB,H(X) , lfp (g,X)), where g(Z) , Z ∨ postB ◦ clT ◦ preB ◦ clS(Z) and

ηS(X) , clS ◦ postB ◦ ηT ◦ clT ◦ preB(X)

Bisimulation-closure holds if B has a functional form, as shown below. Several
common program optimizations have functional bisimulation relations. Exam-
ples include constant propagation, dead-code removal, and loop unrolling. Even
transformations that reorder execution, such as loop inverse, induce a bisimula-
tion relation that maps every source state to a single target state.

11



Lemma 3. If B is functional, i.e., [tBs ∧ t′Bs → t = t′], then bisimulation-
closure holds.

Proof. Consider any subset Y of T . State t′ is in preB ◦ postB(Y ) iff there are
states s in S and t in Y such that tBs and t′Bs. As B is functional, t = t′; thus,
t′ is in Y . ut

Transformations that can potentially invalidate the bisimulation closure are
those that break-up the computation. For instance, 3-address code translation
will break a single source statement into several target ones. Consider a source
statement assume (x - y ≤ 7) and its 3-address translation t1’ := x’-y’;

t2’ := t1’ ≤ 7; assume t2’. A source state just before the original state-
ment maps to several target states corresponding to the intermediate compu-
tation of the starting two statements in the target program. However, these
statements only refine the relationship between the variables. That is, at the be-
ginning of the target program no relationship between target variables t1’, x’,

y’ and t2’ is known. Each consecutive statement does not invalidate existing
relationships between other variables, yet it only refines the ones between the
above mentioned target variables, satisfying the bisimulation closure assumption.

5.3 Counteracting Precision Loss in 3-address Code Transformation

We now exemplify how verification tools can use the new bisimulating analysis
to counteract precision loss due to a transformation. Consider a relational static
analysis that computes bounds on the difference between the values of pairs
of variables. In other words, an abstract state is the conjunction of difference-
bounds constraints of the form x−y ≤ c and ±x ≤ c, where x and y are program
variables and c is an integer or real constant [24, 23]. For the example of three-
address code transformation from [22], shown in Figure 2, the analysis will infer
that (x − y) ≤ 7 holds at the end of the source program (on the left). The
same analysis, however, fails to infer any useful relation between x and y on the
transformed program (on the right). As explained in [22], for an accurate result,
it is necessary to track a relationship between three variables (e.g., t′1 = x′− y′),
which cannot be done precisely in the given analysis domain.

Bisimulation relation. The bisimulation is symbolically illustrated in Figure 2
using the horizontal lines and the attached predicates defined over program vari-
ables. The relation also contains “history” information connecting t′1 and t′2 to
x′ and y′. The bisimulation allows stuttering steps on T . The transformation
engine can generate the bisimulation relation while performing the actual trans-
formation [20, 21]. That is, the information about equality of live expressions can
be extracted directly from the generated 3-address code.

Bisimulating analysis. Initially, the invariant approximant for the source
program maps the top and bottom difference-bounds abstract element to the
first and last source location, respectively. This approximant is then transformed

12



assume (x-y <= 7);

t1’ := x’-y’;

t2’ := t1’ <= 7;

assume t2’;

Fig. 2: A 3-address code translation (from [22]) and accompanying bisimulation relation

into an approximant for the transformed program using clT ◦preB . The resulting
approximant assigns the top abstract element to the first three locations of
T since the corresponding bisimulation information does not imply any useful
difference-bounds of variables in T . The last location of T is assigned the bottom
element as that is the element being forward propagated from S. As explained
earlier, applying ηT results in the top element being assigned to every location of
T . However, the resulting approximant can now be refined using the bisimulation
information when propagating the information back to S using clS ◦postB . That
is, the information on the last horizontal line of Figure 2 implies x− y ≤ 7.

Although the analysis technically works over the source program, the infer-
ence step is in fact made on the transformed program. The resulting invariant can
again be converted into an invariant for T using the result of Theorem 2. The new
operation verification tools are required to implement is refinement/strengthen-
ing of abstract elements with the bisimulation information. One possible way
to implement this operation is to rely on known techniques for strengthening
branch results with guard information when analyzing guard statements [7].

Precision. Logozzo and Fähndrich [22] show how the precision lost by the
transformation can be restored if information about available program expres-
sions, and equalities between them, are preserved at each location in T . But this
is precisely the information provided by the bisimulation relation. To see this,
one has to switch the roles of S and T , which is possible as B−1 is a bisim-
ulation from S to T . The domain of the induced bisimulating analysis on T
combines information about program expressions, such as the definition of t1,
with the original difference domain. One can therefore derive the analysis of [22]
systematically from the bisimulating analysis definition, and view their specific
implementation as a particular form of the bisimulating analysis.

13



6 Transformations as Static Analyses

Consider, once again, the transformation shown in Figure 1. Parity analysis is
less precise for variable z in the source program as it does not observe the actual
values of variables y and x. That can be done with a second domain to track
constant values, combining its information with the parity analysis to obtain
a precise parity value for z. This is the role of the standard reduced product
construction of [8]. Applied to the product domain C × D of domains C and
D, a reduction operation transforms an abstract value (c, d) – where c ∈ C and
d ∈ D – into a more precise abstract value (c′, d′) with the same concretization.
Reduction is carried out by using the information in c to refine d to d′, and
the information in d to refine c to c′. In our example, the information flow is
one-way: the constants domain is used to refine the parity result. The program
transformation shown in Figure 1 is also based on the constants domain. One
might conjecture from this that the transformation plays a role analogous to a
one-way reduced product.

In this section, we establish a precise form of this conjecture. We show that
an analysis based on a one-way reduced product of domains C with D, where
information flows only from C to D, can be “factored” into a program trans-
formation based on an analysis of the source program with domain C, followed
by an analysis of the transformed program with D, obtaining results on D that
are at least as precise as the original. Thus, an analysis expressed as a chain of
one-way products of C1, C2, C3, . . . , Cn = D where Ci is used to refine Ci+1, can
be broken down into a chain of transformations, one for each Ci, ending with
a program that is analyzed with D. (For a similar reduction over domains but
without program transformations, see [15].)

The (simple) transformation eliminates the need to compute with a reduction
operator, which can be a significant advantage in practice. It also shows that new
program transformations may be designed solely for the purpose of simplifying
program analysis, in addition to the use of standard compiler transformations,
which are designed primarily to improve run-time performance.

One-way Reduced Product Consider abstract domains C and D, specified
by their closure functions, clC and clD. The Cartesian product of C and D is
the domain formed by the closure function given by cl(X) = clC(X) ∩ clD(X).
For convenience, elements in this domain may be represented by a pair of sets
(X,Y ), where X is closed for C and Y is closed for D, with the interpretation
that (X,Y ) denotes the set X ∩ Y .

A one-way reduction function ρ maps a pair (X,Y ) of the form above to a
set Y ′ that is closed for D, such that the interpretation of (X,Y ) and (X,Y ′) is
the same. (A two-way reduced product, in addition, reduces X to some X ′.) The
best one-way reduction of (X,Y ) is given by clD(X ∩ Y ). This shows clearly that
the reduction transfers information from the X component to the Y component,
producing Y ′ = clD(X ∩ Y ) which, by its definition, is at least as precise as Y .

14



Fixpoint Analysis The standard construction of the best abstract transformer
adds reduction as the final step. I.e., to obtain the best abstract representation
from a starting point (X,Y ), one computes X ′ = clC ◦δ+S (X ∩ Y ) and Y ′ = clD ◦
δ+S (X ∩ Y ) and reduces (X ′, Y ′) to (X ′, ρ(X ′, Y ′)). We relax this construction
using the common simplification which applies the transformers for C and D
individually, i.e., letting X ′ = clC ◦ δ+S (X) and Y ′ = clD ◦ δ+S (Y ).

Theorem 6 (Factoring). Consider the least fixpoint analysis of program S
with a one-way reduced product of domains C and D and the relaxed best trans-
former. Equally or even more precise result can be obtained by transforming S
to a program T , based on the analysis of S over domain C, followed by analysis
of T over domain D.

Proof. The proof outline is as follows. We first establish that the least fixpoint
analysis can be sequentialized. We use the fixpoint over C to define the trans-
formation from S to T , and prove that analysis of T over D produces the same
result as the original fixpoint.

Let (c̄, d̄) be the least fixpoint of the relaxed transformer defined earlier that
includes the initial states of S. This is a simultaneous fixpoint definition over
the vector (X,Y ).

We simplify this to a different, but equivalent form, starting from the empty
set instead of from IS . Let functions fC and gD be defined on a pair (X,Y ) by
fC(X) = clC(IS ∨ δS(X)) and gD(X,Y ) = ρ(fC(X), clD(IS ∨ δS(Y ))). Then
the original fixpoint can be re-expressed as

(c̄, d̄) = lfp ((λ(X,Y ). (fC(X), gD(X,Y ))), (∅, ∅))

By a well-known result from Bekic̆ (sometimes called the Scott-Bekic̆ theo-
rem), the fixpoint value for domain D can also be obtained with the “flattened”
nested fixpoint defined below, where the outer fixpoint is over the closed sets Y
of D, and the inner fixpoint over the closed sets X of C.

let d̄ = lfp ((λY. gD(lfp ((λX : fC(X)), ∅), Y )), ∅)

As fC is independent of Y , the inner fixpoint can be extracted to form the
equivalent, simpler definition:

let c̄ = lfp ((λX. fC(X)), ∅)
let d̄ = lfp ((λY. gD(c̄, Y )), ∅)

That is, the computation of the original fixpoint can be sequentialized, by
first computing c̄, and only then computing d̄ in terms of c̄. By Theorem 3, c̄ is
an inductive invariant of S.

We now use the value c̄ to define a simple transformation from S to T . The
program T has the same state space and the same set of initial states as S,
but its transition relation is a restriction of that of S, defined by [δT (t, t′) ≡
c̄(t) ∧ δS(t, t′)]. I.e., transitions are allowed only from states satisfying c̄. As c̄ is

15



inductive for δS , the expression for δT (t, t′) is equivalent to c̄(t) ∧ δS(t, t′) ∧ c̄(t′).
Hence, for a set Y of states, [δT (Y ) ≡ c̄ ∧ δS(Y ∩ c̄)].

Define the relation B from T to S by B(t, s) ≡ (t = s) ∧ c̄(s). The fact
that c̄ is an inductive invariant of S helps establish that B is a bisimulation, we
omit the simple proof.

The standard analysis with D on T results in d] = lfp ((λY. clD(IT ∨
δT (Y ))), ∅). We show that this is at least as precise as d̄, i.e., [d] → d̄]. This
follows if d̄ is a pre-fixpoint of the function used to define d].

clD(IT ∨ δT (d̄))

≡ clD(IS ∨ δT (d̄)) { as [IT ≡ IS ] }
≡ clD(IS ∨ (c̄ ∧ δS(d̄ ∩ c̄))) { by the relationship between δT and δS }
≡ clD(c̄ ∧ (IS ∨ δS(d̄ ∩ c̄))) { [IS → c̄] by inductiveness of c̄ for S }
→ clD(c̄ ∧ clD(IS ∨ δS(d̄))) {monotonicity }
→ ρ(c̄, clD(IS ∨ δS(d̄))) {by definition of the best reduction }
≡ gD(c̄, d̄) {by definition of gD }
≡ d̄ { by fixpoint }

ut

From the careful examination of the above proof, it becomes clear that the
transformation plays the role of the one-way reduction; as noted, the result
obtained on the transformed program may even be stronger than that obtained
by the one-way reduced product.

7 Related Work and Conclusion

In this work, we introduced a formal account of the impact program transfor-
mations can have on static analyses. By modeling transformations semantically
using bisimulations and static analyses using abstract interpretation, we show
how the improved/decreased precision of an analysis on the transformed program
can be explained in terms of the bisimulation. We assemble the bisimulation and
a given abstract domain to form a new abstract domain. The newly constructed
domain induces an analysis on the source program that is more precise than the
given analysis for the transformed program. We also present a weaker but more
practical bisimulating analysis that utilizes information already present in ver-
ification frameworks, allowing the transfer of theoretical results almost directly
to practice. We also show, in the opposite direction, how 1-way reduced prod-
uct static analyses can be broken into a transformation followed by a simpler
analysis. Our framework thus provides a formal understanding and theoretical
machinery for a more systematic design of program analysis tools that combine
program transformations and static analyses. We now discuss related work.

The work most closely related to ours is the one by Logozzo and Fähndrich [22].
The authors exemplify how 3-address code transformation can introduce impre-
cision for static analyses working over relational abstract domains. They also

16



show how the lost precision can be recovered by additionally tracking available
expressions, a technique introduced by Miné [26]. We already overviewed the
mentioned imprecision phenomena and the recovering technique in Section 5.1.
Our work is a substantial generalization. The framework supports any trans-
formation whose correctness can be witnessed by a common general class of
bisimulations. Furthermore, there is a general technique for recovering from pre-
cision, which specializes to the use of symbolic expressions in their setting. Our
work also paves the way for implementing static analyses using transformations.

Cousot and Cousot introduce a general and language-independent framework
for designing program transformations [9]. By adopting the view that syntax
is an abstraction of semantics, the authors use abstract interpretation to for-
malize and argue the idea that syntactic transformations are an abstraction of
possibly incomputable semantic transformations. Their formalization allows for
a more systematic design of syntactic transformations and simpler arguments
of their correctness. Our work, on the other hand, is concerned with formal
understanding of how program transformations affect static analyses, how the
negative effects can be remedied, and how to design static analyses using pro-
gram transformations. The common theme of the two papers is the semantic
view of program transformations. As their work shows, syntactic transforma-
tions overapproximate the semantic ones; we use bisimulations to recover the
loss of information stemming from the (proper) overapproximation.

Ranzato and Tapparo show in [30, 32, 29] how strong preservation in ab-
stract model checking, witnessed by a bisimulation, can be characterized and
generalized by the notion of completeness in abstract interpretation [16, 8]. In
effect, the authors show how bisimulations are a particular case of abstract in-
terpretation. As a consequence, abstract models can be refined using domain
refinement techniques of abstract interpretation in order to achieve preservation
of properties from the concrete model [31]. This body of work and our paper are
related by using bisimulations in the context of abstract interpretation, specif-
ically domain refinement [15]. Cousot et al. devise an abstract interpretation
framework for inferring invariants over arbitrary abstract domains for refac-
tored code fragments [10]. Focusing on the method extraction refactoring, the
authors show how to reuse the invariants computed for the original program to
infer the most general correct pre- and post-conditions for the extracted method
that are compatible with the method use in the program and do not violate any
assertions of the method body. Our work focuses on transformations that can
be modeled semantically using bisimulations and is concerned with remedying
potential precision loss caused by transformations. Their work has the objective
of inferring good annotations for the refactored piece of code by utilizing the
information provided by the prior analysis of the original program. Fedyukovich
et al. present techniques that infer simulation relations that in turn allow trans-
fer of safe inductive invariants from (an abstraction) of a source program P to
its arbitrarily modified version Q [14]. Our work assumes a bisimulation rela-
tion but is concerned with designing new abstract domains that capture how
semantic-preserving program transformations affect static analyses.

17



SeaHorn is a fully automated framework for verifying safety properties of
software [17]. Built on top of LLVM [19], the framework uses sophisticated
SMT-based model checking techniques together with abstract interpretation to
perform inter-procedural static analysis. As a preprocessing step, SeaHorn per-
forms several known program transformations, such as static single assignment
(SSA), function inlining, dead-code elimination, etc. This preprocessing step, as
reported, is introduced to simplify the verification task. SMACK is a verification
toolchain which is also based on LLVM [4]. As a pre-processing step, SMACK
runs common program optimizations provided by LLVM since they, as reported,
improve the performance and accuracy of verification [4].

Acknowledgements. This work was supported, in part, by NSF grant CCF-
1563393 from the National Science Foundation. We would like to thank Patrick
Cousot, Thomas Wies, and Siddharth Krishna for helpful discussions.

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82(2):253–284, 1991.

2. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley series in computer science / World student
series edition. Addison-Wesley, 1986.

3. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

4. Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamaric, and
Michael Emmi. SMACK software verification toolchain. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016 - Companion Volume, pages 589–592, 2016.

5. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 81(1):43–57, 1979.

6. Patrick Cousot. Abstracting induction by extrapolation and interpolation. In Ver-
ification, Model Checking, and Abstract Interpretation - 16th International Con-
ference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, pages
19–42, 2015.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, pages 238–252, 1977.

8. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, USA, January 1979, pages 269–282,
1979.

9. Patrick Cousot and Radhia Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In John Launchbury and John C. Mitchell,
editors, Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Portland, OR, USA, January
16-18, 2002, pages 178–190. ACM, 2002.

18



10. Patrick Cousot, Radhia Cousot, Francesco Logozzo, and Michael Barnett. An ab-
stract interpretation framework for refactoring with application to extract methods
with contracts. In Proceedings of the 27th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 213–
232, 2012.

11. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978, pages 84–96, 1978.

12. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer Verlag, 1990.

13. Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In Formal Verification of Object-Oriented Software - International
Conference, FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected
Papers, pages 10–30, 2010.

14. Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. Property directed
equivalence via abstract simulation. In Computer Aided Verification - 28th Inter-
national Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceed-
ings, Part II, pages 433–453, 2016.

15. Roberto Giacobazzi and Francesco Ranzato. Refining and compressing abstract do-
mains. In Automata, Languages and Programming, 24th International Colloquium,
ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, pages 771–781, 1997.

16. Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Making abstract
interpretations complete. J. ACM, 47(2):361–416, 2000.

17. Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The
SeaHorn verification framework. In Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Pro-
ceedings, Part I, pages 343–361, 2015.

18. Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park,
Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil
Hur, and Kwangkeun Yi. Crellvm: verified credible compilation for LLVM. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages
631–645, 2018.

19. Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA, pages 75–88, 2004.

20. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In Proceedings of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2006, Charleston,
South Carolina, USA, January 11-13, 2006, pages 42–54, 2006.

21. Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

22. Francesco Logozzo and Manuel Fähndrich. On the relative completeness of byte-
code analysis versus source code analysis. In Compiler Construction, 17th Inter-
national Conference, CC 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 -
April 6, 2008. Proceedings, pages 197–212, 2008.

19



23. Antoine Miné. A new numerical abstract domain based on difference-bound ma-
trices. In Programs as Data Objects, Second Symposium, PADO 2001, Aarhus,
Denmark, May 21-23, 2001, Proceedings, pages 155–172, 2001.

24. Antoine Miné. A few graph-based relational numerical abstract domains. In Static
Analysis, 9th International Symposium, SAS 2002, Madrid, Spain, September 17-
20, 2002, Proceedings, pages 117–132, 2002.

25. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

26. Antoine Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In Verification, Model Checking, and Abstract Interpretation, 7th Inter-
national Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings, pages 348–363, 2006.

27. Kedar S. Namjoshi. Lifting temporal proofs through abstractions. In Lenore D.
Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopadhyay, editors, Verifi-
cation, Model Checking, and Abstract Interpretation, 4th International Conference,
VMCAI 2003, New York, NY, USA, January 9-11, 2002, Proceedings, volume 2575
of Lecture Notes in Computer Science, pages 174–188. Springer, 2003.

28. Kedar S. Namjoshi and Lenore D. Zuck. Witnessing program transformations.
In Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings, pages 304–323, 2013.

29. Francesco Ranzato and Francesco Tapparo. Making abstract model checking
strongly preserving. In Static Analysis, 9th International Symposium, SAS 2002,
Madrid, Spain, September 17-20, 2002, Proceedings, pages 411–427, 2002.

30. Francesco Ranzato and Francesco Tapparo. Strong preservation as completeness in
abstract interpretation. In Programming Languages and Systems, 13th European
Symposium on Programming, ESOP 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings, pages 18–32, 2004.

31. Francesco Ranzato and Francesco Tapparo. An abstract interpretation-based re-
finement algorithm for strong preservation. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 11th International Conference, TACAS 2005,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, pages 140–156,
2005.

32. Francesco Ranzato and Francesco Tapparo. Generalized strong preservation by
abstract interpretation. J. Log. Comput., 17(1):157–197, 2007.

33. Martin Rinard. Credible compilation. Technical report, In Proceedings of CC
2001: International Conference on Compiler Construction, 1999.

20


