Robust and Fast Pattern Matching
for Intrusion Detection

Kedar Namjoshi Girija Narlikar

Bell Laboratories Bell Laboratories

Alcatel-Lucent Alcatel-Lucent
kedar@research.bell-labs.com girja@research.bell-labs.com

Abstract—The rule language of an Intrusion Detection System the underlying pattern matching is implemented careftilig,
(IDS) plays a critical role in its effectiveness. A rule language packet processing algorithm may take a long time to complete
must be expressive, in order to describe attack pattems as g yagylting performance vulnerability can be exploitgdib
precisely as possible. It must also allow for a matching algo- ttacker t t low-bandwidth denial-of- .
rithm with predictable and low complexity, in order to ensure attacker to genera_e a low-banawi _en'a of-serviceSP
robustness against denial-of-service attacks. attack on the IDS itself. For example, Figlire 1(a) shows how

Unfortunately, these requirements often conflict. We show, for a single packet trace brought the performance of the popular
instance, that a single rule, when coupled with a backtracking Snort IDS/IPS to a grinding halt. A detailed look at indivadu
matching algorithm, can bring the processing rate down to nearly packet processing times in the problematic trace (number 7)

ONE packet per second. Performance vulnerabilities of this type o .
are known for patterns described using regular expressions, and shows some packets requiring over 3 orders of magnitude more

can be avoided by using a deterministic matching algorithm. time to process (Figure 1(b)). If an attacker were to sendya ve
Increasingly, however, rules are being written using the more low-bandwidth trace composed of such “bad” packets to the
powerful regex syntax, which includes non-regular features sut DS, its performance would be reduced to 1 packet per second.
s based on backiracking, and is ihus vulnerable o attacke. IS Vulnerability can be traced back totmckiracking

The main contribution ’of this paper is a deterministic algo- based pattgrn matching algorlthm for regular expregswms :
rithm for the full regex syntax, which builds upon the deter- Plemented in the PCRE library used by Snort. It is known
ministic algorithm for regular expressions. We provide a (rough) that these algorithms may exhib#xponential worst-case
co_mplexity bound on the worst-case perfor_ma_nce, and show that complexity (cf. [1], [2], [3]); the results described above
this bound can be tightened through compile-time analysis of the provide a dramatic confirmation of the importance of this

regex structure. These bounds can be used as an admissibility el . . ,
check, to isolate expressions that require further analysis. Finally vulnerability in practice. The vulnerability can be avaide

we present an implementation of these algorithms in the context through determinization: either converting the regulapres-
of the Snort IDS, and experimental results on several packet sion to a deterministic automaton, or through an “on-thé-fly
traces which show substantial improvement over the backtrack- determinization method due to Thompson [4], used in the
ing algorithm. standard Unix toofr ep.
Increasingly, however, as shown in Figure 3, rules in Snort
are being written using a powerful extension of regular ex-
A signature-based intrusion detection system (IDS) ouintrpressions with back-references, known asrdgexlanguage.
sion prevention system (IPS) protects a network by examinid number of exploits such as buffer overflow attacks (for
headers and contents of all packets entering or leaving it.ekample, see [5]) can be expressed more precisely using back
raises alerts or drops packets (in the case of an IPS) wheferences. Figurel2 shows a simplified regex of this kind.
it sees suspicious headers or payloads. Suspicious pauketBack-references are a non-regular feature, so the known de-
detected by matching every incoming packet against a dsgabterminization methods are not applicable to regex’s in gane
of rules; each rule represents the signature of a securipiex This leaves the backtracking algorithm as the only optian fo
The IDS rule language must be sufficiently powerful tonatching general regex’s. However, regular expressiorishwh
represent current and future security exploits as acdyrateause the backtracking algorithm to enter into its expaaknt
and precisely as possible. Otherwise, a large number of gdmehavior could be embedded inside expressions with back-
packets may be incorrectly marked as harmful, or harmftéferences, re-exposing this serious vulnerability. Moeg,
packets may go undetected. Moreover, the packet processaisgwe show, compile-time detection of potential exponéntia
rate must keep up with high line speeds without droppirgehavior is an NP-hard problem.
packets or allowing bad packets through. These two goalsThe main contribution of this paper is an on-the-fly de-
often conflict, as there typically is a direct relationshgiileen terminization algorithm for the full regex syntax. Towards
the expressiveness and complexity of the rule languagerendthis result, we also give a construction of an extended non-
packet processing time. Unless rules are written with cace adeterministic finite automaton from a regex. The matching

I. INTRODUCTION

10 1F e eoee "‘uoo‘o"oo‘on.‘..’

O‘rigin‘al Sﬁort —
e o o

0.1 E
0.01 E

0.001 E

Time per packet (millisec)
o
[
T
L
Processing time (seconds)

o
=}
=
T
L

1e-04 o E

‘s a%ee®eecece,

0.001 1e-05 Lo Tae g . . : cea
1 2 3 4 5 6 7 8 9 10 11 12 13 0 10 20 30 40 50 60 70 80 90 100

Trace Packet Number

(@) (b)

Fig. 1. (a) Average packet processing times for 13 differextkpt traces for the Snort IDS/IPS. Trace number 7 had somdepnatic TCP flows. (b)
Packet processing times for individual packets from one $lavh Y-axes shown in log scale.

10000 T T T T 600
550
500
450 -
400 -
350
300
250

Attack | <v>=<longstring>; ...; F(<v>)
Regex| (WH=T "1 {1024,)% . : F(\D) oo

8000 |

#Rules

Fig. 2. Use of a back reference to represent a (simplified)ebufferflow
security exploit on functionF'. The back-reference\1’, refers to the term
(\w+), which matches a variable name appearing earlier in the packet 6000 |-

7000

rules with backrefs

Fall 06 Spring 07 Fall 07 Summer 08 200 Fall06 Spring 07 Fall 07 Summer 08

algorithm has worst-case space and time complexity that is (a) (b)

linear in the size of this automaton, but exponential in the

number of back-references in the given expression. ThisFig: 3. Growth in the number of rules with regex's in Snort. Tajal number
. of rules, and (b) Rules with regex’s containing back refeesn

unavoidable, as the pattern matching problem for regex’s s

known to be NP-complete in the number of back-references

[@]A detailed inati f S f the Snort rul stignificantly improved robustness to performance attacks.
claled examination of regexs irom the Snort Tuie Sel . qemonstrate our algorithm’s benefits by adding it to the

SqueSt_s’ however, that the wor_st-c_ase compl_exny IS e'?'.'k Snort IDS. Although backtracking is fast in the common case,
in practice. We show that compile-time analysis of the -I'Ve't results in performance as low as 1-2 packets/sec in the fac
ness” of back references, as well as of the number of possi%\‘e

i in the input wh back ref tchit malicious inputs. Our deterministic algorithm, on thaet
posttions in the Input where a back reference can matct ’Sefs%and, has performance similar to the backtracking algorith
in significantly tighter worst-case bounds. The compiteeti

; S in the common case, while avoiding the orders of magnitude
analysis results can also be used to limit state space groy E\Ndown with malicious inputs

atrun-time. The main contributions of this work can be summarized as
A backtracking approach may have an advantage ovf%h .

deterministic algorithms if the input packet is “bad—i.4., . .)
A new on-the-fly deterministic matching algorithm for

it matches the regex describing an attack pattern. For “good ° ’) ' : i
packets, we show that the backtracking algorithm always doe ~9€neral regexs, with detailed complexity analysis and
predictable, robust behavior in practice,

at least as much work as the deterministic algorithm; hence, DK - - ')

the deterministic algorithm has the advantage. Normdidrisf ~ * New compile-time analysis resulting in much tighter

overwhelmingly composed of good packets; thus, one might Worst-case matching costs, and use of this analysis to

expect the performance of the deterministic algorithm to be IMProve run-time space usage and performance,

good on average. Experimental results with a modified Snort® Rule-by-rule analysis of the worst case matching cost for

implementation confirm this hypothesis. our qleterr_mmsﬂc algor!thm to allow automatic detection
The main advantage of a deterministic algorithm is that @nd isolation of potentially *bad” rules, and

its performance is predictable. (We show that predicting th * Extensive experimental results which show §|gn|f|_cantly

worst-case performance of the backtracking algorithm is NP~ More robust performance for the new algorithm in the

hard even for regular expressions.) The complexity bounds face of malicious packets.

for the deterministic algorithm which are computed by the

compile-time analysis can be used to separate out regex pat-

terns that look vulnerable to attack, for more detailed nadnu A number of hardware (FPGA/ASIC/CAM) and software

analysis. Thus, the combination of the new algorithm, witbolutions have been proposed to optimize running time of

the compile-time analysis of potential vulnerability rissin IDS/IPS systems (e.g., [7], [8], [9], [10], [11], [12]). Wil

II. RELATED WORK

payload filters

pT—— ing tight worst-case bounds, or experimental evaluatiotih wi
o e fers real traces. Since determinism is useful for high perforrean
7000 rule e e much recent work has focused on the DFA state explosion
4577800 e romeet caused by combining regular expressions from multiplestule
Space and time overheads of DFAs created for regular expres-
Fig. 4. Basic packet processing pipeline in the Snort ID®lligent filtering ~ Sion matching have been optimized by grouping or rewritihg o

significantly reduces the number of rules that need to be matehll with rj1e sets [101. or by creating compact new data strucu@]s 2
a packet. The numbers denote the average number of rules raghainéach ’T 1 y 9 P [

stage when processing the 25 packet traces. Over all tranesverage less [@], m] Hybrid NFA/DFA approacheéIZS], or extensions
than 5 rules (and often close to zero) rules need to be chefokemiregexp of DFAs with scratch memory [26] can help reduce run-

match. time and state explosion due to the combination of a large
number of regular expressions into a single structure. While

) o these approaches solve other important problems, they do no
these solutions significantly accelerate the average pacléﬁiciently handle regex's—the solutions are complementary

processing time, they do not aim to minimize the worst cagg s
running time. Given the critical functionality of an IDS8Rit As pointed out in prior work [8], [27] and confirmed in
is important to test its survivability or robustness in thed of experiments (see Figure 4), IDSs like Snort perform very
“bad” inputs and detect any performance vulnerabilitie3][1 ta5t and extensive pre-filtering of the rules at runtime Hase
Therefore, we focus on the most complex and time-consuMig nacket headers, along with fast multiple keyword-based
operation in an IDS, which is to match packets againghitern matching [28]. As a result, full regular expression
arbitrary regex's, including those with back references. maching for each packet must be performed for only a handful
Performance problems with regular expression matching &g rules; this set of rules is determined at runtime based
well known [14], [15], [16], [17]. Vulnerabilities in vari@s on the packet contents. Therefore, combining hundreds or
stages of regular expression processing have been dem@Busands of regular expressions into a single (optimized)
strated across operating systems and applications [14]. A is not necessarily the best strategy for rule-based IDS
ponential behavior of NFA-based backtracking algorithmss fsystems. Moreover, this earlier work does not address the ca
regular expression matching has also been demonstrated t{ﬂi]regex’s with back-references.
[2], [3]. Regular expressions are known to be complex toewrit - Several other types of attacks on IDS’s have been studied in
well [14], and these papers have provided certain guidelioe the |iterature. For example, hash tables that exhibit catadr
minimize their performance vulnerabilities. These guited pehavior due to collisions can slow down systems [29].
include avoiding regex’s (back references), avoiding baclinother kind of backtracking performance vulnerability sva
tracking, using a memory-efficient deterministic algamtfor giscovered in the overall payload filtering stage of Srio®,3
regular expressions such as that used in grep [18], using ofthe authors used memoization to protect against the vulner-
well-tested regular expressions, avoiding known patténas apility, resulting in significant performance improvemédat
incur exponential behavior [19], [1], and limiting time and:ertain packet traces. While memoization works well for the
memory requirements of the matching phase. overall rule evaluation (which consists of several indit
While all these suggestions are very practical, only somegex matches), it is not a good strategy for pattern magchin
are applicable in the context of an IDS. IDS patterns aegjainst packets. For good packets (those that do not match th
continually added and updated, mostly by network managgyattern), it requires storing the entire search tree, ratan
or security professionals, who are not cognizant of the undenhe horizontal “slice” needed by an on-the-fly method.
lying pattern matching algorithms. Further, some explaits
most accurately expressed with complex syntax like regex’s ~ |ll. PATTERN MATCHING ALGORITHMS FORIDSS
the Snort ruleset, for example, contains several rules lwhic |n this section, we examine methods for pattern matching
rely on back references to accurately express buffer overflgn detail, and give examples of regex’s where the backtragki
attacks. Limiting time or memory [20] may result in failu®@ t method (also called the “NFA’ method) exhibits exponential
detect bad packets or dropping of harmless packets. Therefgost. We show that it is NP-hard to predict in advance whether
limiting the IDS rule syntax, time or memory restrictions, othe NFA method will incur exponential cost for a given regula
relying on the prudence of the rule writers are not appro@rigexpression. We present a DFA-style method for full regex’s,
for IDS applications. Instead, we propose to allow a powerfincluding arbitrary uses of backreferences, and examise it
rule language, but also to accompany it with a static check f@orst-case time and space complexity. As we show, more
all the IDS rules to detect worst case performance problenggecise bounds can be obtained through static analysiseof th
We can then guarantee that an adversary cannot craft madicigomputed automaton. The implementation of this method, and
packets to attack vulnerable IDS rules. experimental results are described in the following sectio
Recent work has a proposal for a deterministic algorithm S
to handle back references [21]. However, their algorithrasdo”- Packet Classification in an IDS
not handle expressions with multiple occurrences of a back-IDS’s, such as Snort, usually apply several pattern magchin
reference, and the paper does not include methods for ebtdilters to a packet. The goal is to classify good packets dyick

incoming packet

and thus reduce the average matching time. An incomingns of the automaton on the input, and thus incur cost that
packet is first classified according to header informatiors at least that of the DFA method, which can be viewed as
then, by whether it matches a set of representative keywowdsecking all runs together. As noted in the introductiorg th
taken from the full rules—typically using the Aho-Corasiclexpected common case for IDS applications is for nearly all
algorithm [28]. This usually eliminates most rules from €onpackets to be benign, on which the NFA-method has no time
sideration. If some rules remain, the packet is then matchadvantage over the DFA-method. For those packets that do
against these rules, which usually contain regex’s. In atfl omatch, the NFA method has high variability in its performanc
tests with Snort, the initial filters proved to be very effeet ranging from polynomial to exponential time in the length
reducing the number of regex matches required to at most 16fsthe packet. Thus, in both cases the DFA approach seems
of rules (and on average well under 5 rules), contrasted wipheferable.
the 1000’s of potential rules. A question that might occur to the reader at this point is
The most complex pattern matching task in an IDS/IPS vghether it is possible to determine in advance the worst-cas
regular expression matching. Snort allows unrestrictedafs behavior of the NFA-method over all possible inputs. This
regex’s, making it challenging to predict worst-case perfoturns out to be a hard problem, specifically, NP-hard.
mance, and therefore, to guard in advance against perf@enan Theorem 0:The questions below are NP-hard.
attacks. 1) Given a regular expression and numbers L and K, is
there a word of length L on which the backtracking NFA
search examines at least K states?
Matching for regular expressions can be implemented using2) Given a regular expression, is there a family of words
either an NFA-style algorithm or a DFA-style algorithm. To on which the backtracking NFA search has exponential

B. Regular Expression and Regex Matching

understand these glggrithms_, recall that a regulfar_ egipr_es_s time complexity in the length of the word?
can be converted in linear time to a nondeterministic finite- . _
state automaton (“nfa”) (cf. [31]). C. Regex’s: Extending Regular Expressions

The NFA-style algorithm is a depth-first search of this The standard regular expression syntax is as follows. A
nfa and the input packet. The depth-first nature and the usgular expression R has the following forms(the empty
of backtracking ensures that the memory required is lowtring),a (a single character),R1|R2) (union), R1; R2 (con-
however, there are simple cases where it requires exponeatenation), andx (reflexive transitive closure).
tial running time [1]. An example is the regular expression To this, regex’s allow the addition of back-references to
((alb)*)*b. If the packet ends in rather tharb, the NFA-style strings matched in brackets. An expression such @\ 1”
algorithm will backtrack, attempting to partition the patk matches precisely those input words of the farme (such as
in alternative ways. The number of such ways is roudtily aa or abab), as the\1 has to refer to a word identical to that
wheren is the length of the packet. The slowdown in Figure inatched by the bracketed expression.
is due to a similar expression in one of the Snort rules. The addition of backreferences results in non-regular ex-
Backtracking can be replaced with memoization—i.e., r@ressions; for instance, the above language is well-known
membering the (nfa state, input position) combinationg thi be strictly context-sensitive. It is shown in| [6] that the
occur in the search—, but this results in a large space caonatching problem (does an input match a regex?) is NP-
sumption when the input does not match the pattern. Tregmplete. Moreover, most interesting questions aboutesont
being the common case for IDS applications, memoizationsgnsitive languages are undecidable (cf. [32]); henceh suc
typically not used. representations are hard to analyze.
An nfa can be turned into a dfa (deterministic finite-state The NFA-algorithm for full regex’s is susceptible to the
automaton) by the subset construction. Each state of the déame problems as for regular expressidnsparticular, it is
is a subset of nfa states; after reading a prefiaf the input, possible for a rule to have a bad regular expression embedded
the subset-dfa state represents precisely the statedthafa in a regex which has backreferenceSuch expressions, by
could be in after reading. The translation from an nfa to athe hardness results above, are difficult or impossible to
dfa requires, in general, exponential space in the size ef thnalyze a priori. Therefore, we look for a deterministic ADF
regular expression. like algorithm with predictable performance guarantedssT
Instead of constructing the entire dfa, the DFA-style alg@lgorithm builds on the classical algorithm by Ken Thompson
rithm [4] keeps track of the current subset-dfa state whi[@], used in Unix tools such agr ep, for matching input words
scanning the input left-to-right. Thus, the DFA-style algjon against a standard regular expression. We briefly desdnibe t
alwaystakes time linear in the packet length, requiring spaagassical algorithm before describing the necessary siins.
at most the number of nfa states, which is proportional to ttbe Classical hi lqorithm f | :
length of the regular expression. . Classical matching algorithm for regular expressions
For inputs which match the regular expression, the back-The classical algorithm works in two phases:
tracking method has a potential of detecting a match with les 1) A regular expression is compiled into a non-
work than that done by the DFA-method. However, if there is deterministic finite automaton (NFA), via recursion on
no match, the backtracking method must examine all possible the structure of the regular expression

the word from left to right, maintaining aetof active

states of the NFA. If, on reaching the end of the word, an

accepting state of the NFA appears in the current active @ ()
set, the word is accepted; otherwise, it is rejected.

This algorithm can be seen as determinizing the NFA uO,l]:_ig. 5. Extended nfa for (a) theth bracket,(r) and (b) back-referencek.
the-fly”. The algorithm has the important property that éiss
each character of the input word at most once. The worst-case)
space complexity i€)(K'), where K is the number of states Formally, abackref-NFA(NFA) is represented by a tuple
in the NFA. The worst-case time complexity @3(K * m), (B,Q,Qo, 6,5, F), where
wherem is the length of the input word. However, caching ¢ B is the number of back-references, numbeted,
the computed state transitions appears to reduce the time @ is a finite set ofstates
requirement in practice t®(K + m), as described in [31]. * Qo is a subset of), defining theinitial states

Formally, a non-deterministic finite automatofNFA) is ¢ X iSd the input alphabet the set of legal symbols in a
represented by a tupl@), Qo, 5, %, F'), where word, _

. Q is a finite set ofstates ¢ 3:Qx (BU{ U{()i \b: 1<k < B}) —291s

o (o is a subset of), defining theinitial states the transition relation

« ¥ is the input alphabet the set of legal symbols in a ° F.a subset_(_)Q, is a set offinal s.tate_s)
word, The new transition symbols afg, which indicates the start

§:Q x (DU {e}) — 29 is thetransition relation Here ©Of matching bracket;)., which indicates the end of matching
¢ is a special symbol not ift; transitions one do not Pracketk; and\k, which indicates a back-referenée

“consume” an input character, The construction of a backref-NFA from a regex follows
. F, a subset of, is a set offinal states Thompson’s construction for NFA's, as described in [31]eTh

We can considep as defining a labeled transition graphnew cases are those for brackets and backreferences, and are

. . given in Figure 5. A bracketed terrfy;) generates an nfa with
with @) as the set of vertices, arf@U{c}) as the set of edge transition edges with “notes” that indicate the start and eh
labels. a bracket. A backreference terk, generates a transition

A run of the NFA A = (@, Qo, 4,2, F) on an input word X 9

ith lenath (ie. number of characters) is aiven b edge labeled by a “match” note to a unique successor. The
ww gth (e, .u .) 8) giv Y construction results in an extended nfa of size linear in the
a sequence: = (qo,i0); (q1,%1);... which associates each

. . length of the regular expression.
ggﬁlstmh? fg}ﬁ)v\\//\:ﬁrdc\gggtr;r?ttgte ap. The sequence must The definition of a run of a backref-NFA on an input word
]) .g . '] o extends the earlier definition as follows. Each positionfin a
« the first position is 0, and the first state is initial. I.ejnput word is now associated withaanfiguration rather than

2) On a given input word, the matching algorithm scans ~ . « [nfaforr)k \k

io =0 andgo € Qo. simply an NFA state. The set of configurations will be refdrre
» successive pairs are related by automaton transitions. It§ as¢. Informally, a configuration records the current NFA
for eachk: state, substring information for already scanned braclets
— (epsilon-transition)ix11 = i, and gx+1 € 0(qx,€), Wwhether a particular back-reference is in the process ofgoei
or matched. Formally, a configuration is a trigle x, s), where
— (input-transition) ix11 = 4 + 1 and g1 € « ¢ is a state of the backref-NFA,
6(qr, wlix)) « 1 is a pair of partial functions(sy, ur), both from
A run r is anaccepting runfor the input wordw of length [1..B] to [0..m — 1]. For anyb, the pair(ur(b), ur (b)),
m if the final pair of the run{g,,i,), is such thay,, is in F if defined, indicates a substring of the input word which
andi,, = m. matches bracket. We use L to indicate a totally unde-

The Thompson algorithm can be seen as following all the fined function
runs of the NFA simultaneously on the given input word. o s is either NOMATCH, or MATCH(b, i), whereb is a
bracket number in..B, andi is an index.
E. The matching algorithm for back-references A run of the backref-NFAA = (B,Q,Qo,4,%, F) on an

As described above, a regular expression with baclput wordw with length (i.e., number of characters) is
references may not describe a regular language. Thus,diMen by a sequence= (co,io); (c1,i1); ... which associates
general, regex’s need not be representable by NFAs. Heng@ch position of the word with a configuration. The sequence
one has to extend the NFA structure in some form. THBUSt satisfy the following constraints:
extension we propose allows additional labels on the edges the first position is 0, and the first configuration is initial.
of the NFA. The labels indicate the start and end positions of l.e.,iy = 0, andcy = (¢, L, NOMATCH), whereq € Q.

a matching bracket, and the presence of a back-referenbe sue successive pairs are related by automaton transitions as
as\1. follows. If (¢ = (q,pu,s),4) and (¢’ = (¢, 1/, s'),i’) are

Convert regex r to backref-NFA A

successive pairs, then one of the following constrainis £, i nput word w

must hold

— (epsilon-transition),” € 6(q,€), andi’ =4, p/ = p,

ands’ = s

(input-transition)q’ € §(q, w(i)), i =i+ 1, @' = p,
ands’ = s

(start-bracket) This transition records the start of a
bracket. For somé, ¢’ € d(q, (»), ' =14, p} IS pur
extended withb mapped ta;, andp/, = ug.
(end-bracket) This transition records the end of a
bracket. For somé, ¢’ € 6(q,)s), ¢ = t,ur(b) is
defined, andu} = pr, 1y is ur extended withb 3.
mapped ta, ands’ = s

Let S = enpty set
Scan w fromleft to right.
For each non-final position i:
Let Si1=S.
For each configuration c in S, repeatedly
add successors due to noves other than
"input-transition” to Sl
Let S2=enpty.
For each configuration c in S1, add
successors due to "input-transition"
move for letter Wi) to S2
Replace S with S2
Conpute S1 from S as above.
a configuration with a final

If S1 contains
NFA st at e,
O her wi se,

_ (begin-matching)s = NOMATCH, s(b) is defined, ~ 26°€P!: rej ect

q has a single transition orp for somek, ands’ =
MATCH(b,0), i/ = p, ¢ =¢q, i =1
— (continue-matching)y has the formMATCH(b, p).
Let u(b) = (I, h). If (I4+p) < h, andw(l+p) = w(i)
theng = ¢, s = MATCH(b,p+ 1), ¢ =i,/ =
— (end-matching)s has the formMATCH(b,p). Let
u(b) = (I, h). If (I +p) = h, theng' is the unique G. Compile-Time Analysis

r_ o
j,u/flciszor off on \b, 5" = NOMATCH, andi’ = In this section, we describe two simple techniques which
V . perform static analysis on the backref-NFA derived from a
Matching a back-reference is done by a sequence of trgRgex to provide better bounds for the worst-case space and
sitions. The “begin-matching” transition activates matgha ¢jme complexity. The computed bounds can be used as an
back-referencé. The “continue-matching” transition matChesadmissibility test, to separate out regex’s which are ity
the current input character(i) against the expected characteynerable to attacks for more detailed manual analysis.
w(l-+p) while keeping the state constant. The “end-matching” 1) | jyeness Analysis:in the bound estimate described
transition de-activates matching foand moves the automatonabove, we implictly assume that each backreference entry in
state forward. . . a configuration is useful for further matching. Howeversthi
A run r is anaccepting runfor the input wordw of length a3y not be the case. Consider, for instance, the expression
m if the final pair of the run{c, = (4n, fin, $n),in), 18 SUCh (4p)\1(cd)\2. After the use of\1, it is not needed for
thatg, is in " andi, = m. The language of a backref-NFAfther matching. A similar situation is seen in the expi@ss

is the set of inp_ut words for which there is an accepting TUfub)\1|(cd)\2, as the backreferences are used along disjoint
Theorem 1:Given a regexr, the augmented Thompsonynjon expressions.

construction builds a backref-NFA of size linear in the size | each case, while there are syntactically two back-
of r, such that the language af is precisely the set of words references in the expression is “dead” (i.e., unnecessary)
that satisfyr. after it is used to match for the first time. In expressionshsuc

The deterministic matching algorithm is given in Figuret6. las (ab)(cd)\1; R; \2, the match for\1 is not used inR, which
fO||0WS the Standard Thompson matching algorithm, with thﬂ|ght be a |arge and h|gh|y ambiguous regular expression_
replacement of NFA states by the more general configurationsys, it is worthwhile, for performance reasons, to detasni
at compile-time those backreferences that are guaramewsel t
“live” (i.e., useful) at each NFA state.

The number of possible configurations is the product of the This sort of “liveness” analysis is a standard operation in
number of states of the NFA, which we denote By and optimizing compilers (cf. [31]), where it is used to deteneni
the number of possible maps, whichrist?, wherem is the Which variables are still in use at a program point. We adapt
length of the packet and® is the number of backreferencesthe compiler algorithm to analyze the backref-NFA struetur
Hence, the time taken is, at worgd(m * K = m??). (Note for live backrefs. The adaptation is the following:
that for the case of regular expressiotis £ 0), this reduces o instead of a "program flow graph”, we use the graph of
to the usualO(m x K).) the NFA

Although the complexity is polynomial inm and K, it « instead of a "basic block”, we use the NFA edges
is exponential in the number of back-references. While thee instead of variables, we track backreferences: An edge
number of backreferences is usually small, this expresision labeled with \b denotes a “use” of backreferende
a weak worst-case estimate. Moreover, the matching problem while the edge labeled with, forms a definition of
for regex’s is NP-complete when the number of backreference backreferencé.

Fig. 6. Deterministic Regex Matching Algorithm.

is considered [6], so this exponential behavior should reot b
surprising.

F. Complexity Analysis.

Nearly all (111/120) of these expressions had a single

@) =)o) () _
backreference. For 8 of the expressions, however, the numbe

(2 of back-references is 6, while the maximum numbedioé

backreferences at any state is only 2. This gives a drastic
T reduction in the rough worst-case complexity estimate. The
remaining expression has 4 live backreferences, howevesi
Fig. 7. Liveness forab)\1(cd)\2. Live setsiqy = {1}, g0 = {2}; others g deterministic match prefix, as in the case described above.
are empty. Hence, the worst-case complexity is only linear.
The liveness analysis also shows that there is much vari-
ability between the number of live backreferences inside an

a .L, L..n_.‘ NFA. For instance, in one of the 6 expressions where the

c @ @ @ max. live back-references is 2, the distribution is as fedbp
@ out of 638 states, 308 have no live back-reference, 192 have
one, and the remaining have two. Thus, the actual matching

d—» complexity, using the optimization indicated previousguld

be even lower than the tighter bound obtained through the

Fig. 8. Liveness fofab)\1|(cd)\2. Live setsiqs = {1}, q10 = {2}; others liveness analysis.
are empty.

IV. EXPERIMENTS WITH SNORT

With this adaptation, a standard analysis for liveness gen-Snort [33] is an open source network intrusion prevention
erates the set of backreferences live at each NFA state. Tgtem for performing real-time traffic analysis and packet
result of running this algorithm is shown in Figures 7 and §099ing on IP networks. It utilizes a flexible rule language

The computed information can be used in two ways. to perform protocol analysis, content searching/matclaingd

« First, the analysis gives a better bound for the time/spafi§tection of a variety of attacks and probes, such as buffer
consumption. If is the maximum number of live back- overflows, stealth port scans, CGI attacks, SMB probes, OS

references (over all NFA states), then the worst-case tifff9€rprinting attempts, etc. The number of rules and the
complexity can be tightened 0 (m * K * m?"). complexity of rules has been increasing as more sophisticat

. An optimization during matching. For a configuratior?tacks need to be expressed. In particular, regex's witk ba
(¢, 11,), entries iny which refer to backreferences thaf€ferences are b(_elng used |_ncreasmgly to express various
are NOT live at ¢ can be dropped to obtain the smalleftacks more precisely (see Figure 3).
configuration(q, », s). This reduction can result in two _ The Snort IDS partitions rule_zs_ into rule groups _at c_ompile
configurations which differ only on dead backreferencddn€ by the rule header, specifically, by the destination and

being merged into a single configuration, reducing tHePurce IP ports. As shown in Figure 4, each incoming packet
size of the current set. is matched against one or two such port rule groups. For each

rule within a rule group, Snort extracts a fixed string thasmu
plicit in the bounds estimates is that a backreference C?ﬁpear in a packet for that packet to successfully matctuthe f

match arbitrary substrings of the input. This can happen e All such fixed strings are combined mt_o a smgle DFA fpr
the matching is highly non-deterministic. For instanceg theach rule group as part of the Aho-Corasick string matching

bracket ina + (a)a* can match anywhere in an input of thealgorithm. This DFA efficiently determines the subset ofrul

form ™. However, it is sometimes the case that the backre at need. o be fu!ly matched against an incoming packet.
| this point Snort invokes full rule matching, includingeth

NFA for a pattern has the structure where the matching . : -
purely deterministic, which can drastically reduce the ahat regular expression engine, for each of these remaining.rule
complexity bound.

An example is(ax)b(cx)d; R; \1\2, whereR is an arbitrary
regular expression. Herel; representgax*)b(cx)d, and Ay We modified the code in Snort that calls the pcre regexp
representsik; \1\2. In this pattern, while there are two livematching library for regexp matching. In its place, we lidke
back-references, the substring matching each backrefeiien as a library our new single scan algorithm that handles aggul
chosen uniquely, thus, there is a unique map, rather than exgressions as well as regex’s. Parts of the new patterrhmatc
potential ofm* possible maps with two live back-referencesng algorithm were written in OCaml (http://caml.inrig.fior
Thus, the worst-case space complexityOi&n * K). quick prototyping, and then compiled into binary form.

3) Experiments on Snort PatterndiVe ran the liveness We ran Snort on a 2.6GHz Linux PC. We used 25 packet
analysis on 120 expressions with backreferences collectegces collected during the “Capture the Flag” contest held
from Snort rules (after removing duplicate expressionsirgi at the hacker convention DefCon [34]: 13 (numbered 1 to 13)
from distinct rules). The resulting backref-NFA's havewetn from Defcon 10/[35] and 12 (numbered 14 to 25) from Defcon
70 and 30,000 states, with most on the lower side. 8 [36]. We also include one trace (numbered 26) which is

2) Deterministic match analysisAnother assumption im-

A. Modifying Snort

http://caml.inria.fr

[No. [Name | Source [# packets] # alerts[No. | Name | Source [# packets[# aleris]
1 | orangel.5.| Defcon10| 21990 507 14 | 29122836| Defcon8 207631 437
2 orangel.6.| Defcon10 6971 329 15 | 29123907| Defcon8 202092 484
3 | orange2.1.| Defcon1l0| 164738 1051 16 | 29124449| Defcon8 523330 810
4 | orange2.2.| Defcon10| 37570 32 17 | 29132445| Defcon8 524968 | 277272
5 | orange2.3.| Defcon1l0| 84001 2684 18 | 29133000 Defcon8 | 18845100| 979177
6 orange2.4.| Defcon10 6869 30 19 | 29142147| Defcon8 268153 833
7 | orange2.5.| Defcon10| 85156 6777 20 | 29163144| Defcon8 | 18467155| 565926
8 | orange2.6.| Defcon10| 119159 1191 21 | 29170000| Defcon8 | 12160133| 267556
9 | orange2.7.| Defcon10| 47113 654 22 | 29180000| Defcon8 | 22041078 145641
10 | orange2.8| Defconl0| 17867 74 23 | 29183001 Defcon8 | 12967247| 186383
11 | orange3.1| Defconl0| 29989 87 24 | 29193000 Defcon8 | 921473 4| 396084
12 | orange3.2| Defcon10| 154531 639 25 | 29200000| Defcon8 | 11188876| 5859
13 | orange3.3| Defconl0| 121016 324 26 local local WAN | 2000000 | 2000

Fig. 9. Traces used in our Snort experiments.

50

T T
Backtracking
Deterministic Fwses

collected locally from the link outside our firewall. The ¢es
ranged from 6,800 to 2M packets.

A closer look at the poorly performing traces revealed that
the PCRE NFA algorithm incurred an exponential search time
on poorly written regular expressions, and finally returmneth
an error. Thus, not only was the performance reduced, but
the IDS did not even successfully complete the matching. By
selecting “bad” packets from these traces, the performance ‘ : ‘
reduced to nearlyl packet per secondWhen we replaced weomon. T "
the backtracking pattern matching algorithm in Snort with
our deterministic algorithm, the performance of the poorlyig. 11. Times to match a regex (with one or more back referentes)es
performing traces was significantly improved. For the remailabeled by the number of the original trace from which packewdl were
ing traces, as expected, there was no significant changee)fHaCted'
performance.

The above traces have only a handful of packets that de¢ the IDS/IPS itself to analyze new rules and ensure that
matched against expressions with back-references. Waesbl there are no resulting performance vulnerabilities, evetné
those packets, and measured the time to run a regex segwsence of worst-case packet inputs.
using both the deterministic and backtracking algorithms. We have shown that precise analysis for exponential match-
Figure[11 compares the time required by the two approacheg behavior is impossible. Therefore, we propose an altern
to match backreference rules against packets. We see thattife approach: use a deterministic matching algorithmgckhe
backtracking algorithm is consistently faster by a factfam®. all rules for worst-case matching performance, and expuse t
This is partly due to the non-optimized ML implementationfew rules that are suspected to have performance vulnerabil
but also because all of these packets match the expressigtitss. We presented static analysis solutions to perforis th
Recall that when packets match a rule, the backtrackingle-by-rule analysis. The intent is that rule writers case u
algorithm may detect the match earlier than the deterniinisthis analysis as an admissibility test to check new rules and
algorithm. For an IDS, this is the less common case of "baéhsure that their IDS/IPS will not fall prey to a DoS attack.
packets matching against rules. Also note that none of the
patterns matched in Figufe |11 caused exponential behavior
during backtracking. As mentioned in Section IlI, it is haod [1] R. Cox, “Regular expression matching can be simple and,”fast

. - . . http://swtch.com/ rsc/regexp/regexpl.html.
predict whether or not such behavior is possible in the Wor%] ——, “Implementing regular expressions,” http://swtamt rsc/regexp/.

40 | — A
E B 1

20 | |] 4

Time to match packet against regex (millisec)

REFERENCES

case. [8] S. Croshy, “Denial of service through regular expres-
sions,” usenix Security Symposium Work-in-Progress,
V. CONCLUSION AND FUTURE WORK http://www.usenix.org/events/sec03/wips.html.

. . 4] K. Thompson, “Regular expression search algorith@gmmun. AC
A powerful and expressive rule language is necessary ! vol. 11 rf)o_ 6. pp. 319_422'0 1968. gonthed M

an IDS/IPS system to defend the network against compleg] T. S. S. Alert, “Buffer overflow on procedures
new attacks. But this power comes at a high cost, especially ©f the replication ~ management api ~ packages,

. h | . . icall fth f http://www.appsecinc.com/resources/alerts/oracleZBI1/25.html.
since the rule writer Is typlca y unawarg of the performanc [6] A. V. Aho, “Algorithms for finding patterns in strings,” illandbook of
consequences of matching packets against complex rules. We Theoretical Computer Science, Volume A: Algorithms and |Gexity
have seen a number of poorly written rules in the populartSnoy = (A)._ Elsevier, 1990, pp. 255-300. v ,
DS f which are simplv incorrect. while the rest Car{?] L. Tan, B. Brotherton, and T. Sherwood, “Bit-split stgimatching

» Some or whi '_ _py ! » W '_ o engines for intrusion detection and preventioACM Trans. Archit.

be very hard to match efficiently. Therefore, it is important Code Optim.vol. 3, no. 1, pp. 3-34, 2006.

Fig. 10.

10

‘ Or‘iginél SHort i

Average packet processing time (millisec)

01} . .

001 ¢ | | . | | I I |

0.001 II EERER II b
1 2 3 4 5 6 7 8 9 10 11 12 13

Trace

1000 T

" Original Snort s
Updated Snort

100 ¢ E

10 ¢

Max packet processing time (millisec)

Average packet processing time (millisec)

Max packet processing time (millisec)

" Original Snort

Updated Snort messasa
0.02 - 4
0.01 - 4
0005 - & B | I ‘ E

14 15 16 17 18 19 20 21 22 23 24 25 26

Trace
500 T T T T T T

Original Snort

Updated Snort s
100 4
10 . i
1r | | | |] | | B

0.5 | | BB

14 15 16 17 18 19 20 21 22 23 24 25 26
Trace

(d)

(a),(b): Average, and (c),(d): maximum packet prsicestime by Snort for each of the 26 traces. The red bars représe performance of the

original Snort IDS, while the green bars represent the perdmce of Snort updated with the deterministic matcher.

(8]

(9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]

[19]
[20]

[21]

[22]

I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Véadis, “Packet
pre-filtering for network intrusion detection,” ifroc. ACM/IEEE ANCS
2006, pp. 183-192.

D. L. Schuff and V. S. Pai, “Design alternatives for a higérformance
self-securing ethernet network interface,”IPDPS 2007, pp. 1-10.

F. Yu, R. Katz, and T. Lakshman, “Gigabit rate packet grattmatching
using tcam,” inICNP, 2004.

C. R. Clark and D. E. Schimmel, “Scalable pattern matchimghiigh
speed networks,” iFfCCM. IEEE Computer Society, 2004, pp. 249—
257.

Brodie, Cytron, and Taylor, “A scalable architectuce high-throughput
regular-expression pattern matchinGQANEWS: ACM SIGARCH Com-

(23]
[24]

[25]

(26]

puter Architecture Newsvol. 34, 2006. (27]
A. Ghosh and J. Voas, “Inoculating software for surbividy,” Commun.
ACM, vol. 42, no. 7, pp. 38-44, 1999. 28]

W. Drewry and T. Ormandy, “Insecure context switchingogulating

regular expressions for survivability,” WOOT’08: Proceedings of the [29]

2nd conference on USENIX Workshop on offensive technslogie
K. Ellul, B. Krawetz, J. Shallit, and M. Wang, “Regulaxmgessions:

new results and open problemd,”Autom. Lang. Compvol. 9, no. 2-3, [30]
pp. 233-256, 2004.

V. Laurikari, “Nfas with tagged transitions, their ogrsion to deter- [31]
ministic automata and application to regular expressions,”181-187,
2000, http://laurikari.net/ville/spire2000-tnfa.ps. [32]
T. M. Corporation, “Can-2005-2491, August 2000,
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-22@51.

grep(1), “In gnu project manual pages,” 2002. [33]
J. Friedl,Mastering Regular ExpressionsO’Reilly Media, Inc., 2006.

W. Lee, J. D. Cabrera, A. Thomas, N. Balwalli, S. Salujad &. Zhang, [34]
“Performance adaptation in real-time intrusion detectiosteys,” in (39]
RAID, 2002, pp. 252-273. [36]

M. Becchi and P. Crowley, “Extending finite automata tdiogéntly
match perl-compatible regular expressions, GONEXT ’'08: Proceed-
ings of the 2008 ACM CoNEXT Conferenpp. 1-12.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Tyrf&l-

gorithms to accelerate multiple regular expressions matcfungieep
packet inspection,” ifProc. SIGCOMM 2006, pp. 339-350.

M. Becchi and P. Crowley, “An improved algorithm to acaelte regular
expression evaluation,” iRroc. ACM/IEEE ANCS2007, pp. 145-154.
M. Becchi and S. Cadambi, “Memory-efficient regular exgsien search
using state merging,” ifProc. INFOCOM 2007.

M. Becchi and P. Crowley, “A hybrid finite automaton forggtical deep
packet inspection,” inProc. ACM Conference on Emerging Network
Experiment and Technology, CONEX2007.

R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the laiggh fast
and scalable deep packet inspection with extended finitenzatga,” in
Proc. ACM SIGCOMM2008.

R. Sommer and V. Paxson, “Enhancing byte-level netwoitkugion
detection signatures with context,” ®©CS '03: Proceedings of the 10th
ACM conference on Computer and communications security

A. V. Aho and M. J. Corasick, “Efficient string matching:nAaid to
bibliographic search,Commun. ACMvol. 18, no. 6, pp. 333-340, 1975.
S. A. Crosby and D. S. Wallach, “Denial of service via @ithmic
complexity attacks,” irProc. of the 12th USENIX Security Symposium
2003, pp. 29-44.

R. Smith, C. Estan, and S. Jha, “Backtracking algorithoomplexity
attacks against a nids,” IACSAC 2006.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullma@pmpilers: Principles,
Techniques, & Tools, Second EditionAddison-Wesley, 2007.

J. E. Hopcroft and J. D. Ullmanintroduction to Automata Theory,
Languages, and Computation Reading, Massachusetts: Addison-
Wesley, 1979.

I. Sourcefire, “Snort -
http://www.snort.org/.
DefCon.org, “Defcon convention,” http://www.defcang/.

“Defcon 10 convention, capture the flag packet tsdce
http://cctf.shmoo.com/data/cctf-defcon10/orange teotfyz.

“Defcon 8 convention, capture the flag packet tredces
http://cctf.shmoo.com/data/cctf-defcon8/.

the de facto standard for intousi

	Introduction
	Related Work
	Pattern Matching Algorithms for IDSs
	Packet Classification in an IDS
	Regular Expression and Regex Matching
	Regex's: Extending Regular Expressions
	Classical matching algorithm for regular expressions
	The matching algorithm for back-references
	Complexity Analysis.
	Compile-Time Analysis
	Liveness Analysis
	Deterministic match analysis
	Experiments on Snort Patterns

	Experiments with Snort
	Modifying Snort

	Conclusion and Future Work
	References

