
Robust and Fast Pattern Matching
for Intrusion Detection

Kedar Namjoshi
Bell Laboratories
Alcatel-Lucent

kedar@research.bell-labs.com

Girija Narlikar
Bell Laboratories
Alcatel-Lucent

girija@research.bell-labs.com

Abstract—The rule language of an Intrusion Detection System
(IDS) plays a critical role in its effectiveness. A rule language
must be expressive, in order to describe attack patterns as
precisely as possible. It must also allow for a matching algo-
rithm with predictable and low complexity, in order to ensure
robustness against denial-of-service attacks.

Unfortunately, these requirements often conflict. We show, for
instance, that a single rule, when coupled with a backtracking
matching algorithm, can bring the processing rate down to nearly
ONE packet per second. Performance vulnerabilities of this type
are known for patterns described using regular expressions, and
can be avoided by using a deterministic matching algorithm.
Increasingly, however, rules are being written using the more
powerful regex syntax, which includes non-regular features such
as back-references. The matching algorithm for general regex’s
is based on backtracking, and is thus vulnerable to attacks.

The main contribution of this paper is a deterministic algo-
rithm for the full regex syntax, which builds upon the deter-
ministic algorithm for regular expressions. We provide a (rough)
complexity bound on the worst-case performance, and show that
this bound can be tightened through compile-time analysis of the
regex structure. These bounds can be used as an admissibility
check, to isolate expressions that require further analysis. Finally,
we present an implementation of these algorithms in the context
of the Snort IDS, and experimental results on several packet
traces which show substantial improvement over the backtrack-
ing algorithm.

I. I NTRODUCTION

A signature-based intrusion detection system (IDS) or intru-
sion prevention system (IPS) protects a network by examining
headers and contents of all packets entering or leaving it. It
raises alerts or drops packets (in the case of an IPS) when
it sees suspicious headers or payloads. Suspicious packetsare
detected by matching every incoming packet against a database
of rules; each rule represents the signature of a security exploit.

The IDS rule language must be sufficiently powerful to
represent current and future security exploits as accurately
and precisely as possible. Otherwise, a large number of good
packets may be incorrectly marked as harmful, or harmful
packets may go undetected. Moreover, the packet processing
rate must keep up with high line speeds without dropping
packets or allowing bad packets through. These two goals
often conflict, as there typically is a direct relationship between
the expressiveness and complexity of the rule language and the
packet processing time. Unless rules are written with care and

the underlying pattern matching is implemented carefully,the
packet processing algorithm may take a long time to complete.
The resulting performance vulnerability can be exploited by an
attacker to generate a low-bandwidth denial-of-service (DoS)
attack on the IDS itself. For example, Figure 1(a) shows how
a single packet trace brought the performance of the popular
Snort IDS/IPS to a grinding halt. A detailed look at individual
packet processing times in the problematic trace (number 7)
shows some packets requiring over 3 orders of magnitude more
time to process (Figure 1(b)). If an attacker were to send a very
low-bandwidth trace composed of such “bad” packets to the
IDS, its performance would be reduced to 1 packet per second.

This vulnerability can be traced back to abacktracking-
based pattern matching algorithm for regular expressions im-
plemented in the PCRE library used by Snort. It is known
that these algorithms may exhibitexponential worst-case
complexity (cf. [1], [2], [3]); the results described above
provide a dramatic confirmation of the importance of this
vulnerability in practice. The vulnerability can be avoided
through determinization: either converting the regular expres-
sion to a deterministic automaton, or through an “on-the-fly”
determinization method due to Thompson [4], used in the
standard Unix toolgrep.

Increasingly, however, as shown in Figure 3, rules in Snort
are being written using a powerful extension of regular ex-
pressions with back-references, known as theregexlanguage.
A number of exploits such as buffer overflow attacks (for
example, see [5]) can be expressed more precisely using back-
references. Figure 2 shows a simplified regex of this kind.
Back-references are a non-regular feature, so the known de-
terminization methods are not applicable to regex’s in general.
This leaves the backtracking algorithm as the only option for
matching general regex’s. However, regular expressions which
cause the backtracking algorithm to enter into its exponential
behavior could be embedded inside expressions with back-
references, re-exposing this serious vulnerability. Moreover,
as we show, compile-time detection of potential exponential
behavior is an NP-hard problem.

The main contribution of this paper is an on-the-fly de-
terminization algorithm for the full regex syntax. Towards
this result, we also give a construction of an extended non-
deterministic finite automaton from a regex. The matching

2

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
pe

r
pa

ck
et

 (
m

ill
is

ec
)

Trace

Original Snort

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

Packet Number

(a) (b)

Fig. 1. (a) Average packet processing times for 13 different packet traces for the Snort IDS/IPS. Trace number 7 had some problematic TCP flows. (b)
Packet processing times for individual packets from one suchflow. Y-axes shown in log scale.

Attack <v>=<longstring>; . . . ; F(<v>)
Regex (\w+)=“[ˆ ”] {1024,}”; .* ; F(\1)

Fig. 2. Use of a back reference to represent a (simplified) buffer overflow
security exploit on functionF . The back-reference, ‘\1’, refers to the term
(\w+), which matches a variable name appearing earlier in the packet.

algorithm has worst-case space and time complexity that is
linear in the size of this automaton, but exponential in the
number of back-references in the given expression. This is
unavoidable, as the pattern matching problem for regex’s is
known to be NP-complete in the number of back-references
[6].

A detailed examination of regex’s from the Snort rule set
suggests, however, that the worst-case complexity is unlikely
in practice. We show that compile-time analysis of the “live-
ness” of back references, as well as of the number of possible
positions in the input where a back reference can match, results
in significantly tighter worst-case bounds. The compile-time
analysis results can also be used to limit state space growth
at run-time.

A backtracking approach may have an advantage over
deterministic algorithms if the input packet is “bad”—i.e.,if
it matches the regex describing an attack pattern. For “good”
packets, we show that the backtracking algorithm always does
at least as much work as the deterministic algorithm; hence,
the deterministic algorithm has the advantage. Normal traffic is
overwhelmingly composed of good packets; thus, one might
expect the performance of the deterministic algorithm to be
good on average. Experimental results with a modified Snort
implementation confirm this hypothesis.

The main advantage of a deterministic algorithm is that
its performance is predictable. (We show that predicting the
worst-case performance of the backtracking algorithm is NP-
hard even for regular expressions.) The complexity bounds
for the deterministic algorithm which are computed by the
compile-time analysis can be used to separate out regex pat-
terns that look vulnerable to attack, for more detailed manual
analysis. Thus, the combination of the new algorithm, with
the compile-time analysis of potential vulnerability results in

 5000

 6000

 7000

 8000

 9000

 10000

Summer 08Fall 07Spring 07Fall 06

R
ul

es
 200

 250

 300

 350

 400

 450

 500

 550

 600

Summer 08Fall 07Spring 07Fall 06

ru

le
s

w
ith

 b
ac

kr
ef

s

(a) (b)

Fig. 3. Growth in the number of rules with regex’s in Snort. (a)Total number
of rules, and (b) Rules with regex’s containing back references

significantly improved robustness to performance attacks.
We demonstrate our algorithm’s benefits by adding it to the

Snort IDS. Although backtracking is fast in the common case,
it results in performance as low as 1–2 packets/sec in the face
of malicious inputs. Our deterministic algorithm, on the other
hand, has performance similar to the backtracking algorithm
in the common case, while avoiding the orders of magnitude
slowdown with malicious inputs.

The main contributions of this work can be summarized as
follows.

• A new on-the-fly deterministic matching algorithm for
general regex’s, with detailed complexity analysis and
predictable, robust behavior in practice,

• New compile-time analysis resulting in much tighter
worst-case matching costs, and use of this analysis to
improve run-time space usage and performance,

• Rule-by-rule analysis of the worst case matching cost for
our deterministic algorithm to allow automatic detection
and isolation of potentially “bad” rules, and

• Extensive experimental results which show significantly
more robust performance for the new algorithm in the
face of malicious packets.

II. RELATED WORK

A number of hardware (FPGA/ASIC/CAM) and software
solutions have been proposed to optimize running time of
IDS/IPS systems (e.g., [7], [8], [9], [10], [11], [12]). While

3

< 5 rules
src−dst port filter

table lookup
keyword filter

Aho−Corasick regex search match/
no match

incoming packet filters

other payload

payload filters

7000 rules

45−−800 rules

Fig. 4. Basic packet processing pipeline in the Snort IDS. Intelligent filtering
significantly reduces the number of rules that need to be matched in full with
a packet. The numbers denote the average number of rules remaining at each
stage when processing the 25 packet traces. Over all traces,on average less
than 5 rules (and often close to zero) rules need to be checkedfor a regexp
match.

these solutions significantly accelerate the average packet
processing time, they do not aim to minimize the worst case
running time. Given the critical functionality of an IDS/IPS, it
is important to test its survivability or robustness in the face of
“bad” inputs and detect any performance vulnerabilities [13].
Therefore, we focus on the most complex and time-consuming
operation in an IDS, which is to match packets against
arbitrary regex’s, including those with back references.

Performance problems with regular expression matching are
well known [14], [15], [16], [17]. Vulnerabilities in various
stages of regular expression processing have been demon-
strated across operating systems and applications [14]. Ex-
ponential behavior of NFA-based backtracking algorithms for
regular expression matching has also been demonstrated [1],
[2], [3]. Regular expressions are known to be complex to write
well [14], and these papers have provided certain guidelines to
minimize their performance vulnerabilities. These guidelines
include avoiding regex’s (back references), avoiding back-
tracking, using a memory-efficient deterministic algorithm for
regular expressions such as that used in grep [18], using only
well-tested regular expressions, avoiding known patternsthat
incur exponential behavior [19], [1], and limiting time and
memory requirements of the matching phase.

While all these suggestions are very practical, only some
are applicable in the context of an IDS. IDS patterns are
continually added and updated, mostly by network managers
or security professionals, who are not cognizant of the under-
lying pattern matching algorithms. Further, some exploitsare
most accurately expressed with complex syntax like regex’s—
the Snort ruleset, for example, contains several rules which
rely on back references to accurately express buffer overflow
attacks. Limiting time or memory [20] may result in failure to
detect bad packets or dropping of harmless packets. Therefore
limiting the IDS rule syntax, time or memory restrictions, or
relying on the prudence of the rule writers are not appropriate
for IDS applications. Instead, we propose to allow a powerful
rule language, but also to accompany it with a static check for
all the IDS rules to detect worst case performance problems.
We can then guarantee that an adversary cannot craft malicious
packets to attack vulnerable IDS rules.

Recent work has a proposal for a deterministic algorithm
to handle back references [21]. However, their algorithm does
not handle expressions with multiple occurrences of a back-
reference, and the paper does not include methods for obtain-

ing tight worst-case bounds, or experimental evaluation with
real traces. Since determinism is useful for high performance,
much recent work has focused on the DFA state explosion
caused by combining regular expressions from multiple rules.
Space and time overheads of DFAs created for regular expres-
sion matching have been optimized by grouping or rewriting of
rule sets [10], or by creating compact new data structures [22],
[23], [24]. Hybrid NFA/DFA approaches [25], or extensions
of DFAs with scratch memory [26] can help reduce run-
time and state explosion due to the combination of a large
number of regular expressions into a single structure. While
these approaches solve other important problems, they do not
efficiently handle regex’s—the solutions are complementaryto
ours.

As pointed out in prior work [8], [27] and confirmed in
our experiments (see Figure 4), IDSs like Snort perform very
fast and extensive pre-filtering of the rules at runtime based
on packet headers, along with fast multiple keyword-based
pattern matching [28]. As a result, full regular expressions
matching for each packet must be performed for only a handful
of rules; this set of rules is determined at runtime based
on the packet contents. Therefore, combining hundreds or
thousands of regular expressions into a single (optimized)
DFA is not necessarily the best strategy for rule-based IDS
systems. Moreover, this earlier work does not address the case
of regex’s with back-references.

Several other types of attacks on IDS’s have been studied in
the literature. For example, hash tables that exhibit quadratic
behavior due to collisions can slow down systems [29].
Another kind of backtracking performance vulnerability was
discovered in the overall payload filtering stage of Snort [30].
The authors used memoization to protect against the vulner-
ability, resulting in significant performance improvementfor
certain packet traces. While memoization works well for the
overall rule evaluation (which consists of several individual
regex matches), it is not a good strategy for pattern matching
against packets. For good packets (those that do not match the
pattern), it requires storing the entire search tree, rather than
the horizontal “slice” needed by an on-the-fly method.

III. PATTERN MATCHING ALGORITHMS FORIDSS

In this section, we examine methods for pattern matching
in detail, and give examples of regex’s where the backtracking
method (also called the “NFA” method) exhibits exponential
cost. We show that it is NP-hard to predict in advance whether
the NFA method will incur exponential cost for a given regular
expression. We present a DFA-style method for full regex’s,
including arbitrary uses of backreferences, and examine its
worst-case time and space complexity. As we show, more
precise bounds can be obtained through static analysis of the
computed automaton. The implementation of this method, and
experimental results are described in the following section.

A. Packet Classification in an IDS

IDS’s, such as Snort, usually apply several pattern matching
filters to a packet. The goal is to classify good packets quickly,

4

and thus reduce the average matching time. An incoming
packet is first classified according to header information;
then, by whether it matches a set of representative keywords
taken from the full rules—typically using the Aho-Corasick
algorithm [28]. This usually eliminates most rules from con-
sideration. If some rules remain, the packet is then matched
against these rules, which usually contain regex’s. In all our
tests with Snort, the initial filters proved to be very effective,
reducing the number of regex matches required to at most 10’s
of rules (and on average well under 5 rules), contrasted with
the 1000’s of potential rules.

The most complex pattern matching task in an IDS/IPS is
regular expression matching. Snort allows unrestricted use of
regex’s, making it challenging to predict worst-case perfor-
mance, and therefore, to guard in advance against performance
attacks.

B. Regular Expression and Regex Matching

Matching for regular expressions can be implemented using
either an NFA-style algorithm or a DFA-style algorithm. To
understand these algorithms, recall that a regular expression
can be converted in linear time to a nondeterministic finite-
state automaton (“nfa”) (cf. [31]).

The NFA-style algorithm is a depth-first search of this
nfa and the input packet. The depth-first nature and the use
of backtracking ensures that the memory required is low;
however, there are simple cases where it requires exponen-
tial running time [1]. An example is the regular expression
((a|b)∗)∗b. If the packet ends ina rather thanb, the NFA-style
algorithm will backtrack, attempting to partition the packet
in alternative ways. The number of such ways is roughly2n,
wheren is the length of the packet. The slowdown in Figure 1
is due to a similar expression in one of the Snort rules.

Backtracking can be replaced with memoization—i.e., re-
membering the (nfa state, input position) combinations that
occur in the search—, but this results in a large space con-
sumption when the input does not match the pattern. That
being the common case for IDS applications, memoization is
typically not used.

An nfa can be turned into a dfa (deterministic finite-state
automaton) by the subset construction. Each state of the dfa
is a subset of nfa states; after reading a prefixσ of the input,
the subset-dfa state represents precisely the states that the nfa
could be in after readingσ. The translation from an nfa to a
dfa requires, in general, exponential space in the size of the
regular expression.

Instead of constructing the entire dfa, the DFA-style algo-
rithm [4] keeps track of the current subset-dfa state while
scanning the input left-to-right. Thus, the DFA-style algorithm
alwaystakes time linear in the packet length, requiring space
at most the number of nfa states, which is proportional to the
length of the regular expression.

For inputs which match the regular expression, the back-
tracking method has a potential of detecting a match with less
work than that done by the DFA-method. However, if there is
no match, the backtracking method must examine all possible

runs of the automaton on the input, and thus incur cost that
is at least that of the DFA method, which can be viewed as
checking all runs together. As noted in the introduction, the
expected common case for IDS applications is for nearly all
packets to be benign, on which the NFA-method has no time
advantage over the DFA-method. For those packets that do
match, the NFA method has high variability in its performance,
ranging from polynomial to exponential time in the length
of the packet. Thus, in both cases the DFA approach seems
preferable.

A question that might occur to the reader at this point is
whether it is possible to determine in advance the worst-case
behavior of the NFA-method over all possible inputs. This
turns out to be a hard problem, specifically, NP-hard.

Theorem 0:The questions below are NP-hard.

1) Given a regular expression and numbers L and K, is
there a word of length L on which the backtracking NFA
search examines at least K states?

2) Given a regular expression, is there a family of words
on which the backtracking NFA search has exponential
time complexity in the length of the word?

C. Regex’s: Extending Regular Expressions

The standard regular expression syntax is as follows. A
regular expression R has the following forms:ǫ (the empty
string),a (a single character),(R1|R2) (union),R1;R2 (con-
catenation), andR∗ (reflexive transitive closure).

To this, regex’s allow the addition of back-references to
strings matched in brackets. An expression such as “(a|b)∗\1”
matches precisely those input words of the formww (such as
aa or abab), as the\1 has to refer to a word identical to that
matched by the bracketed expression.

The addition of backreferences results in non-regular ex-
pressions; for instance, the above language is well-known
to be strictly context-sensitive. It is shown in [6] that the
matching problem (does an input match a regex?) is NP-
complete. Moreover, most interesting questions about context-
sensitive languages are undecidable (cf. [32]); hence, such
representations are hard to analyze.

The NFA-algorithm for full regex’s is susceptible to the
same problems as for regular expressions.In particular, it is
possible for a rule to have a bad regular expression embedded
in a regex which has backreferences.Such expressions, by
the hardness results above, are difficult or impossible to
analyze a priori. Therefore, we look for a deterministic, DFA-
like algorithm with predictable performance guarantees. This
algorithm builds on the classical algorithm by Ken Thompson
[4], used in Unix tools such asgrep, for matching input words
against a standard regular expression. We briefly describe the
classical algorithm before describing the necessary extensions.

D. Classical matching algorithm for regular expressions

The classical algorithm works in two phases:

1) A regular expression is compiled into a non-
deterministic finite automaton (NFA), via recursion on
the structure of the regular expression

5

2) On a given input word, the matching algorithm scans
the word from left to right, maintaining aset of active
states of the NFA. If, on reaching the end of the word, an
accepting state of the NFA appears in the current active
set, the word is accepted; otherwise, it is rejected.

This algorithm can be seen as determinizing the NFA “on-
the-fly”. The algorithm has the important property that it scans
each character of the input word at most once. The worst-case
space complexity isO(K), whereK is the number of states
in the NFA. The worst-case time complexity isO(K ∗ m),
wherem is the length of the input word. However, caching
the computed state transitions appears to reduce the time
requirement in practice toO(K + m), as described in [31].

Formally, a non-deterministic finite automaton(NFA) is
represented by a tuple(Q,Q0, δ,Σ, F), where

• Q is a finite set ofstates,
• Q0 is a subset ofQ, defining theinitial states,
• Σ is the input alphabet, the set of legal symbols in a

word,
• δ : Q × (Σ ∪ {ǫ}) → 2Q is the transition relation. Here

ǫ is a special symbol not inΣ; transitions onǫ do not
“consume” an input character,

• F , a subset ofQ, is a set offinal states

We can considerδ as defining a labeled transition graph
with Q as the set of vertices, and(Σ∪{ǫ}) as the set of edge
labels.

A run of the NFA A = (Q,Q0, δ,Σ, F) on an input word
w with length (i.e., number of characters)m is given by
a sequencer = (q0, i0); (q1, i1); . . . which associates each
position of the word with a state ofQ. The sequence must
satisfy the following constraints:

• the first position is 0, and the first state is initial. I.e.,
i0 = 0 andq0 ∈ Q0.

• successive pairs are related by automaton transitions. I.e.,
for eachk:

– (epsilon-transition)ik+1 = ik and qk+1 ∈ δ(qk, ǫ),
or

– (input-transition) ik+1 = ik + 1 and qk+1 ∈
δ(qk, w(ik))

A run r is anaccepting runfor the input wordw of length
m if the final pair of the run,(qn, in), is such thatqn is in F

and in = m.
The Thompson algorithm can be seen as following all the

runs of the NFA simultaneously on the given input word.

E. The matching algorithm for back-references

As described above, a regular expression with back-
references may not describe a regular language. Thus, in
general, regex’s need not be representable by NFA’s. Hence,
one has to extend the NFA structure in some form. The
extension we propose allows additional labels on the edges
of the NFA. The labels indicate the start and end positions of
a matching bracket, and the presence of a back-reference such
as\1.

(b)

(k)k

(a)

nfa for r \k

Fig. 5. Extended nfa for (a) thek’th bracket,(r) and (b) back-reference\k.

Formally, abackref-NFA(NFA) is represented by a tuple
(B,Q,Q0, δ,Σ, F), where

• B is the number of back-references, numbered1..B,
• Q is a finite set ofstates,
• Q0 is a subset ofQ, defining theinitial states,
• Σ is the input alphabet, the set of legal symbols in a

word,
• δ : Q × (Σ ∪ {ǫ} ∪ {(k,)k, \k : 1 ≤ k ≤ B}) → 2Q is

the transition relation.
• F , a subset ofQ, is a set offinal states

The new transition symbols are(k, which indicates the start
of matching bracketk;)k, which indicates the end of matching
bracketk; and\k, which indicates a back-referencek.

The construction of a backref-NFA from a regex follows
Thompson’s construction for NFA’s, as described in [31]. The
new cases are those for brackets and backreferences, and are
given in Figure 5. A bracketed term,(r) generates an nfa with
transition edges with “notes” that indicate the start and end of
a bracket. A backreference term,\k, generates a transition
edge labeled by a “match” note to a unique successor. The
construction results in an extended nfa of size linear in the
length of the regular expression.

The definition of a run of a backref-NFA on an input word
extends the earlier definition as follows. Each position in an
input word is now associated with aconfiguration, rather than
simply an NFA state. The set of configurations will be referred
to asC. Informally, a configuration records the current NFA
state, substring information for already scanned brackets, and
whether a particular back-reference is in the process of being
matched. Formally, a configuration is a triple(q, µ, s), where

• q is a state of the backref-NFA,
• µ is a pair of partial functions,(µL, µR), both from

[1..B] to [0..m − 1]. For anyb, the pair(µL(b), µR(b)),
if defined, indicates a substring of the input word which
matches bracketb. We use⊥ to indicate a totally unde-
fined function

• s is either NOMATCH, or MATCH(b, i), where b is a
bracket number in1..B, andi is an index.

A run of the backref-NFAA = (B,Q,Q0, δ,Σ, F) on an
input word w with length (i.e., number of characters)m is
given by a sequencer = (c0, i0); (c1, i1); . . . which associates
each position of the word with a configuration. The sequence
must satisfy the following constraints:

• the first position is 0, and the first configuration is initial.
I.e., i0 = 0, andc0 = (q,⊥,NOMATCH), whereq ∈ Q0.

• successive pairs are related by automaton transitions as
follows. If (c = (q, µ, s), i) and (c′ = (q′, µ′, s′), i′) are

6

successive pairs, then one of the following constraints
must hold

– (epsilon-transition)q′ ∈ δ(q, ǫ), and i′ = i, µ′ = µ,
ands′ = s

– (input-transition)q′ ∈ δ(q, w(i)), i′ = i + 1, µ′ = µ,
ands′ = s

– (start-bracket) This transition records the start of a
bracket. For someb, q′ ∈ δ(q, (b), i′ = i, µ′

L is µL

extended withb mapped toi, andµ′

R = µR.
– (end-bracket) This transition records the end of a

bracket. For someb, q′ ∈ δ(q,)b), i′ = i,µL(b) is
defined, andµ′

L = µL, µ′

R is µR extended withb
mapped toi, ands′ = s

– (begin-matching)s = NOMATCH, µ(b) is defined,
q has a single transition on\b for somek, ands′ =
MATCH(b, 0), µ′ = µ, q′ = q, i′ = i

– (continue-matching)s has the formMATCH(b, p).
Let µ(b) = (l, h). If (l+p) < h, andw(l+p) = w(i)
thenq′ = q, s′ = MATCH(b, p + 1), i′ = i, µ′ = µ

– (end-matching)s has the formMATCH(b, p). Let
µ(b) = (l, h). If (l + p) = h, then q′ is the unique
successor ofq on \b, s′ = NOMATCH, and i′ =
i, µ′ = µ

Matching a back-reference is done by a sequence of tran-
sitions. The “begin-matching” transition activates matching a
back-referenceb. The “continue-matching” transition matches
the current input characterw(i) against the expected character
w(l+p) while keeping the state constant. The “end-matching”
transition de-activates matching forb and moves the automaton
state forward.

A run r is anaccepting runfor the input wordw of length
m if the final pair of the run,(cn = (qn, µn, sn), in), is such
that qn is in F and in = m. The language of a backref-NFA
is the set of input words for which there is an accepting run.

Theorem 1:Given a regexr, the augmented Thompson
construction builds a backref-NFAA of size linear in the size
of r, such that the language ofA is precisely the set of words
that satisfyr.

The deterministic matching algorithm is given in Figure 6. It
follows the standard Thompson matching algorithm, with the
replacement of NFA states by the more general configurations.

F. Complexity Analysis.

The number of possible configurations is the product of the
number of states of the NFA, which we denote byK, and
the number of possible maps, which ism2B , wherem is the
length of the packet andB is the number of backreferences.
Hence, the time taken is, at worst,O(m ∗ K ∗ m2B). (Note
that for the case of regular expressions (B = 0), this reduces
to the usualO(m ∗ K).)

Although the complexity is polynomial inm and K, it
is exponential in the number of back-references. While the
number of backreferences is usually small, this expressionis
a weak worst-case estimate. Moreover, the matching problem
for regex’s is NP-complete when the number of backreferences

1. Convert regex r to backref-NFA A
2. For input word w:

Let S = empty set
Scan w from left to right.
For each non-final position i:
Let S1=S.
For each configuration c in S, repeatedly
add successors due to moves other than
"input-transition" to S1
Let S2=empty.
For each configuration c in S1, add
successors due to "input-transition"
move for letter w(i) to S2
Replace S with S2

3. Compute S1 from S as above. If S1 contains
a configuration with a final NFA state,
accept. Otherwise, reject

Fig. 6. Deterministic Regex Matching Algorithm.

is considered [6], so this exponential behavior should not be
surprising.

G. Compile-Time Analysis

In this section, we describe two simple techniques which
perform static analysis on the backref-NFA derived from a
regex, to provide better bounds for the worst-case space and
time complexity. The computed bounds can be used as an
admissibility test, to separate out regex’s which are potentially
vulnerable to attacks for more detailed manual analysis.

1) Liveness Analysis:In the bound estimate described
above, we implictly assume that each backreference entry in
a configuration is useful for further matching. However, this
may not be the case. Consider, for instance, the expression
(ab)\1(cd)\2. After the use of\1, it is not needed for
further matching. A similar situation is seen in the expression
(ab)\1|(cd)\2, as the backreferences are used along disjoint
union expressions.

In each case, while there are syntactically two back-
references in the expression,\1 is “dead” (i.e., unnecessary)
after it is used to match for the first time. In expressions such
as(ab)(cd)\1;R; \2, the match for\1 is not used inR, which
might be a large and highly ambiguous regular expression.
Thus, it is worthwhile, for performance reasons, to determine
at compile-time those backreferences that are guaranteed to be
“live” (i.e., useful) at each NFA state.

This sort of “liveness” analysis is a standard operation in
optimizing compilers (cf. [31]), where it is used to determine
which variables are still in use at a program point. We adapt
the compiler algorithm to analyze the backref-NFA structure
for live backrefs. The adaptation is the following:

• instead of a ”program flow graph”, we use the graph of
the NFA

• instead of a ”basic block”, we use the NFA edges
• instead of variables, we track backreferences: An edge

labeled with \b denotes a “use” of backreferenceb,
while the edge labeled with)b forms a definition of
backreferenceb.

7

n n n

n nn

nn n

nn�

��

- - - -

����
?

-q0 q1 q2 q3 q4 q5

q6
q7q8

q9q10

(1 a b)1 \1

(2

cd)2\2

Fig. 7. Liveness for(ab)\1(cd)\2. Live sets:q4 = {1}, q9 = {2}; others
are empty.

n n n n n
n

n

n n n n nn
��
��
��
��

�
��3

- - - - -

- - - - -

Q
QQs

q1 q2 q3 q4 q5

q0

q6

q8 q9 q10 q11 q12q7

ǫ

(2 c d)2 \2

(1 a b)1
\1

ǫ

Fig. 8. Liveness for(ab)\1|(cd)\2. Live sets:q4 = {1}, q10 = {2}; others
are empty.

With this adaptation, a standard analysis for liveness gen-
erates the set of backreferences live at each NFA state. The
result of running this algorithm is shown in Figures 7 and 8.

The computed information can be used in two ways.
• First, the analysis gives a better bound for the time/space

consumption. IfL is the maximum number of live back-
references (over all NFA states), then the worst-case time
complexity can be tightened toO(m ∗ K ∗ m2L).

• An optimization during matching. For a configuration
(q, µ, s), entries inµ which refer to backreferences that
are NOT live at q can be dropped to obtain the smaller
configuration(q, µ′, s). This reduction can result in two
configurations which differ only on dead backreferences
being merged into a single configuration, reducing the
size of the current set.

2) Deterministic match analysis:Another assumption im-
plicit in the bounds estimates is that a backreference can
match arbitrary substrings of the input. This can happen if
the matching is highly non-deterministic. For instance, the
bracket ina ∗ (a∗)a∗ can match anywhere in an input of the
form an. However, it is sometimes the case that the backref-
NFA for a pattern has the structure where the matching is
purely deterministic, which can drastically reduce the match
complexity bound.

An example is(a∗)b(c∗)d;R; \1\2, whereR is an arbitrary
regular expression. Here,A1 represents(a∗)b(c∗)d, and A2

representsR; \1\2. In this pattern, while there are two live
back-references, the substring matching each backreference is
chosen uniquely, thus, there is a unique map, rather than the
potential ofm4 possible maps with two live back-references.
Thus, the worst-case space complexity isO(m ∗ K).

3) Experiments on Snort Patterns:We ran the liveness
analysis on 120 expressions with backreferences collected
from Snort rules (after removing duplicate expressions arising
from distinct rules). The resulting backref-NFA’s have between
70 and 30,000 states, with most on the lower side.

Nearly all (111/120) of these expressions had a single
backreference. For 8 of the expressions, however, the number
of back-references is 6, while the maximum number oflive
backreferences at any state is only 2. This gives a drastic
reduction in the rough worst-case complexity estimate. The
remaining expression has 4 live backreferences, however, it has
a deterministic match prefix, as in the case described above.
Hence, the worst-case complexity is only linear.

The liveness analysis also shows that there is much vari-
ability between the number of live backreferences inside an
NFA. For instance, in one of the 6 expressions where the
max. live back-references is 2, the distribution is as follows:
out of 638 states, 308 have no live back-reference, 192 have
one, and the remaining have two. Thus, the actual matching
complexity, using the optimization indicated previously,could
be even lower than the tighter bound obtained through the
liveness analysis.

IV. EXPERIMENTS WITH SNORT

Snort [33] is an open source network intrusion prevention
system for performing real-time traffic analysis and packet
logging on IP networks. It utilizes a flexible rule language
to perform protocol analysis, content searching/matchingand
detection of a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS
fingerprinting attempts, etc. The number of rules and the
complexity of rules has been increasing as more sophisticated
attacks need to be expressed. In particular, regex’s with back
references are being used increasingly to express various
attacks more precisely (see Figure 3).

The Snort IDS partitions rules into rule groups at compile
time by the rule header, specifically, by the destination and
source IP ports. As shown in Figure 4, each incoming packet
is matched against one or two such port rule groups. For each
rule within a rule group, Snort extracts a fixed string that must
appear in a packet for that packet to successfully match the full
rule. All such fixed strings are combined into a single DFA for
each rule group as part of the Aho-Corasick string matching
algorithm. This DFA efficiently determines the subset of rules
that need to be fully matched against an incoming packet.
At this point Snort invokes full rule matching, including the
regular expression engine, for each of these remaining rules.

A. Modifying Snort

We modified the code in Snort that calls the pcre regexp
matching library for regexp matching. In its place, we linked in
as a library our new single scan algorithm that handles regular
expressions as well as regex’s. Parts of the new pattern match-
ing algorithm were written in OCaml (http://caml.inria.fr) for
quick prototyping, and then compiled into binary form.

We ran Snort on a 2.6GHz Linux PC. We used 25 packet
traces collected during the “Capture the Flag” contest held
at the hacker convention DefCon [34]: 13 (numbered 1 to 13)
from Defcon 10 [35] and 12 (numbered 14 to 25) from Defcon
8 [36]. We also include one trace (numbered 26) which is

http://caml.inria.fr

8

No. Name Source # packets # alerts No. Name Source # packets # alerts
1 orange1.5. Defcon10 21990 507 14 29122836 Defcon8 207631 437
2 orange1.6. Defcon10 6971 329 15 29123907 Defcon8 202092 484
3 orange2.1. Defcon10 164738 1051 16 29124449 Defcon8 523330 810
4 orange2.2. Defcon10 37570 32 17 29132445 Defcon8 524968 277272
5 orange2.3. Defcon10 84001 2684 18 29133000 Defcon8 18845100 979177
6 orange2.4. Defcon10 6869 30 19 29142147 Defcon8 268153 833
7 orange2.5. Defcon10 85156 6777 20 29163144 Defcon8 18467155 565926
8 orange2.6. Defcon10 119159 1191 21 29170000 Defcon8 12160133 267556
9 orange2.7. Defcon10 47113 654 22 29180000 Defcon8 22041078 145641
10 orange2.8 Defcon10 17867 74 23 29183001 Defcon8 12967247 186383
11 orange3.1 Defcon10 29989 87 24 29193000 Defcon8 921473 4 396084
12 orange3.2 Defcon10 154531 639 25 29200000 Defcon8 11188876 5859
13 orange3.3 Defcon10 121016 324 26 local local WAN 2000000 2000

Fig. 9. Traces used in our Snort experiments.

collected locally from the link outside our firewall. The traces
ranged from 6,800 to 2M packets.

A closer look at the poorly performing traces revealed that
the PCRE NFA algorithm incurred an exponential search time
on poorly written regular expressions, and finally returnedwith
an error. Thus, not only was the performance reduced, but
the IDS did not even successfully complete the matching. By
selecting “bad” packets from these traces, the performanceis
reduced to nearly1 packet per second!When we replaced
the backtracking pattern matching algorithm in Snort with
our deterministic algorithm, the performance of the poorly
performing traces was significantly improved. For the remain-
ing traces, as expected, there was no significant change in
performance.

The above traces have only a handful of packets that are
matched against expressions with back-references. We isolated
those packets, and measured the time to run a regex search
using both the deterministic and backtracking algorithms.
Figure 11 compares the time required by the two approaches
to match backreference rules against packets. We see that the
backtracking algorithm is consistently faster by a factor of two.
This is partly due to the non-optimized ML implementation,
but also because all of these packets match the expressions.
Recall that when packets match a rule, the backtracking
algorithm may detect the match earlier than the deterministic
algorithm. For an IDS, this is the less common case of ”bad”
packets matching against rules. Also note that none of the
patterns matched in Figure 11 caused exponential behavior
during backtracking. As mentioned in Section III, it is hardto
predict whether or not such behavior is possible in the worst
case.

V. CONCLUSION AND FUTURE WORK

A powerful and expressive rule language is necessary for
an IDS/IPS system to defend the network against complex
new attacks. But this power comes at a high cost, especially
since the rule writer is typically unaware of the performance
consequences of matching packets against complex rules. We
have seen a number of poorly written rules in the popular Snort
IDS, some of which are simply incorrect, while the rest can
be very hard to match efficiently. Therefore, it is important

 0

 10

 20

 30

 40

 50

T20 T21 T22 T26 T23

T
im

e
to

 m
at

ch
 p

ac
ke

t a
ga

in
st

 r
eg

ex
 (

m
ill

is
ec

)

Trace

Backtracking
Deterministic

Fig. 11. Times to match a regex (with one or more back references). Traces
labeled by the number of the original trace from which packet flows were
extracted.

for the IDS/IPS itself to analyze new rules and ensure that
there are no resulting performance vulnerabilities, even in the
presence of worst-case packet inputs.

We have shown that precise analysis for exponential match-
ing behavior is impossible. Therefore, we propose an alterna-
tive approach: use a deterministic matching algorithm, check
all rules for worst-case matching performance, and expose the
few rules that are suspected to have performance vulnerabil-
ities. We presented static analysis solutions to perform this
rule-by-rule analysis. The intent is that rule writers can use
this analysis as an admissibility test to check new rules and
ensure that their IDS/IPS will not fall prey to a DoS attack.

REFERENCES

[1] R. Cox, “Regular expression matching can be simple and fast,”
http://swtch.com/ rsc/regexp/regexp1.html.

[2] ——, “Implementing regular expressions,” http://swtch.com/ rsc/regexp/.
[3] S. Crosby, “Denial of service through regular expres-

sions,” usenix Security Symposium Work-in-Progress,
http://www.usenix.org/events/sec03/wips.html.

[4] K. Thompson, “Regular expression search algorithm,”Commun. ACM,
vol. 11, no. 6, pp. 419–422, 1968.

[5] T. S. S. Alert, “Buffer overflow on procedures
of the replication management api packages,”
http://www.appsecinc.com/resources/alerts/oracle/2004-0001/25.html.

[6] A. V. Aho, “Algorithms for finding patterns in strings,” inHandbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity
(A). Elsevier, 1990, pp. 255–300.

[7] L. Tan, B. Brotherton, and T. Sherwood, “Bit-split string-matching
engines for intrusion detection and prevention,”ACM Trans. Archit.
Code Optim., vol. 3, no. 1, pp. 3–34, 2006.

9

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13

A
ve

ra
ge

 p
ac

ke
t p

ro
ce

ss
in

g
tim

e
(m

ill
is

ec
)

Trace

Original Snort
Updated Snort

 0.005

 0.01

 0.02

 14 15 16 17 18 19 20 21 22 23 24 25 26

A
ve

ra
ge

 p
ac

ke
t p

ro
ce

ss
in

g
tim

e
(m

ill
is

ec
)

Trace

Original Snort
Updated Snort

(a) (b)

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13

M
ax

 p
ac

ke
t p

ro
ce

ss
in

g
tim

e
(m

ill
is

ec
)

Trace

Original Snort
Updated Snort

 0.5

 1

 10

 100

 500

 14 15 16 17 18 19 20 21 22 23 24 25 26
M

ax
 p

ac
ke

t p
ro

ce
ss

in
g

tim
e

(m
ill

is
ec

)
Trace

Original Snort
Updated Snort

(c) (d)

Fig. 10. (a),(b): Average, and (c),(d): maximum packet processing time by Snort for each of the 26 traces. The red bars represent the performance of the
original Snort IDS, while the green bars represent the performance of Snort updated with the deterministic matcher.

[8] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Vassiliadis, “Packet
pre-filtering for network intrusion detection,” inProc. ACM/IEEE ANCS,
2006, pp. 183–192.

[9] D. L. Schuff and V. S. Pai, “Design alternatives for a high-performance
self-securing ethernet network interface,” inIPDPS, 2007, pp. 1–10.

[10] F. Yu, R. Katz, and T. Lakshman, “Gigabit rate packet pattern-matching
using tcam,” inICNP, 2004.

[11] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for high
speed networks,” inFCCM. IEEE Computer Society, 2004, pp. 249–
257.

[12] Brodie, Cytron, and Taylor, “A scalable architecture for high-throughput
regular-expression pattern matching,”CANEWS: ACM SIGARCH Com-
puter Architecture News, vol. 34, 2006.

[13] A. Ghosh and J. Voas, “Inoculating software for survivability,” Commun.
ACM, vol. 42, no. 7, pp. 38–44, 1999.

[14] W. Drewry and T. Ormandy, “Insecure context switching: inoculating
regular expressions for survivability,” inWOOT’08: Proceedings of the
2nd conference on USENIX Workshop on offensive technologies.

[15] K. Ellul, B. Krawetz, J. Shallit, and M. Wang, “Regular expressions:
new results and open problems,”J. Autom. Lang. Comb., vol. 9, no. 2-3,
pp. 233–256, 2004.

[16] V. Laurikari, “Nfas with tagged transitions, their conversion to deter-
ministic automata and application to regular expressions,” pp. 181–187,
2000, http://laurikari.net/ville/spire2000-tnfa.ps.

[17] T. M. Corporation, “Can-2005-2491,” August 2000,
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2005-2491.

[18] grep(1), “In gnu project manual pages,” 2002.
[19] J. Friedl,Mastering Regular Expressions. O’Reilly Media, Inc., 2006.
[20] W. Lee, J. D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang,

“Performance adaptation in real-time intrusion detection systems,” in
RAID, 2002, pp. 252–273.

[21] M. Becchi and P. Crowley, “Extending finite automata to efficiently
match perl-compatible regular expressions,” inCONEXT ’08: Proceed-
ings of the 2008 ACM CoNEXT Conference, pp. 1–12.

[22] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-

gorithms to accelerate multiple regular expressions matchingfor deep
packet inspection,” inProc. SIGCOMM, 2006, pp. 339–350.

[23] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” inProc. ACM/IEEE ANCS, 2007, pp. 145–154.

[24] M. Becchi and S. Cadambi, “Memory-efficient regular expression search
using state merging,” inProc. INFOCOM, 2007.

[25] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” inProc. ACM Conference on Emerging Network
Experiment and Technology, CoNEXT, 2007.

[26] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,” in
Proc. ACM SIGCOMM, 2008.

[27] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” inCCS ’03: Proceedings of the 10th
ACM conference on Computer and communications security.

[28] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,”Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[29] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic
complexity attacks,” inProc. of the 12th USENIX Security Symposium,
2003, pp. 29–44.

[30] R. Smith, C. Estan, and S. Jha, “Backtracking algorithmiccomplexity
attacks against a nids,” inACSAC, 2006.

[31] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,Compilers: Principles,
Techniques, & Tools, Second Edition. Addison-Wesley, 2007.

[32] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation. Reading, Massachusetts: Addison-
Wesley, 1979.

[33] I. Sourcefire, “Snort - the de facto standard for intrusion,”
http://www.snort.org/.

[34] DefCon.org, “Defcon convention,” http://www.defcon.org/.
[35] ——, “Defcon 10 convention, capture the flag packet traces,”

http://cctf.shmoo.com/data/cctf-defcon10/orange.cctf.tar.gz.
[36] ——, “Defcon 8 convention, capture the flag packet traces,”

http://cctf.shmoo.com/data/cctf-defcon8/.

	Introduction
	Related Work
	Pattern Matching Algorithms for IDSs
	Packet Classification in an IDS
	Regular Expression and Regex Matching
	Regex's: Extending Regular Expressions
	Classical matching algorithm for regular expressions
	The matching algorithm for back-references
	Complexity Analysis.
	Compile-Time Analysis
	Liveness Analysis
	Deterministic match analysis
	Experiments on Snort Patterns

	Experiments with Snort
	Modifying Snort

	Conclusion and Future Work
	References

