
Efficient Analysis of Cyclic Definitions

Kedar S. Namjoshi and Robert P. Kurshan

Bell Laboratories
Lucent Technologies

{kedar,k}@research.bell-labs.com
URL : http://cm.bell-labs.com/cm/cs/who/{kedar,k}

Abstract. We present a new algorithm for detecting semantic combi-
national cycles that is simpler and more efficient than earlier algorithms
found in the literature. Combinational circuits with syntactic cycles often
arise in processor and bus-based designs. The intention is that external
inputs and delay elements such as latches break these cycles, so that
no “semantic” cycles remain. Unbroken semantic cycles are considered a
design error in this context. Such unbroken cycles may also occur inad-
vertently in compositions of Mealy machines.
Verification systems that accept semantically cyclic definitions run the
risk of certifying systems that have electrically bad or unexpected be-
havior, while those that prohibit all cyclic definitions constrain the types
of systems that can be subjected to formal verification. Earlier work on
this issue has led to a reasonable condition, called Constructivity, that
guarantees the absence of semantic cycles. This formulation is, however,
computational in nature, and existing algorithms to decide construc-
tivity are somewhat inefficient. Moreover, they do not apply naturally
to circuit definitions in high-level languages that allow variables with
non-Boolean types. We propose a new formulation of constructivity, for-
mulated as a satisfiability question, that does not have these limita-
tions. We have implemented the new algorithm in the verification tool
COSPAN/FormalCheck. Our experience indicates that the algorithm is
simple to implement and usually incurs negligible overhead.

1 Introduction

A circuit may be described as a set of definitions, one for each gate of the circuit.
For most circuits, the induced syntactic dependency graph of such a definition is
acyclic. Syntactically cyclic definitions, however, occur in many contexts in digi-
tal design: Malik [9] points out that it is often desirable to re-use functional units
by connecting them in a cyclic fashion through a routing mechanism, and Stok
[13] notes that such definitions often arise in the output of synthesis programs.
In these cases, the intention is that the routing mechanism can be controlled
through external inputs, so that any “semantically” cyclic paths are broken for
each valuation of the external “free” inputs and delay elements such as latches.
Semantically cyclic definitions may also occur inadvertently in systems composed
of several Mealy machines, from feedback connections between the combinational

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 394–405, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Efficient Analysis of Cyclic Definitions 395

inputs and outputs. Verification systems that accept semantically cyclic defini-
tions run the risk of certifying systems that have behavior that is unexpected
or electrically bad, while those that prohibit syntactically cyclic definitions con-
strain the types of systems that can be subjected to formal verification.

Most current design and verification systems either prohibit all syntactically
cyclic definitions, or accept only some of the semantically acyclic definitions. The
Esterel compiler is the only existing system we know of that analyzes definitions
for semantic cyclicity using the notion of “Constructivity” proposed by Berry [2],
which considers a circuit to be semantically acyclic iff for every external input,
a unique value can be derived for each internal wire by a series of inferences on
the definition of the circuit (a precise statement is given in Section 2). Shiple
[11] shows that constructive definitions are precisely those that are well-behaved
electrically, for any assignment of delay values, in the up-bounded inertial delay
model [4].

It is inefficient to check constructivity by enumerating all possible external
valuations. Symbolic algorithms for checking constructivity [2,12,11] manipulate
sets of input valuations, representing them with BDD’s [3]. This manipulation
is based on simultaneous fixpoint equations derived from the circuit definitions
and the types of the variables. For variables with k values in their type, these
algorithms require k sets of valuations for each variable. Moreover, for arithmetic
operations, the fixpoint equations are constructed from partitions (for +) or
factorizations (for ∗) of all numbers in the type. Thus, these algorithms are
somewhat inefficient and difficult to implement for variables with non-Boolean
types.

We show in this paper that, by a simple transformation, one can reformulate
constructivity as the satisfiability of a set of equations derived from the defi-
nitions, over variable types extended with a value ⊥ (read as “bottom”). This
formulation is non-computational and easily extensible to variables with any fi-
nite type. The formulation also handles definitions of indexed variables in the
same manner. We have implemented this constructivity check in the verification
tool COSPAN [7], which is the verification engine for the commercial verification
tool FormalCheck; the implementation is simple, and our experience indicates
that it usually incurs negligible overhead.

Section 2 motivates and precisely defines constructivity. The new formula-
tion is derived in Section 3. Section 4 describes the implementation of this idea
in the COSPAN/FormalCheck verification system. The paper concludes with a
discussion of related work and future directions in Section 5.

2 Cyclic Definitions

Notation: The notation generally follows the style in [6]. Function application
is represented with a “.” and is right-associative; for instance, f.g.a is parsed
as f.(g.a). Quantified expressions and those involving associative operators are
written in the format (Q x : r.x : g.x), where Q is either a quantifier (e.g., ∀, ∃) or
an associative operator (e.g., +, ∗,min,max , lub, glb), x is the “dummy” variable,

396 K.S. Namjoshi and R.P. Kurshan

r.x is the range of x, and g.x is the expression. For instance, (∀x r(x) ⇒ g(x))
is expressed as (∀x : r.x : g.x), (∃x r(x) ∧ g(x)) is expressed as (∃x : r.x : g.x),
and

∑i=n
i=0 xi is expressed as (+i : i ∈ [0, n] : x.i). When the range r is true

or understood from the context, we drop it and write (Q x :: g.x). Proofs are
presented as a chain of equivalences or implications, with a hint for each link of
the chain. �

For simplicity, we consider all variables to be defined over a single finite type
T . The vocabulary of operator symbols is given by a finite set F . Each symbol
in F has an associated “arity”, which is a natural number. A symbol f with
arity n corresponds to a function f ∗ : T n → T ; symbols with arity 0 correspond
to values of T . Terms over F and a set of variables X are built as follows : a
variable x in X is a term, and for terms t.i (i ∈ [0, n)) and a function symbol f
of arity n, f.(t.0, . . . , t.(n− 1)) is a term.

Definition 0 (Simultaneous definition). A simultaneous definition is spec-
ified by a triple (E, X, Y), where X and Y are disjoint finite sets of variables,
E is a set of expressions of the form y ::= t, where y ∈ Y and t is a term in
X ∪ Y , such that there is exactly one expression in E for each variable in Y .

In terms of the earlier informal description of a circuit as a set of defini-
tions, X is the set of “external” variables (the free inputs and latches) and
Y is the set of “internal” variables (the internal gate outputs); notice that a
simultaneous definition contains definitions only for the internal variables. A si-
multaneous definition induces a dependency relation among the variables in Y ;
for each expression y ::= t, y “depends on” each of the variables appearing in
t. A simultaneous definition is syntactically cyclic iff this dependency relation
contains a cycle. We illustrate some of the subtleties in formulating a correct
notion of semantic acyclicity with a few examples.
Example 0 : Syntactic Acyclicity

The external variable set is {x, y} and the internal variable set is {p, q}.
p ::= x ∧ ¬y
q ::= x ∨ y

This is syntactically acyclic; hence, for every valuation of x and y, p and q have
uniquely defined values. �
Example 1 : Syntactic Cyclicity, Semantic Acyclicity

The external variable set is {x, y} and the internal variable set is {p, q}.
p ::= if x then y else q
q ::= if x then p else x

This is syntactically cyclic; however, notice that if x is true, the definition sim-
plifies to the acyclic definition:

p ::= y
q ::= p

Efficient Analysis of Cyclic Definitions 397

Similarly, the simplified definition is acyclic when x is false. Thus, each setting
of the external variable x breaks syntactic cycles. �
Example 2 : Semantic Cyclicity

The external variable set is {x} and the internal variable set is {p, q}.
p ::= q ∧ x
q ::= p

This is syntactically cyclic. If x is false, the simplified definition is acyclic; how-
ever, when x is true, it simplifies to one that presents a semantic cycle:

p ::= q
q ::= p

�

A plausible semantics for a simultaneous definition is to interpret each expres-
sion y ::= t as an equation y = t, and declare the definition to be semantically
acyclic if this set of simultaneous equations has a solution for each valuation
of the external variables. With this semantics, Examples 0 and 1 are semanti-
cally acyclic, but so is Example 2. One may attempt to rectify this situation by
requiring there to be a unique solution for each input valuation; the following
example illustrates that this is also incorrect.
Example 3: Incorrectness of the “unique solution” criterion.

The external variable set is {x} and the internal variable set is {p, q}.
p ::= p ∧ x
q ::= if p then ¬q else false

This is syntactically cyclic. If x is false, the simplified definition is acyclic, and
hence has a unique solution. If x is true, the simplified definition is the following.

p ::= p
q ::= if p then ¬q else false

This has the unique solution p = false , q = false . Hence, the definition has a
unique solution for each valuation of x ! The “unique solution” criterion thus
leaves the cycles p ::= p, q ::= ¬q undetected. �

The examples suggest that a straightforward formulation in terms of solu-
tions to the simultaneous equations may not exist. Berry [2], strengthening a
formulation of Malik [9], proposed a condition called Constructivity. Construc-
tivity is based on the simplification process that was carried out informally in
the examples above : for each valuation of the external variables, one attempts to
simplify the right hand sides of the definitions. If a term t in a definition y ::= t
simplifies to a constant a, the current valuation is extended with y = a, and the
definition y ::= t is removed. The simplifications are restricted to cases where
the result is defined by the current valuation irrespective of the values of vari-
ables that are currently undefined. For instance, with {x = false} as the current
valuation, if x then y else z simplifies to z; x ∧ y simplifies to false ; but y ∨ ¬y
does not simplify to true. Berry [2] shows that this process produces a unique

398 K.S. Namjoshi and R.P. Kurshan

result, independent of the order in which simplification steps are applied. The
appropriateness of constructivity is shown by Shiple [11], who demonstrates that
constructive definitions are precisely those that are well-behaved electrically, for
any assignment of delay values, in the up-bounded inertial delay model [4]. Malik
[9] shows that the problem of detecting semantic cyclicity is NP-complete.

Definition 1 (Constructivity). A simultaneous definition is semantically
acyclic iff for each valuation of the external variables, the simplification process
leads to an empty set of definitions.

3 Constructivity as Satisfiability

There is another way of viewing the simplification process that leads to our
new formulation. Simplification is seen as a fixpoint process that computes the
“maximal” extension of the original valuation of external variables (maximal
in the sense that the set of definitions cannot be simplified further with this
valuation). The algorithms for checking constructivity proposed in [9,12] use
this fixpoint formulation. We show (Theorem 1 below) that it is possible to re-
cast the fixpoint formulation as a satisfiability question. This observation lets us
develop a simple algorithm for constructivity that extends easily to non-Boolean
types.

3.1 Background

To formulate simplification as a fixpoint process, we need some well-known con-
cepts from Scott’s theory of Complete Partial Orders (CPO’s) [10]. The type T
is extended with a new element ⊥ (read as “bottom”) to form the type T⊥ . T⊥
is equipped with the partial order �, defined by a � b iff a = b or a = ⊥. Note
that � is a CPO (every sequence of elements that is monotonically increasing
w.r.t. � has a least upper bound). The greatest lower bound (glb) of two ele-
ments a, b is defined as : glb.(a, b) = if a �= b then ⊥ else a. The ordering � is
extended point-wise to vectors on T⊥ by u v iff |u| = |v| ∧ (∀i :: u.i � v.i).
This ordering is a CPO on the set of vectors on T⊥ . The greatest lower bound
is also defined point-wise over vectors of the same length: glb.(u, v) = w, where
for every i, w.i = glb.(u.i, v.i).

For each function symbol f in F , f⊥ is a symbol of the same arity that
indicates application to T⊥ rather than to T . The interpretation f ∗

⊥ of f⊥ over
T⊥ should be a function that extends f ∗ and is monotone w.r.t. the order ;
i.e., for vectors u, v of length the arity of f⊥ , u v implies f ∗

⊥ .u f ∗
⊥ .v. The

ordering and the monotonicity condition encodes the informal description of
⊥ as the “undefined” value: if v is “more defined” than u, then f ∗

⊥ .v should
also be “more defined” than f ∗

⊥ .u. The extension of a term t is represented
by t⊥ and is defined recursively based on the structure of the term: (x)⊥ = x;
(f.(t.0, . . . , t.(n− 1)))⊥ = f⊥ .(t⊥ .0, . . . , t⊥ .(n−1)). It is straightforward to show
that the interpretation of an extended term is also monotonic w.r.t. . Every
monotonic function on a CPO has a least fixpoint.

Efficient Analysis of Cyclic Definitions 399

3.2 Constructivity as a Fixpoint Process

A partial valuation constructed during the simplification process can now be
represented as total function from X ∪ Y to T⊥ , where currently undefined
variables are given the value ⊥. An initial valuation V is a function that maps
X into T and Y to {⊥}. At each step, for some non-deterministically chosen
definition y ::= t, the current valuation V is updated to V.[y ← t∗⊥ .V]. By
an argument [1] (cf. [5]) based on monotonicity, this non-deterministic process
terminates with a valuation that is the simultaneous least fixpoint of the de-
rived set of equations {y = t∗⊥ | (y ::= t) ∈ E}. For a simultaneous definition
C = (E, X, Y), let (lfp Y : E ∗ .(X ,Y)) denote this least fixpoint. The fixpoint
depends on, and is defined for, each valuation of X . The constructivity definition
can now be re-stated as follows.

Definition 2 (Constructivity-FIX). A simultaneous definition (E, X, Y) is
semantically acyclic iff for each initial valuation V , the vector (lfp Y : E ∗ .(V ,Y))
has no ⊥-components.

For a vector v over T⊥ , let ⊥free.v be the predicate (∀ i :: v.i �= ⊥). The
constructivity condition is precisely (∀ v : ⊥free.v : ⊥free.(lfp Y : E ∗ .(v ,Y))).
Malik [9] checks a weaker condition in which the set of internal variables Y has
a subset of “output” variables W . Let output⊥free.v be the predicate (∀ i :
i ∈ W : v.i �= ⊥). Malik’s condition can be phrased as : (∀ v : ⊥free.v :
output⊥free.(lfp Y : E ∗ .(v ,Y))).

Checking the Constructivity-FIX condition independently for each initial val-
uation is inefficient. Malik, Berry, Touati and Shiple [9,2,12,11] use a derived
scheme that operates on sets of external valuations. If the type T has k ele-
ments, the scheme associates k subsets with each variable y in Y : the set y.i,
i ∈ [0, k), contains external valuations for which the variable y evaluates to i.
These subsets are updated by set operations derived from the semantics of the
basic operators. For instance, for the definition “x ::= y ∧ z”, the updates are
given by x.false = y.false ∪ z.false, and x.true = y.true ∩ z.true.

This scheme has two limitations that arise for non-Boolean types: (i) the
algorithm has to maintain k sets for each variable, and (ii) the set operations
needed can be quite complex when the basic operators include (bounded) arith-
metic. For example, for the definition x ::= y + z, x.k would be defined as
y.l + z.m, for various partitions of k as l + m; similarly, for x ::= y ∗ z, x.k
would be defined as y.l ∗ z.m, for various factorizations of k as l ∗m. Our new
formulation, Constructivity-SAT, changes Constructivity-FIX to a satisfiability
question and avoids these difficulties.

3.3 Constructivity as Satisfiability

The new formulation (apparently) strengthens the Constructivity-FIX defini-
tion to require that every fixpoint of E∗ is ⊥-free. The equivalence of the two
formulations is shown in Theorem 1.

400 K.S. Namjoshi and R.P. Kurshan

Definition 3 (Constructivity-SAT). A simultaneous definition (E, X, Y) is
semantically acyclic iff (∀ v, u : ⊥free.v ∧ u = E∗ .(v, u) : ⊥free.u).

Lemma 0. For a monotone property P and a monotone function f on a CPO
 , P.(lfp X : f .X) iff (∀ u : u = f.u : P.u).

Proof. The implication from right to left is trivially true, as (lfp X : f .X) sat-
isfies the condition u = f.u. For the other direction, note that the fixpoints of f
are partially ordered by , with the least fixpoint below any other fixpoint. By
the monotonicity of P , if P holds of the least fixpoint, it holds of every fixpoint.
�

Theorem 1. Constructivity-FIX and Constructivity-SAT are equivalent.

Proof. For any simultaneous definition C = (E, X, Y),

C satisfies Constructivity-FIX
≡ { by definition }

(∀ v : ⊥free.v : ⊥free.(lfp Y : E ∗ .(v ,Y)))
≡ { ⊥free is monotone w.r.t. ; Lemma 0 }

(∀ v : ⊥free.v : (∀ u : u = E∗ .(v, u) : ⊥free.u))
≡ { rearranging }

(∀ v, u : ⊥free.v ∧ u = E∗ .(v, u) : ⊥free.u)
≡ { by definition }

C satisfies Constructivity-SAT
�

The extension of a function f from T n to T n
⊥ can be defined in general as

follows: the value of the extension at a vector v is the greatest lower bound of the
function values at ⊥-free vectors above v in the order. Formally, f ∗

⊥ .v = (glb w :
⊥free.w ∧ v w : f ∗ .w). It is straightforward to show that this is a monotone
extension of f . The extensions of basic arithmetic and Boolean functions are
easily determined by this formula. For example, the extension of ∧ is given by:

u ∧⊥ v = false if u = false or v = false ; otherwise,
⊥ if u = ⊥ or v = ⊥; otherwise,
u ∧ v

To illustrate the use of the general formulation, we can check that

u ∧⊥ false
= { by the general formulation }

(glb x, y : x �= ⊥ ∧ y �= ⊥ ∧ u � x ∧ false � y : x ∧ y)
= { definition of � }

(glb x : x �= ⊥ ∧ u � x : x ∧ false)
= { definition of ∧ }

(glb x : x �= ⊥ ∧ u � x : false)
= { definition of glb }

false

Efficient Analysis of Cyclic Definitions 401

The extension of ∗ is similar to that for ∧ , with 0 substituted for false. The
extension of + is given below :

u +⊥ v = ⊥ if u = ⊥ or v = ⊥; otherwise,
u + v

The extensions of other basic operators can be defined equally easily. The new
formulation thus overcomes both the limitations of the earlier one: the extensions
are easy to define and compute, and we do not need to maintain sets of valuations
for each variable; the only changes required are to extend both the types of
variables and the definitions of the basic operators.

3.4 Indexed Variables

In many input languages, including the S/R language of the COSPAN system,
it is possible to declare arrays of variables. If z is such an array variable, def-
initions of the form z[c] ::= t, where c is a constant, can be handled with
the machinery presented earlier, by treating z[c] as an ordinary variable. A
definition of the form z[e] ::= t, however, where e is a non-constant term,
cannot be handled with the earlier machinery, as it corresponds to the set
of definitions {z [c] ::= if (e = c) then t | c ∈ indices(z)}. Notice that the term
if (e = c) then t is a partial function. As a typical instance, consider the following
definition, where z is an array indexed by {0, 1}, and x and y are variables.

z[x] ::= a
z[y] ::= b

The semantics of S/R requires that the valuations of x and y be distinct. The
defining term for z[0] is the partial function if x = 0 then a else if y = 0 then b.
This term may itself be considered as a partial function on T⊥ , defined only
for x = 0 and y = 0. With this interpretation, it is monotonic 1 w.r.t. .
Recombining the terms for z[0] and z[1], one obtains the following modification
(for T⊥) of the original definitions for z[x] and z[y]:

z[x] ::= if x �= ⊥ then a
z[y] ::= if y �= ⊥ then b

These definitions contribute in the following way to the induced “equations”:

(x �= ⊥)⇒ (z[x] = a)
(y �= ⊥)⇒ (z[y] = b)

4 Implementation

We have implemented this new formulation in the COSPAN/FormalCheck veri-
fication system [7]. The input language for the COSPAN system is S/R (“se-
lection/resolution”) [8]. An S/R program consists of a number of processes,
1 A partial function f is monotonic w.r.t. a partial order � iff whenever x � y and f

is defined at x, f is defined at y and f.x � f.y.

402 K.S. Namjoshi and R.P. Kurshan

which may be viewed as Mealy machines with Rabin/Streett-type acceptance
conditions. The variables of each process are either state or selection variables.
Selection variables, in turn, are either free (unconstrained) inputs or combina-
tional variables used to determine the next-state relation of the system [8]. In
the terminology of the earlier sections, the state variables together with the free
input variables form the “external” variables, since the inputs and state variables
do not change value for the duration of the selection cycle; the other selection
variables form the “internal variables”.

There are no restrictions in S/R on the dependencies between selection
variables: selection variables declared within a process may be mutually inter-
dependent and may be used as inputs to other processes, thus potentially intro-
ducing syntactic cycles that span process boundaries. In addition, the presence
of semantic cycles may depend on the valuation of the state variables. For in-
stance, a semantic cycle may be “unreachable”, if the particular states in which
it is induced are unreachable. The question, then, is to identify whether any se-
mantic cycles are present in reachable states of the program for some free-input
valuation (this problem is shown to be PSPACE-complete in [11]).

The S/R compiler parses the program and analyzes syntactic dependencies
among internal variables. If there is a syntactic cycle, it identifies a set of in-
ternal variables whose elimination would break each syntactic cycle; such a set
is commonly called a “feedback vertex set”. The parser retains the variables in
the feedback vertex set, and macro-expands the other variables, so that the vari-
ables in the feedback vertex set are defined in terms of themselves and the input
and state variables. In the terminology used earlier, these remaining internal
variables and their defining terms form the simultaneous definition that is to be
analyzed. We will refer to these internal variables as the “relevant” variables.
Each relevant variable is treated as a state variable for reachability analysis.

Our implementation uses a single MTBDD terminal to represent ⊥. While
MTBDD’s for multiplication are exponential in the number of bits, they repre-
sent most other operations efficiently and are therefore used in COSPAN. The
types of the relevant variables are extended to include the ⊥-terminal. The types
of input and state variables are not extended. The implementation includes a li-
brary of extended basic operators, defined as described in Section 2. These extend
the basic operators of S/R, including Boolean operators, arithmetic operators
such as +, ∗, div , exp,mod , and conditional operators such as if then else .

Each definition x ::= t of a relevant non-indexed variable is converted to the
equation x = t∗⊥ , while a definition z[e] ::= t of an indexed variable is converted
to (e∗⊥ �= ⊥) ⇒ (z[e∗⊥] = t∗⊥), as described in Section 3.4. The conjunction of
these formulae forms the simultaneous fixpoint term Y = E∗ .(S, X, Y), where S
is the set of state variables, X is the set of free input variables, and Y is the set
of relevant variables. The Constructivity-SAT formula determines (by negation)
the following predicate on state variables:

Cyclic.S = (∃X ,Y : Y = E ∗ .(S ,X ,Y) ∧ ¬⊥free.Y).

The predicate ¬Cyclic is checked for invariance during reachability analysis;
if it fails, the system automatically generates an error-track leading from an

Efficient Analysis of Cyclic Definitions 403

initial state to a state s such that Cyclic.s is true. It is not difficult to recover
the set of variables involved in a semantic cycle for a particular input k at state
s by inspecting the BDD for (Y = E∗ .(s, k, Y) ∧ ¬⊥free.Y) – every path to
a 1-node includes variables that have value ⊥; these variables are involved in a
semantic cycle.

The description above should indicate that implementing the constructivity
check with the new formulation is a fairly simple process. We have experimented
with this implementation on a test suite for COSPAN formed of several large
programs that represent real designs. While syntactic cycles are usually short,
some of our examples had cycles of length greater than 20. Our experience has
been that, in most cases, the run-time and BDD sizes increase, if at all, by a
negligible amount. There are a few cases where the BDD sizes increase by a large
amount, and even some where the sizes decrease – this seems to be attributable
to the irregular behavior of the dynamic reordering algorithms. We have not
conducted a thorough comparison with the algorithm in [12], but it is reasonable
to expect that our algorithm will be more efficient for non-Boolean variables, as
it avoids both the large number of BDD’s and the fixpoint computation. It is
less certain whether our algorithm offers a large improvement on the earlier
one in the case when all variables are Boolean; this would require experimental
comparison. In any case, the potential benefits of detecting semantic cycles before
circuit fabrication far outweigh the disadvantage of the (usually small) time and
memory increases that we have observed for our detection process.

5 Related Work and Conclusions

The work most related to ours is by Berry [2] and Shiple [11]. Berry proposed the
original operational formulation of constructivity (Constructivity) and the de-
notational formulation (Constructivity-FIX), based on work by Malik [9]. These
definitions are based on computational processes – one would prefer a non-
computational definition of the concept of “semantic acyclicity”. Shiple, Berry
and Touati [12,2,11] and Malik [9] propose symbolic, fixpoint-based algorithms to
check constructivity. These algorithms are difficult to implement and somewhat
inefficient for variables with non-Boolean types.

Our new formulation overcomes both limitations, by presenting a simple, non-
computational definition of constructivity (Constructivity-SAT) and a symbolic
algorithm based on the new formulation that is simple to implement for variables
with arbitrary finite types. Our initial experiments with the implementation of
this algorithm in the formal verification system COSPAN/FormalCheck indicate
that in most cases it has minimal, if any, adverse impact on the execution time
and BDD sizes. It should be quite easy to incorporate this algorithm into other
verification and synthesis tools. As in [11], one can also determine the set of
input values for which a circuit is constructive, by not quantifying over v in the
Constructivity-SAT definition.

In [11] Shiple considers a class of cyclic combinational circuits whose behavior
is based on the assumption that the circuit retains “state” across clock cycles

404 K.S. Namjoshi and R.P. Kurshan

(for example, a flip-flop implemented by a pair of cross-connected NAND gates).
It would be interesting to see if our formulation of constructivity can be modified
to analyze such sequential behavior.

Acknowledgements: Thanks to Tom Szymanski for providing references to
work on constructivity, and to Kousha Etessami, Mihalis Yannakakis, and Jon
Riecke for useful comments and discussions about this work.

References

1. H. Bekič. Definable operations in general algebras, and the theory of automata and
flowcharts. Technical report, IBM, 1969. Reprinted in Programming Languages
and Their Definition, LNCS 177, 1984. 399

2. G. Berry. The Constructive Semantics of Esterel. Draft book, available at ftp://ftp-
sop.inria.fr/meije/esterel/papers/constructiveness.ps.gz, 1995. 395, 395, 397, 397,
399, 403, 403

3. R. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 1986. 395

4. J. A. Brzozowski and C-J. H. Seger. Asynchronous Circuits. Springer-Verlag, 1994.
395, 398

5. P. Cousot. Asynchronous iterative methods for solving a fixed point system of
monotone equations in a complete lattice (rapport de recherche r.r. 88). Technical
report, Laboratoire IMAG, Universite’ scientifique et me’dicale de Grenoble, 1978.
399

6. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990. 395

7. R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In Proc. CAV’96, volume
1102, pages 423–427. LNCS, 1996. 395, 401

8. J. Katzenelson and R. P. Kurshan. S/R: A language for specifying protocols and
other coordinating processes. In Proc. IEEE Conf. Comput. Comm., pages 286–
292, 1986. 401, 402

9. S. Malik. Analysis of cyclic combinational circuits. IEEE Transactions on
Computer-Aided Design, 1994. 394, 397, 398, 398, 399, 399, 403, 403

10. D. S. Scott. A type-theoretical alternative to CUCH, ISWIM, OWHY. Unpublished
notes, Oxford, 1969. Published in Theoretical Computer Science, 1993. 398

11. T. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, Univerisity of
California, Berkeley, 1996. 395, 395, 398, 399, 402, 403, 403, 403, 403

12. T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In
European Design and Test Conference, 1996. 395, 398, 399, 403, 403

13. L. Stok. False loops through resource sharing. In International Conference on
Computer-Aided Design, 1992. 394

Efficient Analysis of Cyclic Definitions 405

6 Appendix

This appendix contains the definitions of the extended basic operators of S/R.
Boolean Operators:

u ∧⊥ v = false if u = false or v = false ; otherwise,
⊥ if u = ⊥ or v = ⊥; otherwise,
u ∧ v

u ∨⊥ v = true if u = true or v = true; otherwise,
⊥ if u = ⊥ or v = ⊥; otherwise,
u ∨ v

¬⊥ u = ⊥ if u = ⊥; otherwise,
¬u

Arithmetic Operators:

u +⊥ v = ⊥ if u = ⊥ or v = ⊥; otherwise,
u + v

u ∗⊥ v = 0 if u = 0 or v = 0; otherwise,
⊥ if u = ⊥ or v = ⊥; otherwise,
u ∗ v

u div⊥ v = 0 if u = 0; otherwise,
⊥ if (u = ⊥ and v �= 0) or v = ⊥; otherwise,
u div v

u mod⊥ v = 0 if u = 0 or v = 1; otherwise,
⊥ if (u = ⊥ and v �= 0) or v = ⊥; otherwise,
u mod v

u exp⊥ v = 0 if u = 0; otherwise,
1 if u = 1 or v = 0; otherwise,
⊥ if u = ⊥ or v = ⊥; otherwise,
u exp v

Comparison Operators:

u <⊥ v = ⊥ if u = ⊥ or v = ⊥; otherwise,
u < v

u ≤⊥ v = ⊥ if u = ⊥ or v = ⊥; otherwise,
u ≤ v

u =⊥ v = ⊥ if u = ⊥ or v = ⊥; otherwise,
u = v

Conditional Operators:

(if c then u else v)⊥ = u if c = true; otherwise,
v if c = false; otherwise,
u if c = ⊥ and u = v; otherwise,
⊥ if c = ⊥ and u �= v

(if c then u)⊥ = u if c = true

	Introduction
	Cyclic Definitions
	Constructivity as Satisfiability
	Background
	Constructivity as a Fixpoint Process
	Constructivity as Satisfiability
	Indexed Variables

	Implementation
	Related Work and Conclusions
	Appendix

