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Abs t r ac t .  Showing equivalence of two systems at different levels of ab- 
straction often entails mapping a single step in one system to a sequence 
of steps in the other, where the relevant state information does not change 
until the last step. In [BCG 88,dNV 90], bisimulations that take into ac- 
count such "stuttering" are formulated. These definitions are, however, 
difficult to use in proofs of bisimulation, as they often require one to 
exhibit a finite, but unbounded sequence of transitions to match a single 
transition; thus introducing a large number of proof obligations. 
We present an alternative formulation of bisimulation under stuttering, 
in terms of a ranking function over a well-founded set. It has the desir- 
able property, shared with strong bisimulation [Mil 90], that it requires 
matching 8ingle transitions only, which considerably reduces the number 
of proof obligations. This makes proofs of bisimulation short, and easier 
to demonstrate and understand. We show that the new formulation is 
equivalent to the original one, and illustrate its use with non-trivial ex- 
amples that have infinite state spaces and exhibit unbounded stuttering. 

1 I n t r o d u c t i o n  

Showing equivalence between two systems at different levels of abstract ion may 
entail mapping  a single step in one system to a sequence of steps in the other, 
which is defined with a greater amount  of detail. For instance, a compiler may 
transform the single assignment s ta tement  "x := x * 10 + 2" to several low-level 
instructions. When proving correctness of the compiler, the single assignment 
s ta tement  step is matched with a sequence of low-level steps, in which the value 
of x remains unchanged until the final step. If  the program state is defined 
by the values of program variables, then the intermediate steps introduce a 
finite repetition of the same state, a phenomenon called "stuttering" by Lampor t  
[La 80]. Stuttering arises in various contexts, especially as a result of operations 
tha t  hide information, or refine actions to a finer grain of atomicity. 

In [BCG 88,dNV 90], bisimulations tha t  take into account such "stuttering" are 
defined. I t  is shown in [BCG 88] tha t  states related by a stuttering bisimulation 
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satisfy the same formulas of the powerful branching temporal logic CTL* [EH 82] 
that  do not use the next-time operator, X. Although these definitions are well 
suited to showing the relationship with CTL*, they are difficult to use in proofs 
of bisimulation, as they often require one to exhibit a finite, but unbounded 
sequence of transitions to match a single transition; thus introducing a large 
number of proof obligations. 

The main contribution of this paper is a simple alternative formulation, called 
well-founded bisimulation, because is based on the reduction of a rank function 
over a well-founded set. The new formulation has the pleasant property that,  
like strong bisimulation [Mil 90], it can be checked by considering single transi- 
tions only. This substantially reduces the number of proof obligations, which is 
highly desirable in applications to infinite state systems such as communication 
protocols with unbounded channels or parameterized protocols, where checks of 
candidate relations are often performed by hand or with the assistance of a theo- 
rem prover. We demonstrate the use of the new formulation with some non-trivial 
examples that  have infinite state spaces and exhibit unbounded stuttering. 

The use of rank functions and well-founded sets is inspired by their use in replac- 
ing operational arguments for termination of do -od  loops with a proof rule that  
is checked for a single generic iteration (cf. [AO 91]). To the best of our knowl- 
edge, this is the first use of such concepts in a bisimulation definition. It seems 
possible that  the ideas in this paper are applicable to other forms of bisimulation 
under stuttering, such as weak bisimulation [Mil 90], and branching bisimulation 
[GW 89]. We have chosen to focus on stuttering bisimulation because of its close 
connection to CTL*. 

The paper is structured as follows: Section 2 contains the definition of stuttering 
bisimulation from [BCG 88], and the definition of well-founded bisimulation. 
The equivalence of the two formulations is shown in Section 3. Applications 
of the well-founded bisimulation proof rule to the alternating bit protocol and 
token ring protocols are presented in Section 4, together with a new quotient 
construction for stuttering bisimulation equivalences. The paper concludes with 
a discussion of related work and future directions. 

2 P r e l i m i n a r i e s  

N o t a t i o n  : 

Function application is denoted by a ".", i.e., for a function f : A -+ B, and an 
element a E A, f.a is the value of f at a. Quantified expressions are written in 
the format (Qx : r.x : p.x), where Q is the quantifier (one of V, 3, min, max), x 
is the "dummy",  r.x is an expression indicating the range of x, and p.x is the 
expression being quantified over. For example, in this notation, Vx r(x) ~ p(x) 
is written as (Vx: r .x :  p.x), and Bx r(x) A p(x) is written as (Bx: r .x :  p.x). 
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D e f i n i t i o n  ( T r a n s i t i o n  S y s t e m )  

A Transition System (TS) is a structure (S,--L L, I, AP) ,  where S is a set of 
states, --~ C S • S is the transition relation, A P  is the set of atomic propositions, 
L : S --~ P ( A P )  is the labelling function, that  maps each state to the subset of 
atomic propositions that  hold at the state, and I is the set of initial states. We 
write s --~ t instead of (s, t) E --~. We only consider transition systems with 
denumerable branching, i.e., where for every state s, I{t [ s -+ t}l is at most w. 
[] 

D e f i n i t i o n  ( S t u t t e r i n g  B i s i m u l a t i o n )  (cf. [BCG 88] 1) 

Let ,4 = (S, -+, L, I,  AP)  be a TS. A relation B C S x S is a stuttering bisimu- 
lation on ,4 iff B is symmetric, and 

For every s , t  such that  (s,t) E B, 

1. L.s = L.t, 
2. (Va : fp . (s ,a)  : (35 : fp.(t ,~) : match.B.(a,r 

where fp.(s, ~r) is true iff ~ is a path starting at s, which is either infinite, or its 
last state has no successors w.r.t. -~. match.B.(a,  6) is true iff a and 5 can be 
divided into an equal number of non-empty, finite, segments such that  any pair 
of states from segments with the same index is in the relation B. The formal 
definition of match is given in the appendix. 

States s and t are stuttering bisimilar iff there is a stuttering bisimulation 
relation B for which (s, t) E B. 
[] 

Examples: 

Q 

oi 
) 
) 

Q 

Structure L Structure M Structure N 

1 [BCG 88] defines "stuttering equivalence" for finite-state, total transition systems, 
as the limit of a converging sequence of equivalences. For finite-state systems, these 
are just the Knaster-Tarski approximations to the greatest solution of the symmetric 
version of this definition. 
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States a and c are not stuttering bisimilar in structures L and M, but they are 
in structure N. Indeed, L, c ~ AF.P, but  L, a ~= AF.P. Structure M shows that  
stuttering bisimulation distinguishes between deadlock (state c) and divergence 
(state a) : M , c  ~= EX.true,  but M , a  ~ EX.true 2. The dotted lines show a 
stuttering bisimulation on structure N. 
[] 

Our alternative formulation is based on a simple idea from program semantics: 
we define a mapping from states to a well-founded set, and require, roughly, that  
the mapping decrease with each stuttering step. Thus, each stuttering segment 
is forced to be of finite length, which makes it possible to construct matching 
fullpaths from related states. 

D e f i n i t i o n  ( W e l l - F o u n d e d  B i s i m u l a t i o n )  

Let A = ( S , - + , L , I ,  AP)  be a TS. Let rank : S • S x S -~ W be a total 
function, where (W, -<) is well-founded 3. A relation B C S x S is a well-founded 
bisimulation on ,4 w.r.t, rank iff B is symmetric,  and 

For every s , t  such that  (s, t)  E B, 

1. L.s  = L.t  
2. ( V u : s  --+ u :  

t - .  v:  (u, �9 B) v (a) 
((u,t) �9 B ^ u,t) ra,k.(s, V (b) 
( (u , t )  ~ B A (3v:  t --+ v :  (s ,v)  �9 S A rank . (u , s , v )  -~ rank . (u , s , t ) ) ) ) ( c )  

Notice that  if W is a singleton, then clauses (b) and (c) are not applicable, so 
B is a strong bisimulation. 
[] 

The intuition behind this definition is that  when (s, t) �9 B and s -+ u, either 
there is a matching transition from t (clause (2a)), or (u, t) �9 B (clause (25))-  in 
which case the rank decreases, allowing (2b) to be applied only a finite number 
of times - or (u, t) r B, in which case (by clause (2c)), there must be a successor 
v of t such that  (s, v) �9 B. As the rank decreases at each application of (2c), 
clause (2c) can be applied only a finite number of times. Hence, eventually, a 
state related to u by B is reached. Theorem 1 (soundness) is proved along these 
lines. 

3 Equivalence of the  two formulations 

The equivalence of the two formulations is laid out in the following theorems. 

2 The [dNV 90] formulation of stuttering bisimulation considers states a and c of N 
to be bisimilar. The difference between our formulations is only in the treatment of 
deadlock vs. divergence in non-total structures. 
(W,-~) is well-founded iff there is no infinite subset {a.i I i E N} of W that is a 
strictly decreasing chain, i.e. where for all i E N, a.(i + 1) -~ a.i. 
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T h e o r e m  1 ( S o u n d n e s s ) .  A n y  well-founded bisimulation on a T S  is a stut- 
tering bisimulation. 

Proof. Let B be a well-founded bisimulation on a TS ,4, w.r.t, a function rank 
and a well-founded structure (W, -~). 

Let (s, t) be an arbitrary pair in B. Then, L.s  = L.t ,  by clause (1) of the well- 
founded bisimulation definition. We show that  if e is a fullpath starting at s, then 
there is a fullpath 8 starting at t such that  match .B . ( e ,  8) holds. In the following, 
we use the symbol ';' for concatenation of finite paths, and o for concatenation 
with removM of duplicate state. For example, aa; ab = aaab, and aa o ab -- aab. 

We construct 8 inductively. For the base case, 8.0 = t. Inductively assume that  
after i steps, i >_ 0, 8 has been constructed to the point where it matches a 
prefix 7 of e such that  the end states of 7 and 6 mark the beginning of the 
i th segments. Let u be the last state of 7 and v be the last state of 8. By the 
inductive hypothesis, (u, v) E B. 

If ~ ends at u, then u has no successor states. Let ~ be any fullpath starting at 
v. Since u has no successors, a simple induction using (2b) shows that  for every 
state z in ~, (x, u) is in B. Each application of (2b) strictly decreases rank along 
~, hence ~ must be finite. The fullpath 8 o~ is a finite fullpath matching the finite 
fullpath a. 

If ~r does not end at u, let w be the successor of u in ~. As (u, v) E B, 

(1) If (2a) holds, there is a successor z of v such that  (w, z) e B. Let w and 
x mark the beginning of a new segment. Extend 8 to 8; z, which matches 7; w. 
The induction step is proved. Otherwise, 

(il)  If (2a) does not hold, but  (25) does, then (w, v) e B. Let A be the longest 
prefix of the suffix of a starting at u such that  for every state a in A, (a, v) E B, 
and only (2b) holds for (a, v) w.r.t, a --+ b for every successive pair of states a; b 
in ),. ;~ has at least one pair, as u; w is a prefix of ~. 

A cannot be infinite, as by (2b), for each successive pair a; b in A, rank.(b, b, v) -< 
rank.(a,  a, v), so the rank decreases strictly in the well-founded set. Let y be 
the last state of )~. If e terminates at y, the argument given earlier applies. 
Otherwise, y has a successor y~ in a, but as ), is maximal, either (2a) or (2c) 
must apply for (y, v) e B w.r.t, y -~ y'. (2c) cannot apply, as then there is a 
successor z of v such that  (y, x) �9 B, which contradicts the properties of ~. 

Hence (2a) must apply. Let x be the successor of v such that  (y~, z) �9 B. Let y' 
and x mark the beginning of a new segment, and extend 8 to 8; z, which matches 
(7 o ~); ~'. 

(iii) If (2c) is the only clause that holds of (u, v) w.r.t, u --~ w, let ~r be a 
finite path maximal w.r.t, prefix ordering such that 7r starts at v, and for every 
successive pair of states a; b in r ,  (u, a) �9 B, only (2c) is applicable w.r.t, u --+ w, 
and b is the successor of a given by the application of (2c). 



289 

Such a maximal finite path exists as, otherwise, there is an infinite path ~ satisfy- 
ing the conditions above. By (2c), for successive states a; b in ~, rank.(w, u, b) -~ 
rank.(w, u, a); so there is an infinite strictly decreasing chain in (W,-~), which 
contradicts the well-foundedness of (W,-~). Let z be the last state in 7r. Then 
(u, z) E B, and as ~r is maximal, either (2a) or (25) holds of (u, ~) w.r.t, u --~ w. 
So z r v. (25) cannot hold, as then (w, x) is in B; but then (2a) would hold for 
the predecessor of z in ~r. 

Hence (2a) holds; so z has a successor z for which (w, z) e B. Let w and z mark 
the beginning of a new segment, and extend $ to ($ o 7r); z, which matches 7; w. 

The induction step is shown in either case. 

The  inductive argument shows that  successively longer prefixes of a have suc- 
cessively longer matching finite paths, which are totally ordered by prefix order. 
Hence, if g is infinite, the limit of these matching paths is an infinite path from 
t which matches ~ using the partitioning into finite non-empty segments con- 
structed in the proof. [] 

It is also desirable to have completeness : that  for every stuttering bisimulation, 
there is a rank function over a well-founded set which gives rise to a well-founded 
bisimulation. 

T h e o r e m  2 ( C o m p l e t e n e s s ) .  For any stuttering bisimulation B on a TS .4, 
there is a well-founded structure (W, -~) and corresponding function rank such 
that B is a well-founded bisimulation on .4 w.r.t, rank. 0 

Let .4 = (S, -~, L, I, AP) .  The well-founded set W is defined as the product W0 x 
W1 of two well-founded sets, with the new ordering being lexicographic order. 
The definitions of the well-founded sets W0 and W1, and associated functions 
ranko and rank1 are given below. Informally, ranko.(a, b) measures the height of 
a finite-depth computation tree rooted at a, whose states are related to b but  
not to any successor of b.. rankl.(a, b, c) measures the shortest finite path from c 
that  matches b and ends in a state related to the successor a of b. 

D e f i n i t i o n  o f  (W0, -~0) a n d  ranko 

For a pair (s , t)  of states of .4, construct a tree, tree.(s,t), by the following 
(possibly non-effective) procedure, which is based on clause (25) of the definition 
of well-founded bisimulation: 

1. The tree is empty if the pair (s, t) is not in B. Otherwise, 
2. s is the root of the tree. The following invariant holds of the construction: 

For any node y of the current tree, (y, t) E B, and if y is not a leaf node, 
then for every child z of y in the tree, z is a successor of y in .4, and there 
is no successor v of t in .4 such that  (z, v) E B. 

3. For a leaf node y, and any successor z of y in .4, if (z, t) E B, but there is 
no successor v of t in .4 such that  (z, v) E B, then add z as a child of y in 
the tree. If no such successor exists for y, then terminate the branch at y. 
Repeat step 3 for every leaf node on an unterminated branch. 
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L e m m a  3. tree.(s, t) is well-founded. 

Proof. Suppose to the contrary that  there is an infinite branch or, which is there- 
fore a fullpath, starting at s. Let u be the successor of s on ~, and let ~ be the 
fullpath that  is the suffix of r starting at u. 

By construction of the tree, for every state x on ~1, (x, t)  E B, and for every 
successor v of t, (x, v) ~ B. However, as (u, t) E B, there must be a fullpath 
6 starting at t for which match.B.(crl,6) holds. Let w be the successor of t 
on 8. From the definition of match, for some x on ~ ,  (x,w) E B. This is a 
contradiction. Hence, every branch of the tree must be of finite length. [] 

Since tree.(s,t) is well-founded, it can be assigned an ordinal height using a 
standard bot tom-up assignment technique for well-founded trees : assign the 
empty tree height 0, and any non-empty tree T the ordinal sup.{height.S + 
1 I S <~ T}, where S <a T holds iff S is a strict subtree of T. Let ranko.(s, t) equal 
the height of tree.(s, t). As trees with countable branching need only countable 
ordinals as heights, let W0 be the set of countable ordinals, ordered by the 
inclusion order E. 

L e m m a  4. If tree.(s,t) is non-empty, and u is a child of s in the tree, then 
ranko.(U, t) -~o ranko.(s, t). 

Proof. From the construction, tree.(u, t) is the subtree of tree.(s, t) rooted at 
node u; hence its height is strictly smaller. [] 

Definit ion of (W1, -~1) and rank1 

Let W1 = N, the set of natural numbers, and let -~1 be the usual order < on N.  
The definition of rank1 is as follows : 

For a tuple (u, s, t) of states of ,4, 

1. I f ( s , t )  E B ,  s ~ u , ( u , t )  ~ B ,  and for every successor v o f t ,  (u,v) ~ B ,  
then rankl.(u, s, t) is the length of the shortest initial segment that  matches 
s among all matching fullpaths s; ~ and 5, where ~ starts at u, and 6 starts 
at t. Formally 4, 

rankl.(u, s, t) = (rain 5, ~, a, 7r : fp.(t, 5) A fp.(u, or) A 7r, ~ e INCA 
corr.((s; ~, ~r), (5, 5)) :  Iseg.O.(6, ~)l) 

As (s,t) E B, and s --~ u, there exist matching fullpaths s; ~ and 5, with ~r 
starting at u and 6 starting at t. As (u, t) ~ B, and no successor of t matches 
u, under any partit ion ~ of any fullpath & that  matches a fullpath s; ~, the 
initial segment, seg.O.(6, ~), matches s, and must contain at least two states: 
t and some successor of t. Thus, rankl.(u, s, t) is defined, and is at least 2. 

4 The appendix has precise definitions of INC and corr. 



291 

2. Otherwise, rankl.(u, s, t) = O. 

[] 

T h e o r e m  2 ( C o m p l e t e n e s s ) .  For any stuttering bisimulation B on TS ,4, 
there is a well-founded set (W, ~) and corresponding function rank such that B 
is a well-founded bisimulation on A w.r.t, rank. 

Proof. Let W = Wo x W1. The ordering -~ on W is the lexicographic ordering on 
Wo • W1, i.e., (a, b) -< (c, d) - (a "~o c ) V ( a  = c a b  -~1 d). Define rank.(u, s, t) = 
(ranko.(u, t), rankl.(U, s, t)). W is well-founded, and rank is a total  function. We 
have to show that  B is a well-founded bisimulation w.r.t, rank. Let (s, t) E B. 

1. L.s -- L.t, from the definition of stuttering bisimulation. 
2. Let u be any successor of s. If  there is no successor v of t such tha t  (u, v) E B, 

consider the following cases: 
- (u, t)  E B : As no successor of t is related to u by B, u is a child of 

s in tree.(s,t), and by L e m m a  4, ranko.(u,t) 4o ranko.(s,t). Hence, 
rank.(u, u, t) -~ rank.(s, s, t). 

- (u,t) ~ B : As no successor of t is related to u by B, rankl.(U,s,t) 
is non-zero. Let fullpath (i start ing at t and parti t ion ~ "witness" the 
value of rankl.(u, s, t). Let v be the successor of t in the initial seg- 
ment  seg.O.(~, ~). This successor exists, as the length of the segment is at 
least 2. rankl .(u,s ,v)  is at most r a n k l . ( u , s , t ) -  1, so rankl.(U, S, V) 4.;1 
rankl .(u, s, t). 
As no successor o f t  is related by S to u, (u,v) q~ B, so ranko.(u,v) = O. 
As (u, t) q~ B, ranko.(u, t) = 0. Since rank is defined by lexicographic 
ordering, rank.(u, s, v) -~ rank.(u, s, t). 

Hence, one of (2a),(2b) or (2c) holds for (s, t)  e B w.r.t, s --+ u. 

[] 

For a transition system that  is finite-branching (every state has finitely many  
successor states), tree.(s, t) for any s, t is a finite, finitely-branching tree; so its 
height is a natural  number. Hence, W0 = N. 

P r o p o s i t i o n  5. For a finite-branching transition system, W = N x N. [] 

T h e o r e m  6 ( M a i n ) .  Let A = (S,--+, L, I, AP)  be a transition system. A re- 
lation B on A is a stuttering bisimulation iff B is a well-founded bisimulation 
w.r.t, some rank function. 

Proof. The claim follows immediately from Theorems 1 and 2. [] 

For simplicity, the definitions are structured so tha t  a bisimulation is a symmetr ic  
relation. The main  theorem holds for bisimulations that  are not symmetric ,  but 
the definition of rank has to be modified slightly, to take the direction of matching 
(by B or by B-1 )  into account. Details will appear  in the full paper.  
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4 A p p l i c a t i o n s  

The definition of a well-founded bisimulation is, by Theorem 6, in itself a simple 
proof rule for determining if a relation is indeed a bisimulation up to stuttering. 
In this section, we look at several applications of this proof rule. We outline the 
proofs of well-founded bisimulation for the alternating bit protocol from [Mil 90], 
and a class of token ring protocols studied in [EN 95]. We also present a new 
quotient construction for a well-founded bisimulation that  is an equivalence. In 
all of these applications, the construction of the appropriate well-founded set 
and ranking function is quite straightforward. We believe that  this is the case in 
other applications of stuttering bisimulation as well. 

4.1 T h e  A l t e r n a t i n g  B i t  P r o t o c o l  

A version of the alternating bit protocol is given in [Mil 90], which we follow 
closely. The protocol has four entities : Sender and Replier processes, and mes- 
sage (Trans) and acknowledgement (Ack) channels. Messages and acknowledge- 
ments are tagged with bits 0 and 1 alternately. For simplicity, message contents 
are ignored; both channels are sequences of bits. For a channel c, let order.c rep- 
resent the sequence resulting from removing duplicates from e, and let count.c be 
a vector of the numbers of duplicate bits. Vectors are compared component-wise 
if they have the same length. For example, order.(03; 1 ~) = O; 1, count.( O~; 1 ~) 
= (3, 2), and count.(lS) = (5). The bisimulation B relates only those states 
where the order of each channel is of length at most two. Hence count vectors 
have length at most two. 

Let (s~t) E B iff in s and t, the local states of the sender and replier processes 
are identical, and the order of messages in both channels is the same. Note that  
the number of duplicate messages is abstracted away. 

Let a.s = (count.( Trans.s), count.(Ack.s)). Let rank.(u,s,t) be ((~.s,a.t). The 
operations of the protocol are sending a bit or receiving a bit on either channel, 
and duplicating or deleting a bit on either channel. It is straightforward to verify 
tha t  B is a well-founded bisimulation. The rank function is used, for instance, at 
a receive action in s from a channel with contents aZ; b, while the same channel 
in the corresponding state t has contents am; b ~ (n > 1). The receive action at s 
results in a state u with channel content a t, while the same action at t results in 
a state v with channel content am; b n-1. u and v are not related, but  v is related 
to s, and rank.(u, s, v) < rank.(u, s, t) (cf. clause (2c)). 

The  example exhibits unbounded stuttering. With the original formulations of 
stuttering bisimulation, one would have to construct a computat ion of length n 
from state t to match the receive action from state s. This introduces n proof 
obligations, and complicates the proof. In contrast, with the new formulation, 
one need consider only a single transition from t. 
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4.2 S i m p l e  T o k e n  R i n g  P r o t o c o l s  

In [EN 95] (cf. [BCG 89]), stuttering bisimulation is used to show that  for token 
rings of similar processes, a small cutoff size ring is equivalent to one of any 
larger size. [EN 95] shows that  the computat ion trees of process 0 in rings of 
size 2 and of size n, n > 2, are stuttering bisimilar. It follows that  a property 
over process 0 is true of all sizes of rings iff it is true of the ring of size 2. From 
symmetry  arguments (cf. [ES 93,CFJ 93]), a property holds of all processes iff 
it holds for process 0. 

The proof given in the paper uses the [BCG 88] definition and is quite lengthy; 
we indicate here how to use well-founded bisimulation. Each process alternates 
between blocking receive and send token transfer actions, with a finite number 
of local steps in between. For an n-process system with state space Sn, define 
c~n : S~ -+ N 2 as the function given by c~,.s = (i, j )  where, in state s, if process 
m has the token, then i = (n - m) rood n is the distance of of the token from 
process 0, and j is the sum over processes of the maximum number of steps of 
each process from its local state to the first token transfer action. The tuples are 
ordered lexicographically. Let the rank function be rank.(u, s, t) = (~m.s, an.t), 
where s and t are states in instances with m and n processes respectively. Let 
the relation B be defined by (s, t) E B iff the local state of process 0 is identical 
in s and t. 

It is straightforward to verify that B is a well-founded bisimulation w.r.t, rank. 
The rank function is used in the situation where the token is received by process 
0 by a move from state s to state u; however, the reception action is not enabled 
for process 0 in a state t related to s by B. In this case, some move of a process 
other than 0 is enabled at t, and results in a state v that  reduces an, and hence 
the rank, either by a transfer of the token to the next process, or by reducing 
the number of steps to the first token transfer action. The next state v is related 
to s by B (cf. clause (2c) of the definition). 

4.3 Q u o t i e n t  S t r u c t u r e s  

For a bisimulation B on TS ..4 that is an equivalence relation, a quotient structure 
`4 /B  (read as .4 "mod" B) can be defined, where the states are equivalence 
classes (w.r.t. B) of states of .4, and the new transition relation is derived from 
the transition relation of .4. Quotient structures are usually much smaller than 
the original; a bisimulation with finitely many classes induces a finite quotient, 
as is the case in the examples given in the previous sections. 

Let .4 = (S, -+, L, I, AP)  be a TS, and B be a well-founded bisimulation on A 
w.r.t, a rank function a,  that  is an equivalence relation on S. The equivalence 
class of a state s is denoted by [s]. Define . 4 /B  as the TS (8, ".-% s Z, AP)  given 
by: 

- s = { [ .11  s e s }  
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- The transition relation is given by : For C, D �9 S, C ~.~ D iff either 
1. C C D ,  and (3s ,  t : s � 9 1 4 9  --+ t ) , o r  
2. C = D ,  a n d ( V s : s e C : ( 3 t : t E C : s  ~ t)). 

The distinction between the two cases is made in order to prevent spurious 
self-loops in the quotient, arising from stuttering steps in the original. 

- The labelling function is given by s  - L.s, for some s in C. (states in an 
equivalence class have the same label) 

- The set of initial states, 2:, equals {[s] I s �9 I}. 

T h e o r e m  7. A is stuttering bisimilar to A /  B. 

Proof. Form the disjoint union of the TS's  .4 and A / B .  The bisimulation on this 
structure relates states of -4 and -4/B as follows : (a, b) �9 R iff [a] -- b V [b] -- a. 

Let sw : $ -+ S (read "state witness") be a partial function, defined at C only 
when C ".-* C does not hold. When defined, v = sw.C is such that  v �9 C, but  
no successor of v w.r.t. -4 is in C. Such a v exists by the definition of -.~. Let 
ew : S 2 --4 S 2 (read "edge witness") be a partial function, defined at (D, C) 
iff C ~0 D. When defined, (v, u) = ew.(D, C) is such that  u �9 C, v �9 D, and 
u ~ v. 

Let rank be a function defined on W U {2.} (2. is a new element unrelated to 
any elements of W) by : If u, s �9 S, and sw.C is defined, then rank.(u, s, C) = 
a.(u, s, sw.C). If D, C �9 $ and s �9 S, then rank.(D, C, s) = a.(ew.(D, C), s), if 
ew.( D, C) is defined. Otherwise, rank.( a, b, e) = 2.. 

Let (a, b) �9 R. From the definition of R, a and b have the same label. 

- a E S :  For clarity, we rename (a, b) to (s, C). By the definition of R, C = [s]. 
Let s -4 u. If [s] -.~ [u], then there is a successor D = [u] of C such that  
(u, D) E R, and clause (2a) holds. 
If the edge from [s] to [u] is absent, then [s] must equal [u], and sw.C 
is defined. Let x = sw.C. As (s ,x)  e B, and (u ,z)  E B, but x has no 
successors to match u, clause (2b) holds for B, i.e., a . (u,  u, z) -~ a.(s ,  s, z). 
By definition of rank, rank.(u, u, C) -~ rank.(s, s, C), so (25) holds for R. 

- a E S : For clarity, we rename (a,b) to (C,s) .  Let C -,~ D. Let (y ,z )  = 
ew.(D, C). As x --+ y, and (x, s) �9 B, there are three cases to consider : 

1. There is a successor u of s such that  (y, u) �9 S.  Then [y] = [u], so 
(D, u) �9 R, and (2a) holds. 

2. (y,s) �9 B. Then [y] = Ix], so C = D. As C ~.z D, and s �9 C, s has a 
successor u such that  u �9 C; hence (D, u) is in R and (2a) holds. 

3. (y, s) ~ B and there exists u such that  s --4 u, (x, u) �9 B, and a.(y,  x, u) 
-~ a.(y,  x, s). Hence, (C, u) �9 R, and rank.(D, C, u) -~ rank.(D, C, s). So 
clause (2c) holds. 
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Related Work and Conclusions 

Other formulations of bisimulation under stuttering have been proposed; how- 
ever, they too involve reasoning about finite, but unbounded sequences of tran- 
sitions. Examples include branching bisimulation [GW 89], divergence sensitive 
stuttering [dNV 90], and weak bisimulation [Mil 90]. We believe that it is pos- 
sible to characterize branching bisimulation in a manner similar to our charac- 
terization of stuttering bisimulation, given the close connection between the two 
that is pointed out in [dNV 90]. An interesting question is whether a similar 
characterization can be shown for weak bisimulation [Mil 90]. 

Many proof rules for temporal properties are based on well-foundedness argu- 
ments, especially those for termination of programs under fairness constraints 
(el. [GFMdR 83,Fr 86,AO 91]). Vardi [Va 87], and Klarlund and Kozen [KK 91] 
develop such proof rules for very general types of linear temporal properties. 
Our use of well-foundedness arguments for defining a bisimulation appears to be 
new, and, we believe, of intrinsic mathematical interest. The motivation in each 
of these instances is the same : to replace reasoning about unbounded or infinite 
paths with reasoning about single transitions. 

Earlier definitions of stuttering bisimulation are difficult to apply to large prob- 
lems essentially because of the difficulty of reasoning about unbounded stuttering 
paths. Our new characterization, which replaces such reasoning with reasoning 
about single steps, makes proofs of equivalence under stuttering easier to demon- 
strate and understand. In the example applications, it was quite straightforward 
to determine an appropriate well-founded set and rank function. Indeed, rank 
functions are implicit in proofs that use the earlier formulations. As the exam- 
ples demonstrate, using rank functions explicitly leads to proofs that are shorter, 
and which can be carried out with assistance from a theorem prover. 
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Sawada, Robert Sumners, and Richard Trefler for carefully reading an earlier 
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6 Appendix 

D e f i n i t i o n  o f  match 

Let I N C  be the set of strictly increasing sequences of natural  numbers start- 
ing at 0. Precisely, I N C  = {re Irr  : N -+ N A rc.O = 0 A (Vi : i E N : 
~r.i < ~r.(i + 1))}. Let ~ be a path, and rc a member of INC.  For i E N, let 
intv.i.(a,~r) = [rt.i, min.(~r.(i + 1), length.a)).  The ith segment of ~ w.r.t, rt, 
seg.i.(~, r~), is defined by the sequence of states of ~ with indices in intv.i.(cr, re). 

Let ~ and 5, under partitions ~r and ~ respectively, correspond w.r.t. B iff they are 
subdivided into the same number of segments, and any pair of states in segments 
with the same index are related by S.  Precisely, corr .S . ( (~ ,  re), (5,~)) = (Vi : 
i e N : intv.i.(cr, rr) 5~ ~J = intv . i . (5 , ( )  7k 0 A (Vra, n : m E intv.i.(~r, rr) A n  E 
intv . i . (5 , ()  : (~.m,5.n)  ~ B))) .  

Paths ~ and 5 match iff there exist partitions that  make them correspond. Pre- 
cisely, match .B . (e ,  6) =_ (3~r,{ : ~r,~ e I N C  : corr .B.(  (a, rr), (5,r 
[] 


