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ABSTRACT
We show that existing methods for primary-backup repli-
cation may disrupt the timing behavior of an underlying
service to the extent of making it unusable. We prove that
the problem is inherent to the primary-backup model.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms
Theory, Reliability
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1. INTRODUCTION
The advent of cloud computing, with its remote compute

and data centers, is changing the way in which comput-
ing services are offered. We are interested in the question
of whether telecommunications services can be offered in
a cloud environment. These services differ from the ones
hosted currently on cloud platforms in that they have rather
strict requirements on delay and jitter. The requirements
may be regulatory, or imposed by human perception; large
values for delay, jitter, or packet loss can seriously degrade
audio quality in a phone conversation. In addition, such
services are expected to be highly reliable.

Traditionally, telecommunications services have been pro-
tected against faults using special hardware, which also al-
lows the software to meet timing constraints [9]. The envi-
ronment offered by compute centers is quite different: hard-
ware is standardized, a shared broadcast medium is gen-
erally not available, and communication and computation
failures may be frequent [4]. This model is akin to that of a
distributed computing system.
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A natural and important question, therefore, is whether
time-sensitive services can be run reliably under a distributed
computing model, while also preserving timing constraints.
We examine methods for fault tolerance which are based
on primary-backup replication. We show that known meth-
ods can give rise to large jitter and unbounded delays un-
der high load, even under failure-free operation. We further
prove that any primary-backup method operating under this
model must have similar impediments; these result from an
unavoidable synchronization between primary and backup.
The proof is based on a theorem of Chandy and Misra [2],
which connects increases in process knowledge to the exis-
tence of causal chains of messages.

The most closely related work which we are aware of is
an analysis of the effect of primary-backup synchronization
on real-time scheduling [10]. That paper accounts for delays
caused by primary-backup synchronization by adjusting the
admission policy for real-time tasks, allowing fewer tasks
to be admitted, which effectively reduces throughput. The
real-time task model is different from our setting, which is
the processing of message streams.

A paper by Budhiraja et al. [1] gives upper and lower
bounds on the blocking time of primary-backup protocols.
The system models considered there, however, are different
from ours in crucial respects. In the most closely related
crash+link model, a transmission failure is counted against
the failure budget—i.e., a protocol with a budget of f = 1
failures trivially meets its specification after failures on two
links—whereas we consider transmission failure to be nor-
mal. Therefore, the non-blocking protocol given in [1] for
crash+link failures does not apply, as message acknowledg-
ments are necessary in our model.

2. LIMITATIONS OF KNOWN METHODS
A primary-backup protocol allows the state of a server,

which can be thought of as a state machine, to be recov-
ered after a failure of the machine on which the server is
executed. We consider protection for a single crash failure.
In active replication [6, 8], all replicas receive the same mes-
sages in the same order. This suffices for fault-tolerance if
message processing is deterministic. In passive replication,
a checkpoint of the server state is taken periodically; after



a primary failure, recovery proceeds with the backup server
starting from the latest checkpoint state.

In both approaches, the root cause of timing disruptions
is the synchronization between primary and backup. We
examine more closely the source of the disruptions arising
in Remus [3], which is a representative implementation of
passive replication. An analysis of active replication results
in similar conclusions. The essence of the Remus synchro-
nization is as follows.

1. Primary and backup are synchronized at the start of
an epoch (the period between checkpoints)

2. Primary receives and processes a sequence of input
messages; generated output messages are buffered (Re-
leasing output messages immediately can cause the en-
vironment and the backup to have inconsistent views
of the primary state after a primary failure.)

3. Primary sends its current state to the backup and waits
for an acknowledgment

4. Primary receives acknowledgment from backup; syn-
chronization is complete

5. Primary sends the buffered output to the environment

Let T represent the round-trip time from the primary to
the backup. Suppose that, without any synchronization, the
primary is able to process input arriving at a constant rate
r > 1/T . At rate r, at least one message arrives during
synchronization (steps 3,4). As the primary is suspended
at step 3, these messages must be processed in the next
epoch (after step 4). If there is insufficient slack time during
that epoch, some messages remain unprocessed. Repeating
this sequence of events, unprocessed messages must accu-
mulate beyond bound in input buffers, which results in an
unbounded delay in processing input messages.

A possible resolution is to drop some input messages, but
that may result in a service failure (e.g., for voice packets)
or in lowered throughput. Moreover, releasing output all at
once (step 5) can cause bursty traffic. In an experiment with
Remus on a single audio stream, we observed that bursti-
ness (caused by step 5) and delay due to checkpointing can
seriously degrade audio quality. The processor was lightly
loaded, so we did not observe an input queue buildup.

3. FORMAL ANALYSIS
We show that timing disruptions are inevitable for any

primary-backup mechanism. The central claim is stated in
the following theorem. The computing model is that of asyn-
chronous computation, crash failures, and message-passing
communication over (normally) lossy channels.

Theorem 1. For any generic primary-backup mechanism
there exists a service and an environment for which timing
disruption is inevitable during fault-free operation.

A proof of this theorem is in [5]; we give a sketch of the
key argument. The main difficulty for the proof is that it
must quantify over all correct primary-backup mechanisms.
This is done through an analysis of the states of knowledge
of the relevant parties: the environment (E), the primary
(P ), the backup (B) and the service (S). Knowledge is
represented by an assertion, “M knows b”, which holds for

a process M and predicate b at a computation x if b holds
at all computations y which agree with x on the history of
events for M .

A key invariant is the following: for any computation x,
and a predicate b on the state of S, if E knows b at x, then
E knows (P knows (B knows b)) at x. From this, we show
that any increase of knowledge by E (precisely, if ¬b holds
at x, and E knows b holds at an extension y of x) requires a
causal chain of messages going through the processes in the
order P ;B;P ;E in the interval (x, y). This follows from a
beautiful theorem of Chandy and Misra [2] which connects
knowledge gain to the existence of causal chains. The chain
P ;B;P is a round-trip synchronization between primary and
backup, which must occur before a message to E increases
its knowledge.

We choose a particular E and S with a computation which
can be partitioned into infinitely many disjoint intervals, in
each of which E gains new knowledge. By the previous
result, a synchronizing process chain is required for each of
those intervals. That induces the behavior analyzed in the
previous section; hence, timing disruption is inevitable.

4. SUMMARY AND ONGOING WORK
We show that any primary-backup mechanism operating

in a distributed environment must disrupt timing, even in
the absence of faults. This holds for both active and pas-
sive replication strategies. We conjecture that some form of
timing disruption is inevitable for all generic fault-tolerance
mechanisms. If this conjecture holds, it may be necessary to
create protection mechanisms which are specialized to each
service and to the characteristics of its media traffic.
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