
◆ The Inherent Difficulty of Timely
Primary-Backup Replication
Pramod Koppol, Kedar S. Namjoshi, Thanos Stathopoulos, and
Gordon T. Wilfong

We show that existing methods for primary-backup replication may disrupt
the timing behavior of an underlying service to the extent of making it
unusable. Furthermore, we prove that this problem is inherent to the
standard primary-backup model. The formal proof is based on an analysis of
the “local knowledge” available to each party in a correct primary-backup
protocol. This negative result implies that entirely new approaches are
needed to resolve the problem; on the positive side, the proof offers some
hints for designing a solution. © 2012 Alcatel-Lucent.

requirement for low-latency, the lower bound limits

the extent to which the primary and backup machines

can be separated. This increases the possibility of a

joint failure, and therefore reduces the extent of the

fault tolerance guarantees that can be provided.

A natural question is whether new primary-

backup protocols can be devised which are not subject

to the roundtrip delay bound. We prove that this is

impossible: the problem is inherent in the primary-

backup model. The proof abstracts from the

(unknown) protocols by reasoning solely in terms of

the local state of knowledge of the various parties in

the system. We show that in every correct protocol,

packets can be released by the primary to the envi-

ronment only after the primary “knows” that the

backup is aware of the latest state changes. Hence, in

normal operation, the backup must continuously seek

to increase its knowledge regarding the state of the

primary. A beautiful theorem from Chandy and Misra

Introduction
The advent of cloud computing is changing the

way in which computing services are offered. It is a

challenge to offer latency- and jitter-sensitive services

in a cloud environment (e.g., for telecommunications).

Since users also expect high availability for these ser-

vices, a central question is whether it is possible to

combine time sensitivity (low delay and jitter) with

high network performance and high availability.

We examine a widely-used class of protocols for

fault tolerance, which provide high availability using a

pair of machines: a primary machine with an associ-

ated backup, as shown in Figure 1. It is desirable that

the primary and backup machines be placed as far

away from one another as possible in order to minimize

the risk of a catastrophic service failure. All existing pro-

tocols for primary-backup replication, however,

require regular roundtrip synchronization between

the two machines. This imposes a lower bound of a

roundtrip delay on network processing. Given the

Bell Labs Technical Journal 17(2), 15–24 (2012) © 2012 Alcatel-Lucent. • DOI: 10.1002/bltj.21541

16 Bell Labs Technical Journal DOI: 10.1002/bltj

[3] connects every gain in knowledge to a causal

chain of messages, showing that the roundtrip mes-

sage exchange is unavoidable.

Primary-Backup Protocols
A primary-backup protocol allows the state of a

server, which can be thought of as a state machine, to

be recovered after the failure of a machine on which

the server is executed. We consider protection for a

single crash failure. In active replication protocols [8, 9],

all replicas receive the same messages in the same

order. This suffices for fault tolerance if message

processing is deterministic. Passive replication requires

periodic checks on the server state; thus after a pri-

mary failure, recovery proceeds with the backup

server starting from the latest checkpoint state.

Implementations may also adopt hybrid approaches.

In both approaches, the root cause of timing dis-

ruptions is the synchronization between primary and

backup. We examine more closely the source of the

disruptions arising in Remus [4], which is a repre-

sentative implementation of passive replication. An

analysis of active replication provides similar conclu-

sions. A simplified view of the Remus synchronization

is given below, and shown in Figure 2.

1. Primary and backup are synchronized at the start

of an epoch (the period between checkpoints).

Panel 1. Abbreviations, Acronyms, and Terms

FF—Fault-free
FT—Fault-tolerant
TCP—Transmission Control Protocol

Primary

Backup

The “environment”

State or event
updates

Responses
(acks)

Packets in

Packets out

Figure 1.
Primary-backup replication.

Primary Backup

1. Primary sends state difference S at
 the end of a compute epoch

2. Backup applies S; acknowledges

3. Primary releases output from epoch
 to the environment

Figure 2.
Passive (state-based) replication.

DOI: 10.1002/bltj Bell Labs Technical Journal 17

2. Primary receives and processes a sequence of

input messages; the output messages generated

are buffered.

3. Primary sends its current state to the backup and

waits for an acknowledgment.

4. Primary receives acknowledgment from backup;

synchronization is complete.

5. Primary sends the buffered output to the envi-

ronment and starts a new epoch.

Buffering is required in Step 2, since releasing

output messages immediately can lead to an incon-

sistent view of the primary state between the backup

and the environment after a primary failure. This is a

special case of the theorem we show in this paper. Let

T represent the roundtrip time between the primary

and the backup. Suppose that, without any synchro-

nization, the primary is able to process input arriving

at a constant rate r �1/T. At rate r, at least one mes-

sage arrives during synchronization (Step 3 and Step

4). Since the primary is suspended at Step 3, these

messages must be processed in the next epoch (after

Step 4). If there is insufficient slack time during that

epoch, some messages must remain unprocessed. In

repeating this sequence of events, unprocessed mes-

sages accumulate beyond the bounds of the input

buffers, which results in an unbounded delay in pro-

cessing input messages.

A possible resolution is to drop some of the input

messages, but that may result in a service failure (e.g.,

for voice packets), or a reduction in throughput. The

Remus system resolves the problem by allowing the pri-

mary to process input while waiting for an acknowl-

edgement from the backup. Output produced in this

phase, which is concurrent with the primary-backup

synchronization, is kept in a second output buffer,

which is not released at Step 5, but instead forms the

output buffer for the next epoch.

While the two-buffer solution resolves the prob-

lem of an unbounded delay in processing inputs, the

roundtrip delay between primary and backup, which

is incurred between the generation of an output

packet and its eventual release to the environment,

still remains. Unless the delay is small, it can severely

impact both interactive services (e.g., a voice confer-

ence call) as well as reliable data transfer (TCP through-

put is inversely proportional to delay). On the other

hand, the small delay requirement hampers the flex-

ible deployment of services, since it implies that either

the primary and backup must be placed physically

close together, or that there should be a high-band-

width, low-latency link between them. A natural

question is whether there are alternative—possibly

more complex—primary-backup protocols which can

overcome this problem. We show that this is not

the case: the problem is inherent to the primary-backup

organization.

Another problem with the protocol described

above is that releasing output all at once (Step 5) can

cause bursty traffic. In an experiment with Remus on

a single audio stream, we observed that burstiness

caused by Step 5, and delay due to checkpointing, can

seriously degrade audio quality. Burstiness is a simpler

problem, which can be fixed by appropriately smooth-

ing-out the output.

Formal Analysis
We show that timing disruptions are inevitable

for any primary-backup mechanism where there is

no direct communication between the backup and

the environment until the primary fails. The comput-

ing model is that of multiple processes communicating

over a message-passing network. No assumptions are

made about the network: it may lose, reorder, or

duplicate messages. It is assumed that processes fail

by halting, and that the failure can be detected—this

is the well-known fail-stop model. The central claim is

stated in the following theorem.

Theorem: For any generic primary-backup mecha-

nism, there exists a service and an environment for

which timing disruption is inevitable during fault-free

operation.

We provide a sketch of the key argument before

giving the full proof. The main difficulty for the proof

is that it must quantify over all correct primary-

backup mechanisms. This is done through an analysis

of the states of knowledge of the relevant parties: the

environment (E), the primary (P), the backup (B) and

the service (S). Knowledge is represented by an asser-

tion, “M knows b,” which holds for a process M and

predicate b in a computation x if b holds at all com-

putations y which agree with x on the history of

events for M. The knowledge predicate is essentially a

18 Bell Labs Technical Journal DOI: 10.1002/bltj

way of saying that the local view of M in computation

x is consistent with the predicate b being true. Knowledge

is thus a fundamental concept in the analysis of dis-

tributed protocols, where the evolution of a process

must depend only on its local view of the global net-

work state.

We show that a key invariant must be true of any

correct primary-backup protocol: for any computa-

tion x and a visible predicate b on the state of S, if E

knows b at x, then E knows (B knows not(E knows

not(b))) at x. Roughly speaking, a predicate on the

service state is visible if it is possible for the environ-

ment to distinguish, by means of message exchanges,

whether the service is in a state satisfying that predi-

cate. From this invariant, we show that any increase

of knowledge by E—precisely, if E knows not(b) holds

at x and E knows b holds at an extension y of x—forces

a causal chain of messages going through the pro-

cesses in the order <P;B;P;E> in the interval (x,y).

This follows from [3], which connects knowledge gain

to the existence of causal chains. The chain <P;B;P> is

a roundtrip synchronization between primary and

backup, which must occur before a message received

by E increases its knowledge of the state of S.

The preceding reasoning applies to any environ-

ment and service. For some combinations, there may

not be any visible predicates. We show how to choose

a particular E and S which has a computation which

can be partitioned into infinitely many disjoint inter-

vals, in each of which E gains new knowledge. Based

on the previous results, a synchronizing process chain

is required for each of those intervals. This induces

the behavior analyzed in the previous section; hence,

timing disruption is inevitable.

In the following, we describe the computation

model, provide a formal definition of knowledge, and

give the detailed proof.

Basic Definitions
Processes may be thought of as state machines

communicating via point-to-point messages. The

communication network can be lossy, and may

reorder or duplicate messages. Processes execute

according to interleaving semantics: i.e., at every point

in time, a specific process is chosen to execute an

action. We take the basic definitions of computation,

knowledge, process chain, and local predicates from

Chandy and Misra’s paper [3]. We summarize the key

definitions here for completeness; the Chandy-Misra

paper should be consulted for full detail.

A computation is a sequence of events. An event is

either an internal process transition, or a “send” or

“receive” for a message. This defines a “happens-before”

relationship between events as in [8]. A computation

is required to be downward-closed according to the

happens-before order (i.e., every receive must have a

corresponding send).

For computations x and y, x � y means that x is

a prefix of y (y is an extension of x). A predicate is a

statement that has a truth value on computations,

and which is insensitive to the ordering of concurrent

events. For computations x and y, and process P,

x[P]y means that P has the same sequence of events

in x and y. For a predicate q, a computation x, and

process P, we say that P knows q at x if, for all com-

putations y such that x[P]y, the property q holds of y

(informally, q holds in all computations consistent

with P’s history in x). A predicate q is local to process

P if for all computations x, one of P knows q or P

knows not(q) holds at x (informally, q is fully deter-

mined by the local history of P). There is a process

chain �P1; P2; . . . ; Pn> in a computation x if there is a

sequence of events e in x such that for each k, e[k] is

an event of Pk, and successive events are causally

ordered in x (i.e., there is a sequence of events

ordered by the happens-before relation from e[k] to

e[k�1] for all k: 1 � k �n).

To illustrate the definitions, consider Figure 3.

This shows a single computation formed from the his-

tory of two concurrent processes, A and B. Each

dashed line represents a consistent state of the sys-

tem; it can be viewed as defining the set of all events

which precede the line. Each set is closed under the

happens-before relation: i.e., if an event y belongs to

the set, and event x happens-before y, then x must

also be in the set. In state S0, process A cannot know

if the value of x in B is 0, as B may not have received

the message yet. This is also true at state S1 and S2,

since given process A’s history, those states are indis-

tinguishable to it from S0. On the other hand, at state

S3, process A has received an acknowledgement from

process B; thus, all states consistent with this history

DOI: 10.1002/bltj Bell Labs Technical Journal 19

must have the value 0 for x at B (this assumes, of

course, that B does not change x on its own).

Modeling Computation and Fault Tolerance
In order to define fault tolerance in general terms,

we first define a reference system—one without any

failures—and a system which tolerates failures. The

fault-free reference system FF has two processes: an

environment (E) and a service (S). The fault-tolerant

system FT has three processes: the environment E,

the primary (P) and the backup (B).

In order to relate the computations of FT and FF,

we suppose that there is a way to map states of P and

B to states of S. The proper mapping at any point on

a computation of FT is determined by the active pro-

cess: if the primary is active, its state is the one chosen

to map to S; if the primary has failed, the state of B is

mapped to S. Thus, for any computation of FT, there

is an induced sequence made up of events at E and

mappings of the state of the active process to S.

A first requirement is that of safety: FT must not

produce computations which cannot belong to FF. A

second requirement is that of completeness: any com-

putation of FF must be reproduced in a fault-free way

by FT. We take care of both by requiring that FF and

the fault-free portion of FT are bisimular upto stuttering

(i.e., finite repetition) [1]. Bisimularity matches-up

the events of E, as well as the states of S. (A state s of

FT and state t of FF match if the state of S that s is

mapped to equals the state of S in t.)

Bisimularity is a standard notion for comparing two

programs: it is a form of back-and-forth equivalence.

A bisimulation B is a symmetric relation on states such

that for any s,t related by B: 1) s and t satisfy the same

atomic propositions (in our case, they agree on the state

of S), and 2) for any transition labeled ‘a’ from s to state u,

there is a transition labeled by ‘a’ from t to v such that

u and v are related by B (in our case, labels are events

of E). Taking stuttering into account results in a more

complex definition, but the essence remains the same:

a pair of related states have the same observable future

behavior.

We define fault tolerance as follows. For every

fault-free computation there is the possibility of a fault

at the end of the computation. Faults are fail-stop: the

state of the processes involved do not change, the failing

process halts in its current state. (We may suppose

that the state after a failure can be distinguished from

the state before a failure by a special flag, since all

process states are unchanged.) Let s be the state

reached by a primary failure at the end of computa-

tion x. Fault tolerance is defined by the requirement

that s is stuttering-bisimular to the state reached at

the end of some fault-free computation y, which the

environment cannot distinguish from x: i.e., a com-

putation y such that y is fault-free and y[E]x holds.

The definition ensures that the continuation of events

as observed by the environment after a fault is one of

the potential continuations which would have been

A’s history

B’s history

“set x to 0” “ok”

S3S2S1S0

Figure 3.
Knowledge and message passing.

20 Bell Labs Technical Journal DOI: 10.1002/bltj

observable before the fault. This definition is illus-

trated in Figure 4. The dashed lines indicate that from

the initial state, as far as the environment can tell, the

system could be in any of the three states in the marked

region. On a fault from the gray state, fault tolerance

requires only that the system transit to a state that is

similar to one of the states in the marked region; in

this case, the blue state.

Finally, there is an important restriction on the

structure of a standard primary-backup system. In a

fault-free computation of FT, there is no direct com-

munication between environment E and backup B;

after a primary failure, all communications are between

E and B.

The Proof

Definition: A predicate q on the state of S is visible in

FF if, for any pair of reachable states (e1, s1) and (e2, s2)

of FF such that s1 satisfies q but s2 does not satisfy q (e1

and e2 are the corresponding environment states)

there is a query (a non-state changing message inter-

action) which can be performed from (e1, s1) and (e2,

s2) but with differing results. It is required that the

result of a query is functional, i.e., deterministic.

In the following, we restrict the scope of quantifi-

cation in the “knows” operator to be that of failure-free

computations of FT. Only a primary failure is consid-

ered in the proof.

Theorem 1: Let q be a visible predicate on the state of S.

For any failure-free computation x of FT, if E knows q at

x, then E knows B knows (not (E knows not(q))) at x.

Proof: (The term “not(E knows not(q))”—the nega-

tion dual of knows—simplifies to the following. It

holds of a computation x if there is a computation y

indistinguishable to E from x such that q holds at y.)

The interpretation of q on a failure-free computa-

tion is given by the final state of P, mapped to S. Hence,

q is a local predicate of P for failure-free computations.

The proof is by contradiction. Consider a compu-

tation x where the hypothesis E knows q holds, but

the conclusion does not. By the definition of knowl-

edge, there is a fault-free computation y such that

x[E]y holds but B knows (not (E knows not(q))) is false

at y. Hence, there is a fault-free computation z such

that y[B]z and (E knows not(q)) at z.

As x[E]y, E knows q holds at y. Informally, we

have two failure-free computations y and z such that

B is “confused” between the two: the local history of

B is the same in both, but the predicate q is true at y

but false at z. In fact, a stronger statement can be

made: as E knows q at y, the predicate q is true on all

failure-free computations that are indistinguishable

from y to the environment; and as E knows not(q) at z,

the predicate q is false on all failure-free computations

that are indistinguishable from z to the environment.

Figure 5 illustrates this scenario.

Now consider the possibility of a primary failure

from both y and z. Let s0 be the state reached after

failure from y, and s1 the state reached after failure

from z. By the definition of fault tolerance, s0 is bisim-

ular to the state t0 reached after some failure-free

computation, say y’, that is indistinguishable to the

environment from y. Similarly, s1 is equivalent to state

Figure 4.
Defining fault tolerance.

DOI: 10.1002/bltj Bell Labs Technical Journal 21

t1 reached by a failure-free computation, say z’, that is

indistinguishable to the environment from z.

By bisimularity, y’ and z’ must have similar com-

putations in FF, ending in states u0 and u1 respectively.

As q is false of all computations which are indistin-

guishable to the environment from y, the predicate q

must hold of y’. Similarly, q must be false of z’. By

bisimularity, q must hold for u0 and fail to hold of u1.

As q is a visible predicate, there is a query m which is

possible from these states but which results in differ-

ing responses, say r0 and r1. By the completeness of

bisimularity, the query m must be possible from y’

and z’ as well, and must result in the same responses.

By bisimularity within FT, m must be possible from s0

and s1 and result in the same responses. However, as

y and z have the same history for B, and the responses

from s0 and s1 are generated by the backup, the result

of processing the query at the backup after the failure

is non-deterministic, a contradiction to the assump-

tion of deterministic query responses. Endproof
Note 1: It is worthwhile to point out that the proof

makes no assumption about how the internal struc-

ture of P and B relates to that of the service S. The

only constraints (safety, completeness) relate behavior,

not structure. For instance, P may be a state machine

obtained by arbitrarily transforming the state

machine for S, subject to the behavior constraints.

We also do not assume full determinism of state

machines; the only assumption is that queries have a

deterministic response.

Note 2: The stronger claim “E knows q implies E

knows B knows q” holds under a stricter definition of

fault tolerance, where the state after failure has to be

bisimular to the state before failure.

Theorem 1 makes a statement about any fault-

tolerant implementation of a service. We use this to

derive the result necessitating a round trip synchro-

nization for a standard primary-backup configuration.

This derivation makes crucial use of the structural

requirement on standard configurations.

Theorem 2: Consider a standard primary-backup sys-

tem. Let q be a visible predicate on the state of S. Let

computations x and y be fault-free computations such

that x � y and E knows not(q) at x, while E knows q

at y. Then there is a process chain <P;B;P;E> in the

interval (x, y).

Proof. As E knows not(q) at x, the assertion B knows

(not(E knows not(q))) is false at x. (If it were true, it

would imply that not(E knows not(q)) holds at x,

which contradicts the assumption.) As E knows q at y,

by Theorem 1, E knows B knows (not(E knows not(q)))

holds at y. By the knowledge gain theorem ([3],

Theorem 5), there is a process chain <B; E> in the

interval (x, y). By the structural assumption, any

chain from B to E in a fault-free computation must

pass through P: hence, the chain is really a chain

<B;P;E> in the interval (x,y).

Next, we show that this chain can be extended

on the left to a chain <P;B;P;E> in (x,y). The proof is

by contradiction. Consider the last receive event by

the process E in the interval (x,y); call it e. All subse-

quent events for process E are send and local events.

By ([3], Lemma 4]), those events do not lead to

knowledge gain; so that as E knows B knows (not(E

knows not(q))) holds at y, the same assertion holds

for the downward closure of event e according to the

happens-before relation. We refer to the downward

closure as computation z; the chain <B;P;E> in (x,y)

must be included in (x,z), so z is a strict extension of

x. The situation is illustrated in Figure 6.

FT FF

y z
z’y’

t0 t1

r1
r0

r0

s0 s1

r1

q !q

FF—Fault-free
FT—Fault-tolerant

E knows q E knows !q

u0 u1

r0 r1

q !q

Figure 5.
Illustrating the proof of Theorem 1: states with the
same color are bisimular; negation is abbreviated as “!”.

22 Bell Labs Technical Journal DOI: 10.1002/bltj

Now z also satisfies the sub-assertion B knows (not(E

knows not(q))). By the downward-closure construction,

any event in z(B), the B-sequence of z, is part of a chain

<B;P;E>. Consider the downward closure of events in

z(B). If there is no chain <P;B> in the interval (x,z), the

downward closure will not include any events of P in

the interval (x,z), nor will it include any events of E in

the interval (x,z)—since, by the structural assumption,

an event in E can influence an event in B only via an

event in P. Hence, the sequence z’ formed by restricting

the sequences of P and E to those in x, and the

sequence of B to that in z (i.e., z’ defined by

z’(P) � x(P), z’(E) � x(E), and z’(B) � z(B)) is a valid

computation (i.e., it is downward-closed). Note that z’

and z are indistinguishable to B. Hence, the assertion B

knows (not(E knows not(q))) also holds for z’, as does its

sub-assertion (not(E knows not(q))). So E knows not(q)

fails to hold at z’. But z’ and x are indistinguishable to

E since z’(E) � x(E). Hence, the assertion E knows

not(q) must also fail at x. This contradicts the assump-

tion of the claim that E knows not(q) holds for x. Thus,

there must be a chain <P;B> in (x,z) and therefore a

chain <P;B;P;E> in the interval (x,y). Endproof
It is possible to construct a specific S and E where

a chain of the type in Theorem 2 occurs infinitely

often. Let S maintain a counter, initially 0, incre-

menting at each ‘tick’ message from E. The only other

message from E is a ‘query’ message from E. For both

messages, the response from S is the current value of

the counter. Consider an infinite computation, x, in

FF where the counter increments infinitely often, and

a response is received by E infinitely often. By com-

pleteness, this computation must be matched by

an infinite failure-free computation, y, of FT. By the

bisimularity between FF and FT, which preserves

the state of S and the events of E, corresponding

points along x and y satisfy the same “E knows q”

predicates where q is a predicate on S. Let q(k) be the

predicate “counter is at least k.” In x, for each k � 0,

there is a point where E knows not(q(k)) and a later

point where E knows q(k). Hence, there are corres-

ponding pairs of points satisfying the same predicates

along y. The prefixes induced by each pair of points

meet the conditions of Theorem 2, forcing a process

chain <P;B;P;E> between those points. Infinitely

many of these witnessing chains must be distinct,

showing that synchronization is required infinitely

often.

Any generic primary-backup protocol must be

able to handle this specific service/environment com-

bination. The specific service considered above can be

seen as an abstraction of a number of real protocols.

For instance, a service which provides stateful load

balancing must keep the assignment of sessions to

servers up-to-date; this is analogous to the update of

the counter. A query is represented by a message in a

session which must be directed to the appropriate

server. If two states differ, they must differ on the

assignment for some session; thus, there exists a mes-

sage directed to that session for which the response

E’s history

B’s history

yx
e

z

z(B)

P’s history

Figure 6.
Illustrating the proof of Theorem 2.

DOI: 10.1002/bltj Bell Labs Technical Journal 23

(the server it is assigned to) is different from the two

states.

Related Work
The most closely related work on real time

scheduling in primary-backup replication is that by

Zou and Jahanian [10]. Their solution is to adjust the

admission policy for real-time tasks to account for

synchronization delays. This results in fewer tasks

being admitted, which effectively reduces throughput.

Budhiraja et al. [2] show that there is a non-blocking

protocol for their crash � link failure model. This

model counts transmission failures against the failure

budget—i.e., a protocol with a budget of 1 trivially

meets its specification after two transmission failures.

We consider transmission failure to be normal, which

forces a blocking protocol. This proof is also different

from classical impossibility results, such as the impos-

sibility of consensus in a distributed system [5] or the

CAP theorem [6], since it does not show that backup

in itself is impossible: only that timely backup is impos-

sible. A short summary of the proof given here was

published in [7]. This paper significantly extends that

of [7] by including an extended discussion of the

issues and the full proof of a stronger impossibility

result.

Conclusions
The impossibility result is an interesting one, as it

places a lower bound on a whole class of solutions.

However, its real value is that an analysis of the proof

can suggest ways in which the negative result may be

side stepped. One possibility is a replication mecha-

nism organized differently from the standard primary-

backup structure, for instance by allowing backups to

communicate directly with the environment. Another

is to map the replication mechanism to the application

and the distinct characteristics of its network traffic.

For instance, an application may communicate with

the replication protocol to allow certain messages to

be released to the environment without a prior

backup synchronization, since the message would not

lead to the environment gaining knowledge of a vis-

ible predicate. Both possibilities open up new and

interesting directions for research.

References
[1] M. C. Browne, E. M. Clarke, and O. Grümberg,

“Characterizing Finite Kripke Structures in
Propositional Temporal Logic,” Theoret.
Comput. Sci., 59:1-2 (1988), 115–131.

[2] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg, “The Primary-Backup Approach,”
Distributed Systems, 2nd ed. (S. Mullender,
ed.), ACM Press/Addison-Wesley, New York,
1993, pp. 199–216.

[3] K. M. Chandy and J. Misra, “How Processes
Learn,” Distrib. Comput., 1:1 (1986), 40–52.

[4] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield, “Remus: High
Availability via Asynchronous Virtual Machine
Replication,” Proc. 5th USENIX Symp. on
Networked Syst. Design and Implementation
(NSDI ‘08) (San Francisco, CA, 2008), pp. 161–174.

[5] M. J. Fischer, N. A. Lynch, and M. Paterson,
“Impossibility of Distributed Consensus with
One Faulty Process,” Proc. 2nd ACM SIGACT-
SIGMOD Symp. on Principles of Database Syst.
(PODS ‘83) (Atlanta, GA, 1983), pp. 1–7.

[6] S. Gilbert and N. Lynch, “Brewer’s Conjecture
and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services,” ACM SIGACT
News, 33:2 (2002), 51–59.

[7] P. Koppol, K. S. Namjoshi, T. Stathopoulos, and
G. T. Wilfong, “The Inherent Difficulty of Timely
Primary-Backup Replication,” Proc. 30th ACM
SIGACT-SIGOPS Symp. on Principles of Distrib.
Comput. (PODC ‘11) (San Jose, CA, 2011),
pp. 349–350.

[8] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System,” Commun.
ACM, 21:7 (1978), 558–565.

[9] F. B. Schneider, “Replication Management
Using the State-Machine Approach,”
Distributed Systems, 2nd ed. (S. Mullender,
ed.), ACM Press/Addison-Wesley, New York,
1993, pp. 169–197.

[10] H. Zou and F. Jahanian, “A Real-Time Primary-
Backup Replication Service,” IEEE Trans.
Parallel Distrib. Syst., 10:6 (1999), 533–548.

(Manuscript approved March 2012)

PRAMOD KOPPOL is a technical manager within
Alcatel-Lucent’s Software, Services &
Solutions group in Holmdel, New Jersey. He
has a bachelor of engineering degree in
computer science and engineering from
Osmania University, India; an M.S. in

24 Bell Labs Technical Journal DOI: 10.1002/bltj

computer science from Southern Illinois University,
Carbondale, Illinois; and a Ph.D. in computer science
from North Carolina State University, Raleigh, North
Carolina. His primary research focus includes software,
protocols, and systems aspects relating to networking
and mobile devices, and he has participated in the
development, productization and commercialization of
several research ideas. He was a founding member and
served as head of product development for the
OmniAccess® 3500 Nonstop Laptop Guardian, an
Alcatel-Lucent Ventures initiative.

KEDAR S. NAMJOSHI is a member of technical staff in
the Enabling Computing Technologies
research domain at Bell Labs in Murray Hill,
New Jersey. He holds Ph.D. and M.S.
degrees from the University of Texas at
Austin, and a B.Tech degree from the Indian

Institute of Technology (IIT), Madras, all in the
computing sciences. His research interests span several
topics in program analysis and verification, temporal
logics, and distributed systems.

THANOS STATHOPOULOS was a member of technical
staff in the Enabling Computing
Technologies research domain at Bell Labs
in Murray Hill, New Jersey when this work
was done. He is currently at Google. His
general interests lie in software and systems

aspects of networks, with emphasis on mobile and
embedded devices. Prior to joining Bell Labs,
Dr. Stathopoulos was a research scientist in the
Electrical Engineering Department at the University of
California at Los Angeles (UCLA). He received his M.Sc.
in computer science and Ph.D. in computer science
from UCLA, working on systems and networking
elements of wireless sensor networks, with emphasis on
energy-aware design.

GORDON T. WILFONG is a distinguished member of
technical staff in the Enabling Computing
Technologies research domain at Bell Labs in
Murray Hill, New Jersey. His major research
interests are in algorithm design and analysis.
His current area of focus is networking

including protocol analysis, routing, scheduling, and
analyzing game theoretic network models. He holds
patents in a wide range of areas including protocol

design, optical networking, handwriting recognition,
security, document analysis, and cross-connect design. He
received his B.Sc., First Class Honors, in mathematics from
Carleton University, in Ottawa, Ontario, Canada and his
M.S. and Ph.D. in computer science from Cornell
University in Ithaca, New York. ◆

