
Formalization and Automated Verification of
RESTful Behavior

Uri Klein1 and Kedar S. Namjoshi2

1 Courant Institute of Mathematical Sciences, New York University
uriklein@courant.nyu.edu

2 Bell Labs, Alcatel-Lucent kedar@research.bell-labs.com

Abstract. REST is a software architectural style used for the design
of highly scalable web applications. Interest in REST has grown rapidly
over the past decade, spurred by the growth of open web APIs. On the
other hand, there is also considerable confusion surrounding REST: many
examples of supposedly RESTful APIs violate key REST constraints. We
show that the constraints of REST and of RESTful HTTP can be pre-
cisely formulated within temporal logic. This leads to methods for model
checking and run-time verification of RESTful behavior. We formulate
several relevant verification questions and analyze their complexity.

1 Introduction

REST – an acronym for Representational State Transfer – is a software archi-
tectural style that is used for the creation of highly scalable web applications.
It was formulated by Roy Fielding in [8]. The REST style provides a uniform
mechanism for access to resources, thereby simplifying the development of web
applications. Its structure ensures effective use of the Internet, in particular of
intermediaries such as caches and proxies, resulting in fast access to applications.
Over the past decade, interest in REST has increased rapidly, and it has become
the desired standard for the development of large-scale web applications. The
flip side to this is a considerable confusion over the principles of RESTful design,
which are often misunderstood and mis-applied. This results in applications that
are functionally correct, but which do not achieve the full benefits of flexibility
and scalability that are possible with REST. Fielding has criticized the design
of several applications which claim to be RESTful, among those are the photo-
sharing application Flickr [9] and the social networking API SocialSite [10].

The criticisms show that some of the confusion is between REST and the Hy-
pertext Transfer Protocol (HTTP) [7]. (Aside: Fielding is also a co-author of the
HTTP RFC.) While RESTful applications are implemented using HTTP, not
every HTTP-based application is RESTful, and not every RESTful application
must use HTTP: REST is an architectural style, while HTTP is a network-
ing protocol. Another common mistake is to call a application RESTful if it
uses simpler encodings than those in the Remote Procedure Call (RPC) based
SOAP/WSDL [26] mechanism. The distinction goes far beyond this superficial
difference. These and other, more subtle, confusions motivate our work.

A question which arises naturally is whether it is possible to automatically
check an application for conformance to REST. Doing so requires a precise spec-
ification of REST. In this paper, we address both questions. A formal character-
ization of REST has benefit beyond its use in automated analysis. It should also
result in clear and effective communication about REST, and can enable deeper
analysis of this elegant and effective architectural style.

We begin by formulating RESTful behavior in a general setting. A key con-
tribution is to show that REST can be formalized within temporal logic. Two
constraints define RESTful behavior. One, statelessness, is a branching-time
property. The other, hypertext-driven behavior, is expressible in linear temporal
logic. Both are safety properties. We then consider the common case of RESTful
HTTP, and discuss how HTTP induces variants of the temporal properties.

The temporal specifications may be applied in several ways for verifying that
a client-server application is RESTful. One is to model-check a fixed instance
of the application [4, 23]. The parameterized model checking question is also of
much interest, as web applications typically handle a large number of clients.
These questions presume a ‘white-box’ situation, where implementation code is
available for analysis. A second group of questions concern run-time checking
of RESTful behavior, a ‘black-box’ approach, where the only observable is the
client-server communication. A third group of questions concern the synthesis
of servers which meet a specification under RESTful constraints.

We show that, for a fixed instance, model-checking statelessness can be done
in time that is linear in the size of the state-space of the instance and polynomial
in the number of resources. On the other hand, checking that an instance satisfies
a specification assuming hypertext-driven client behavior is PSPACE-complete
in the number of resources. This property can be checked at run-time, however,
in time that is polynomial in the number of clients and resources. We show
decidability for parameterized model-checking under certain assumptions; the
general case remains open. The full version of this paper [15] has complete proofs
of theorems and further detail on RESTful HTTP.

2 REST and its Formalization

Our goal in the formalization is to stay as close as is possible to its description
by Fielding in [8], which should be consulted for the rationale behind REST.

2.1 Building Blocks for REST

REST is built around a client-server model which includes intermediate com-
ponents, such as proxies and caches. An application is structured as a (con-
ceptually) single server component (server, for short) and a number of client
components (clients). All relevant communication is between a client and the
server. Each request for a service is sent by a client to the server, which may
either reject the request or perform it, returning a response in either case to
the client. A server manages access to resources. A resource is an abstract unit
of information with an intended meaning. Examples are a data file, a temporal

service (e.g., ‘current time in France’), or a collection of other resources (e.g.,
‘all files in a directory’).

An entity describes the value of a resource at a given time; it can be viewed as
the state of a resource. A resource state may be constant (e.g., ‘Uri’s birth date’)
or changing (e.g., ‘current time in France’), but it must take on values which
correspond to the intended meaning of the resource. A state may contain both
uninterpreted data and links to other resources. This creates a ‘Linked Data’
view [3] of all the information under the control of an application. A resource
identifier (resource id, for short) is a name by which a resource is identified. The
mapping of names to resources is fixed and unique. In HTTP-based applications,
Uniform Resource Identifiers (URIs) [27] are the resource identifiers. A resource
representation is a description of the state of the resource at a given time. A
state may have multiple representations (e.g., a web page may be represented as
HTML, or by an image of its content).

A RESTful architecture has a fixed set of uniform methods. Hence, every
application following that architecture must be based on these methods, which
effectively decouples interface from implementation. In contrast, for an abstract
data type or RPC model, the method set is unconstrained. Properties of a
method, such as safety (no invocation changes server state) and idempotence
(repeated invocation does not change server state) are required to hold uni-
formly, i.e., for all instantiations of the method.

2.2 Formalizing Resource-Based Applications

A resource-based application is one that is organized in terms of the previously
described building blocks, which are formally defined by a resource structure: a
tuple RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources; I is
a set of resource identifiers; B ⊆ I, is a finite set of root identifiers; η : I 7→ R
is a naming function, mapping identifiers to resources, a partial function that is
injective on its domain; C is a set of client identifiers; D is a set of data values,
with an equivalence relation ∼ ⊆ (D ×D); OPS is a finite set of methods; and
RETS is a finite set of return codes.

For simplicity, we use a specific form of resource representation, a pair 〈ids; d〉
in 2I ×D. Here, ids is a set of resource identifiers, and d a piece of data. This
abstracts from HTML or XML syntax and formatting, and clearly separates
resource identifiers from data values. The relation ‘∼’ may be used to ignore
irrelevant portions of data, such as counters or timestamps. We extend it to
resource representations as 〈ids1; d1〉 ∼ 〈ids2; d2〉 iff ids1 = ids2 and d1 ∼ d2.

A client-server communication (a communication, for short) is represented
by a ‘request/response’ pair, with the syntax c ::op(i, args)/rc(rvals), where:
c ∈ C is a client identifier; op ∈ OPS is a method; i ∈ I, is a target resource
identifier ; args is a finite list of arguments; rc ∈ RETS is a return code; and
rvals is a finite list of return values. The arguments and return values are specific
to the method. Both may include resource identifiers, data values, and resource
representations. (We omit more complex data types for simplicity.)

With each communication m are associated two disjoint sets of resource
identifiers, denoted L(m) (linked) and UL(m) (unlinked). The set L(m) describes
resources that are made known to the requesting client, and includes resource
identifiers which are returned as results in the communication, or that are created
by it. The set UL(m) are identifiers which are revoked at the client.

Given a resource structure RS, a RS-family is a collection of client and
server processes, defined over elements of RS. A RS-instance is a specific choice
of clients and a single server from a RS-family, with the processes interacting
using CCS-style synchronization [17] on communications. A global state of a RS-
instance is given by a tuple with a local state for the server process and a local
state for each client process. A computation is an alternating sequence of global
states and actions, where an action is either a (synchronized) communication
between a client and the server, or an internal process transition.

Caveats: In reality, requests and responses are independent events, which
allows the processing of concurrent requests to overlap in time. The issue is
discussed further in Section 4, as treating it directly considerably complicates
the model. There is also an implicit assumption that methods have immediate
effects. In practice, (e.g., HTTP DELETE) a server may return a response but
postpone the effect of a request. This issue is discussed in Subsection 3.2.

A communication sequence σ is a (possibly infinite) sequence of communi-
cations carried out between a set of clients and the server. The projection of a
communication sequence σ on a client c, written σ|c, is the sub-sequence of σ
which contains only those communications initiated by client c. A computation
of a RS-instance induces a communication sequence given by the sequence of
actions along that computation.

It is important to distinguish between the case where a method is successfully
processed by the server, and where it is rejected without any server state change.
This is done by mapping return codes to the abstract values {OK,ERROR},
where OK represents the first case and ERROR the second.

For a finite communication sequence σ, the set assoc(σ) of resource identifiers
defines those resources ‘known’ at the end of σ. For the empty communication
sequence, assoc(λ) = B. Inductively, assoc(σ;m) is (assoc(σ) ∪ L(m))\UL(m),
if m has return code OK, and it is assoc(σ), if the return code is ERROR.

For a finite computation with induced communication sequence σ, assoc(σ)
and I\assoc(σ) define the associated and dissociated resource identifiers, respec-
tively. We associate a partial function deref : I 7→ 2I × D with the state of
the server; deref (i), if defined, is the current representation of the resource η(i)
(which must be defined if deref (i) is defined).

2.3 Formalization of RESTful Behavior

For this section, fix a structure RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, and con-
sider RS-instances. The two temporal properties discussed below define whether
the behavior of an RS-instance is RESTful. It is usually more convenient to
describe the failure cases, and also more helpful for the purpose of automatic
verification. In the temporal formulas, we use a modified next-time operator,

X〈a〉, where a is an action. Its semantics is defined on a sequence with atomic
propositions on each state and an action label on each transition. For a sequence
σ and position i, define σ, i |= Xa(φ) to hold if σ, i + 1 |= φ and the transition
from step i to step i+ 1 is labeled with a.

Before diving into the specifics, it is worthwhile to point out a couple of
important considerations. First, as in any formalization of a hitherto informal
concept, there may be subtle differences between an informal idea and its for-
malization; we point out those that we are aware of. Second, a large part of the
usefulness of a formalization lies in the testability of these properties. It is helpful
to make a distinction between formal properties which can be tested given com-
plete information of the implementation of clients and the server (a ‘white-box’
view), and those which can be tested only on the observable sequences of inter-
action between clients and the server (a ‘black-box’ view). The first viewpoint is
interesting for model-checking; the second for run-time verification. Since we are
targeting both approaches, we present the properties from both points of view,
making it clear if one leads to a weaker test than the other. This distinction is
important only for the safety and idempotence properties.

1. Stateless Behavior. In ([8], Chapter 5), this property is described as fol-
lows: “. . . each request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of any stored
context on the server.” We formalize it by requiring that the server response to
a request be functional; i.e., independent of client history or identity. (A ‘client’
should be understood to be a machine, rather than a user.) Failure of state-
lessness is shown by a finite computation followed by a two-way fork, where for
some distinct client identifiers c, d, one branch of the fork contains the com-
munication c::op(i, a)/r1(v1), and the other branch contains the communication
d::op(i, a)/r2(v2), and either r1 6= r2, or v1 6= v2. This failure specification cap-
tures the situation where, given an identical history, the same method carried
out by different clients has distinct results.

This is a branching-time property. The failure case is expressed as follows
in a slight modification of Computation Tree Logic (CTL) [5], which allows the
operator EX〈a〉, for an action a.

(∃c, d ∃i, op, a, r1, v1, r2, v2 : c 6= d ∧ (r1 6= r2 ∨ v1 6= v2) ∧
EF(EX〈c::op(i,a)/r1(v1)〉(true) ∧ EX〈d::op(i,a)/r2(v2)〉(true)))

The property suffices to detect the common cases of hidden per-client state.
One subtlety is that the the property is based on observable, semantic effects
of a hidden state, not its syntactic presence. Hence, it holds of a server which
retains auxiliary per-client information – such as a request counter – but does
not use that information to influence the response to a request.

The formalization is also slightly stronger than the intended informal no-
tion of statelessness, in the following sense. Consider a server which implements
a method as “if (client=c) then return 3 else return 4”. This has no

hidden state, yet the method has different results for distinct clients c and d,
and fails the property.

2. Hypertext-driven behavior. Informally, this property requires a client to
access a resource only by ‘navigating’ to it from a root identifier. It is also referred
to by the acronym HATEOAS, which stands for “Hypertext/Hypermedia As The
Engine Of Application State”. The failure specification is a finite computation
with induced communication sequence of the form σ; c::op(. . . , i, . . .)/rc(. . .), for
some σ, return code rc, method op, and resource identifier i among the arguments
of op, such that all of the following hold: i 6∈ assoc(σ|c), and if L is the linked
set of the last communication, then i 6∈ L. The return code and values are not
important. It suffices that the identifier i is currently not associated from the
perspective of the client c.

This condition can be expressed in Linear Temporal Logic (LTL) [20], most
conveniently by using past temporal operators [16] to express the condition i 6∈
assoc(σ|c). The past-LTL formula for failure, denoted ϕHT , can be built up as
shown below.

In the following, the predicate by(m, c) is true if communication m is by
client c; OK(m) is true if m has return code OK; arg(m, i) is true if resource
id i is an argument to the request in m; Y is the 1-step predecessor operator
with variant Y〈a〉 (formally, σ, i |= Y〈a〉(φ) if (i ≥ 1) and σ, (i − 1) |= φ, and
the transition from step i to step i + 1 is labeled by a); and p S q is the ‘since’
operator which holds if q holds in the past, and p holds since then. Precisely,
σ, i |= p S q iff (∃k : 0 ≤ k ≤ i : σ, k |= q ∧ (∀j : k < j ∧ j ≤ i : σ, j |= p)).
Note that ¬Y (true) is true only at the initial state of a sequence.

ϕHT =(∃c, i : F(access(c, i) ∧ ¬ inassoc(c, i))), where

access(c, i) =(∃m : X〈m〉(true) ∧ by(m, c) ∧ arg(m, i) ∧ i 6∈ L(m)), and

inassoc(c, i) =(¬ revoked(c, i)) S granted(c, i), where

revoked(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ UL(m)), and

granted(c, i) =(∃m : Y〈m〉(true) ∧ OK(m) ∧ by(m, c) ∧ i ∈ L(m)) ∨
(¬Y(true) ∧ i ∈ B)

3. Safety and idempotence. REST explicitly includes intermediaries in the
model, such as caches and proxies. It is encouraged to have methods which
are uniformly idempotent or safe, as intermediaries can more effectively use
these methods to reduce latency or mask temporary server failures. While these
properties are not required of REST methods, they can be formalized in LTL
and model-checked. Unlike the two main properties, the formalization of safety
and idempotence is different in the white-box and black-box views.

For the black-box setting, we require the following additional constructs. We
suppose that there is a distinguished method, READ(i), where i is the target
resource identifier. It returns either ERROR or OK(deref (i)), the representation

of the resource identified by i. The linked and unlinked sets are empty. We
extend the equivalence relation ‘∼’ is to a list of return values: for lists a and b,
a ∼ b holds if the lists have the same length and corresponding elements have
the same types and are related by ‘∼’. In the following, we also assume that
one can identify whether a communication affects a resource; this information is
typically available for specific instances of REST, such as RESTful HTTP.

– Safety of a method. A method is considered safe if it does not modify
resources. In the black-box view, changes to resources can be detected by
means of READ methods. A failure for the safety of method op is a finite com-
putation with communications c1::READ(i)/OK(r1) and c2::READ(i)/OK(r2)
occurring in that order, with r1 6∼ r2, where no intervening communication
modifies or dissociates the resource η(i) but includes at least one communi-
cation using op. Informally, failure of safety is signaled by a difference in the
representation of the resource identified by i before and after method op.

– Idempotence of a method. For a method to be idempotent, repeated in-
vocation should have no additional effect on resources. In the black-box view,
such changes can be detected by means of READ methods. A failure for the
idempotence of method op is a finite computation where the communications
c1::op/rc(rv1), c2::READ(i)/OK(r1), c3::op/rc(rv2), and c4::READ(i)/OK(r2)
occur in that order, r1 6∼ r2 and the communications occurring between
these distinguished ones do not dissociate i or modify the resource η(i).
Informally, the property detects failure by detecting a difference in the rep-
resentation of a resource identified by i before and after the second instance
of a communication with method op.

Both black-box properties are weaker than their white-box counterparts. For
instance, it is possible that method op changes the server state of a resource –
perhaps by incrementing an auxiliary counter – but this change is not propagated
to the representation, and is hence unobservable by a READ. This violates safety
in the white box view, but not in the black-box view.

Naming Independence We present an interesting consequence of the REST-
ful properties, which shows that the specific choice of naming function does not
matter, if client-server behaviors are hypertext-driven. To make this precise,
consider structures RS and RS′ which are identical except for the naming func-
tions. The naming functions, η and η′, are required to map each base name to
the same resource. The functions induce a name correspondence: a name i in
an RS-instance corresponds to a name j in an RS′-instance if both map to the
same resource, i.e., if η(i) = η′(j).

If clients Ci and C ′i in the hypothesis of the theorem are based on the same
program text, a sufficient condition for bisimularity up to naming is that names
are used opaquely : i.e., no constant names are present, names can only be stored
to and copied from variables, and the only relational test allowed for names is
equality of name variables. The proof of the theorem is given in the full version.

Theorem 1. Consider an RS-instance M with clients C1, . . . , Ck and server
S, and an RS′-instance M ′ with clients C ′1, . . . , C

′
k and server S′. Suppose that,

for each i, clients Ci and C ′i are bisimular up to the naming correspondence, as
are S and S′. Then, for each hypertext-driven computation σ of M , there is a
hypertext-driven computation σ′ of M ′ such that global states σ(i) and σ′(i) are
bisimular, for each i, and the induced communication sequences match up to the
naming correspondence.

3 REST on HTTP, and Variations

In this section, we show how the property templates from Section 2 can be in-
stantiated for a concrete protocol, HTTP, which is the primary protocol used for
constructing RESTful applications. The result is a formal definition of RESTful
HTTP behavior.

3.1 Formal RESTful HTTP

HTTP is a networking protocol for distributed, collaborative, hypermedia infor-
mation systems [7]. The bulk of the interest in REST among developers is in
the context of HTTP-based applications. We start by demonstrating how HTTP
satisfies the framework requirements described in Subsection 2.1.

HTTP is typically used in a client-server model. HTTP resources are uniquely
identified using their Uniform Resource Identifiers (URIs) [27]. For HTTP ap-
plications, the fields of a resource representation 〈uris ∈ 2I ; d ∈ D〉 are used
as follows: uris is a set of URIs, links that exist in the resource, and data is
any data, of any type, that is contained in a resource. It may include auxiliary
data, such as counters, which is relevant to server-internal processes, but has
no relevance to client behavior. Such data can be elided through an appropriate
definition of ‘∼’. The HTTP RFC [7] defines nine methods. We present here
the four main methods, the remaining five have no impact on resources. To rep-
resent the HTTP concept of subordinate resources, we use a partial mapping,
S : I 7→ 2I , which maps each resource identifier to the set of resource identi-
fiers for its subordinate resources, if any. We only describe successfully processed
communications, which return the abstract return code OK, all other codes map
to ERROR. The main HTTP methods, with their linked and unlinked sets, are
as follows.

– GET(i)/OK(deref (i)): The method returns the current entity (resource rep-
resentation) of the resource identified by i from the server. Both L and UL
are empty.

– DELETE(i)/OK: The method dissociates the resource identifier i on the
server, resulting in deref (i) bring undefined. Here, L is empty, and UL = {i}.
The HTTP RFC actually only requires that the server ‘intends’ to dissociate
it [7]. We discuss this more complex scenario in Subsection 3.2.

– PUT(i, 〈uris; d〉)/OK: The method associates a resource identified by i, if it
is not already associated, and assigns a value to its corresponding entity so

that deref (i) = 〈uris; d〉. If this is a new association, then S(i) = {}. Here,
UL is empty, while L = {i}.

– POST(i, 〈uris; d〉)/OK(j): The method associates a fresh resource, which is
identified by j, and sets S(j) = {} and deref (j) = 〈uris; d〉. The resource
identified by j becomes a subordinate of the resource identified by i, and j
is added to S(i). Here, UL is empty, while L = {j}.

Instantiating the REST property templates from Subsection 2.3 with the
HTTP methods results in a formal definition of RESTful HTTP. This is a rather
technical, mostly straightforward translation, and is given in the full paper.

3.2 Variations on RESTful HTTP Properties

In this section we mention several common or reasonable modifications of the
HTTP model from Subsection 3.1, and discuss how they impact the RESTful
HTTP properties. Complete descriptions of these modifications and the corre-
sponding changes to the properties are in the full paper.

Cascade of DELETE Methods by Subordination. One side-effect of the
POST method is the creation of a subordination relation from the target resource
identifier to the newly associated one. A common feature in many HTTP appli-
cations is the requirement that when a resource identifier is dissociated through
a DELETE call, its subordinates are deleted as well (which, in turn, may trigger
more dissociations of resource identifiers with higher degrees of subordination to
the originally deleted one). In our model, this would translate into a (recursive)
modification to the linked set of DELETE communications. In RESTful HTTP,
this change would require modifying all properties whose definition relies on the
unlinked sets of communications (the hypertext-driven sequences property and
any idempotence properties) to use more complex, yet easily computed, defini-
tions of the unlinked sets.

Subordination Expressed as a Link. Here, subordination is expressed as
a link, i.e., for every i ∈ I such that deref (i) = 〈uris; d〉, if S(i) is defined, then
S(i) ⊆ uris. In this case, a side effect of the communication c::POST(i, r)/OK(j)
would be the modification of the resource identified by i to include j in uris. The
idempotence property should account for this case by considering that successful
POST methods modify existing resources.

Background Data Modifications by the Server. In some cases, where the
semantics of the domain D are such that it is is (partially or fully) dynamic by
nature, HTTP allows the server to modify the data field of resource represen-
tations arbitrarily, in accordance with their semantics. An example is a ‘current
time’ resource, whose value is updated by the server. Successive GET’s on this
resource would result in different values for the time, potentially violating the
safety property of GET. This case can be handled by a proper definition of the
data equivalence relation to ignore such changes.

Delayed Executions of Completed DELETE Communications. In the
HTTP RFC ([7]) it is said that when the server successfully processes a DELETE
request it merely means that “at the time the response is given, it intends to
delete the resource or move it to an inaccessible location.” Our interpretation
of this quote is that the single resource identifier that is in the unlinked set of
successfully processed DELETE communications is dissociated only after some
arbitrary, finite, delay, unless it is associated in the meantime by another com-
munication. Although this behavior makes our definition of assoc(s) irrelevant,
it does not complicate the HTTP application of the hypertext-driven sequences
property, due to the fact that HTTP clients must ‘assume’ anyway that resources
on which they performed successful DELETE methods are no longer accessible for
them. All other properties, however, need to be modified to account for the fact
that DELETE methods are not as well-behaved as assumed earlier. The HTTP
statelessness property, for instance, would have to disallow ‘temporal forks’ that
include DELETE methods performed by different clients which take effect at
different times.

3.3 Distinguishing REST from HTTP

Following are some interesting hypothetical applications which clarify the differ-
ences between HTTP and REST, and which address some common misunder-
standings regarding RESTful HTTP.

Consider an application which uses only two HTTP methods: PUT and GET.
A client encodes methods in the uri argument of PUT(uri, junk) requests, where
junk - a resource representation - is a meaningless constant. A GET communi-
cation is used by a client to examine the state of the server. This application
is compliant with the HTTP RFC, as there is no restriction on the PUT com-
munications’ return values. However, it is non-RESTful, since it would either
have to include an infinite set of root identifiers (each uri argument being one),
or it would violate the hypertext-driven behavior property. The Flickr API is
non-RESTful for a similar reason.

Consider an application which relies entirely on POST communications, and
uses a single root identifier, base, for all such communications (one may consider
B = {base}). In any POST(base, 〈base; data〉)/OK(uri) communication, clients
encode methods in the data field. We consider two variants:

1. The return value of an method is encoded in the newly associated URI
uri, returned as a result of POST. This is compliant with the HTTP RFC,
but it goes against the notion of dividing information into distinct resources,
as the base URI must be treated as a single resource. As there is no division
into resources (which would be created by – and used to identify – different
clients), this application is likely to violate the HTTP statelessness property.
Moreover, it is also likely to violate the resource identifier opaqueness assumption
from Subsection 2.3, as a program must interpret the URI strings returned by
POST. While the opaqueness assumption is not an essential part of REST, it is
important to simplify program development and maintenance.

2. The newly associated URI uri is used to point to a resource whose repre-
sentation is the result of the method, and which is later retrieved by a GET on the
uri. This violates the HTTP RFC, which requires that the result of POST iden-
tifies a resource with the supplied data as its representation. As in the previous
case, this application is also likely to violate the HTTP statelessness property.

4 Automated Verification of RESTful Behavior

In this section, we formulate and discuss questions relevant to the automated
verification of RESTful behavior. We give preliminary results and point to ques-
tions that are still open.

4.1 Computation Model

The somewhat informal model used previously can be made precise as follows.
Client and server processes are modeled as labeled transition systems. A commu-
nication is modeled as a CCS synchronization [17]. Hence, in a communication
of the form ‘request/response’, a client offers this communication at its state, the
server offers to accept it, and the two are synchronized to effect the communica-
tion. Processes may have internal actions, including internal non-determinism.
The CCS model is appealing for its simplicity but assumes atomic communi-
cation. We formulate problems and solutions in this model. Subsequently, we
discuss how the atomicity requirement may be relaxed, which brings the analy-
sis closer to real implementation practice.

4.2 Fundamental Questions

The two properties of REST, statelessness and hypertext-driven behavior, lead
to the following key verification questions.

ST Does a client-server application M satisfy the statelessness property?
HT1 For a client-server application M , does its specification, ϕ, hold for all

computations where client behavior is hypertext-driven?
HT2 For a client-server application M , do all computations which are not

hypertext-driven satisfy a ‘safe-behavior’ property ξ?

These fundamental questions may be asked for a program with a fixed set
of clients and resources, or in the parameterized sense. One may also ask if vi-
olations of these properties can be detected using run-time monitors. Another
interesting question is whether, given an application specification, one can syn-
thesize a server which satisfies it (again, fixed or parameterized).

4.3 Automata Constructions

A nondeterministic automaton which detects a failure of the hypertext-driven
behavior property works as follows. For a given input word, the automaton
guesses the client and resource identifier with which to instantiate the failure

specification, then keeps track of whether the resource id belongs to the current
assoc for that client. It accepts if, at some point, there is a request by the
client using the resource id, but the id is not part of the current assoc set.
Keeping track of whether a resource id belongs to the assoc set for a client does
not require computing the assoc set. A simple two-state machine suffices, with
states In(c, i) and Out(c, i). If the current communication m is by client c and
is successful, a transition is made from In(c, i) to Out(c, i) if i ∈ UL(m), and
from Out(c, i) to In(c, i) if i ∈ L(m). Otherwise, the state is unchanged. The
number of automaton states, therefore, is polynomial in |I| and |C|.

The deterministic form of this automaton must track all clients and resource
ids simultaneously. Thus, the size of a state of the deterministic automaton
is O(|I| · |C|), and its state space is exponential: O(2|I|·|C|). Non-deterministic
failure automata for safety and idempotence can be derived similarly from their
failure specifications; these are described in the full paper.

4.4 Model-Checking for Fixed Instances

A fixed instance has a fixed set of resources and clients. The parameters of
interest are the sets in the underlying resource structure: the clients, C, the
resource identifiers, I, and the data domain, D.

Statelessness is expressed in a slight variant of CTL, as described previously.
(The extension does not affect model-checking complexity.) The indexed prop-
erty expands out to a propositional formula which is polynomial in the sizes of
I and D. Hence, using standard CTL model-checking algorithms [4, 23], the ST
property can be verified in time linear in the overall application state space and
polynomial in the resource structure parameters.

Property HT1 can be verified as follows. A violation of HT1 is witnessed
by a computation where all clients are hypertext-driven but ϕ is false. This
can be checked using automata-theoretic model checking [24] by forming the
product of the application process with (1) a Büchi automaton for the negation
of ϕ, and (2) an automaton which checks that all clients follow hypertext-driven
behavior. The property is verified iff the product has an empty language. The
second automaton is the deterministic automaton from Section 4.3, with negated
acceptance condition.

Property HT2 can be verified by forming the product of the application pro-
cess with (1) a Büchi automaton for the negation of ξ, and (2) an automaton
which checks for failure of hypertext-driven behavior by some client. The prop-
erty is verified iff the product has an empty language. The second automaton is
the non-deterministic failure automaton from Section 4.3. The verification takes
polynomial time if the size of the application state space is polynomial in the
parameter sizes. The verification of HT1 is significantly more difficult.

Theorem 2. Verification of HT1 for a fixed instance is PSPACE-hard in the
number of resources. It is in PSPACE if a state of the application and of the
negated specification automaton can be described in space polynomial in the pa-
rameter sizes.

Proof Sketch. Membership in PSPACE is straightforward, by observing that
the automaton used to describe the hypertext-driven property for HT1 has a
state size which is polynomial in the the parameter sizes.

PSPACE-hardness for HT1 holds under severe restrictions: a single client,
where client, server, and negated specification automaton have a state-space
with size polynomial in the parameters’ sizes. The reduction is from the question
of deciding, given a Turing Machine (TM) M and input x, whether M accepts
x within the first |x| + 1 tape cells, which is a PSPACE-complete problem (IN-
PLACE ACCEPTANCE in [19]). The reduction uses the server state to store the
TM head position, while a TM configuration is encoded in the implicitly defined
assoc set for the client, using resources to represent tape cell contents. �

4.5 Parameterized verification

The parameterized verification question has particular importance, as web appli-
cations usually handle a large number of clients and resources. Since statelessness
is not a given, it is necessary to assume a server which stores information about
each client, which implies that the state space of the server is also unbounded.
Nonetheless, the problem can be solved under certain assumptions.

Suppose that clients have a finite state space, X, and that the state space of
the server can be written as Y × [C → Z], where Y and Z are finite sets. Thus, a
global state of an instance with N clients is a triplet (c, a, b), where c is an array
of client states, of size N , a is the finite part of the server state, and b is an array
of N server-side entries. Assume further that on receiving a request from client
i, the server update depends only on, and may only modify, the components a
and b(i); i.e., the new entry for client i does not depend on the entries of the
other clients. Then, by a change of viewpoint, one may combine the entry b(i)
on the server with the state c(i) of client i, obtaining an equivalent application
where the new client space is X ×Z, and the server space is Y . Both spaces are
now finite, although there is still an unbounded number of clients. This situation
fits the model in [11], where an algorithm is given for checking linear-temporal
properties. The algorithm has very high worst-case complexity, however, so it
may be more fruitful to try alternative methods, such as the method of invisible
invariants [21, 18], or methods based on upward-closed sets [1].

Several questions remain open. The modeling above implicitly assumes a
bounded set of resources and data values. Moreover, the suggested algorithm
applies only to linear-time properties and cannot, therefore, be used to check
statelessness.

4.6 Run-Time Monitoring

Perhaps the most promising immediate application of the formalization is run-
time monitoring. In this setting, the client-server communications are captured
by an intermediate proxy, which passes them through analysis automata. This
method can be applied to the properties HT1 and HT2; statelessness, being a
branching-time property, cannot be checked at run-time, unless some form of

backtracking is implemented. The automata described in Section 4.4 for model-
checking HT1 and HT2 can be used for run-time verification of safety speci-
fications. The non-deterministic automata used for checking hypertext-driven
behavior must be determinized for run-time analysis. This can be done on the
fly, as is the case for implementations of the Unix grep command (cf. [2]). The
size of the deterministic automaton state is O(|I| · |C|), so the required storage
is O(|I| · |C| ·K), where K is the state-size of the negated specification automa-
ton. For each communication, the update of the automaton state requires time
proportional to the size of the state, and is hence polynomial in the resource
parameters. An alternative to run-time verification is off-line testing of a logged
communication sequence.

4.7 Synthesizing Servers

A particularly intriguing question is the possibility of synthesizing RESTful
servers. A specific question is the following: given a resource structure and a
specification ϕ, synthesize a stateless server which satisfies ϕ. We show below
that, under certain assumptions, the statelessness constraint can be dropped.
We define a server specification ϕ to be universally synthesizable if there exists
a server implementation which satisfies ϕ given any set of clients. A sufficient
condition for ϕ to be universally synthesizable is if it is insensitive to client ids
and is synthesizable for a single, arbitrary client. Insensitivity means that for
sequences σ, δ which agree up to client ids in communications, σ |= ϕ iff δ |= ϕ.

Theorem 3. Consider a server temporal logic specification ϕ. The specification
ϕ is deterministically and universally synthesizable iff ST ∧ ϕ is deterministi-
cally and universally synthesizable.

Proof Sketch. For the left-to-right direction, given a deterministic server M
implementing ϕ, one can direct all communications to it through an intermediary
which replaces all client ids with a single, dummy, client id. By the universality
of M , this combination satisfies ϕ; as M ‘sees’ only a single client id and is
deterministic, the combination is stateless. �

The synthesis problem for LTL specifications, assuming a bounded state-space,
was solved in [22]. Implementing the intermediary adds constant complexity.

Adding the assumption that client interactions are hypertext-driven may
make an otherwise-unsynthesizable specification synthesizable, but it may also
add significantly to the specification complexity.

4.8 Relaxing The Atomicity of Communications

So far, we have assumed that communications are atomic. In real implemen-
tations, however, a request and its response are distinct actions. This allows
requests from different clients to overlap in time. To handle this concurrency, we
assume that the server is linearizable [12]. Every computation produces results
which are equivalent to one where each method takes effect atomically.

Hypertext-driven behavior is formulated entirely in terms of the request and
response parameters. If clients are not allowed to issue concurrent requests,
hypertext-driven behavior holds of a computation iff it holds of its lineariza-
tion. Assume that the service specification is also defined on communication
sequences, and has the same property. Then, it suffices to check properties over
the linearized subset of computations, which corresponds to the atomic com-
munication model. This reasoning does not apply to statelessness, which is a
branching property, and thus outside the scope of linearizability. Further work is
necessary to formulate a notion like linearizability for branching-time properties.

5 Related Work and Conclusions

There is surprisingly little in the literature on formal definitions and analysis of
REST. In [13], the authors describe a pi-calculus model of RESTful HTTP. This
model, however, comes across as a mechanism for programming a specific type of
RESTful HTTP application. The paper does not consider the general properties
of REST: statelessness and hypertext-following, nor does it describe a methodol-
ogy for checking that arbitrary implementations satisfy these properties. There
are also a number of books and expository articles on REST, but those do not
include formal specifications, nor do they consider analysis questions.

Our work appears to be – to the best of our knowledge – the first to pre-
cisely formulate the key properties of REST, and to demonstrate interesting
consequences, such as naming independence and the PSPACE-hardness of ver-
ification. This work also opens up a number of interesting questions. One is
to use the formalization as a basis to investigate questions about REST itself:
for instance, how to combine authentication with REST, and how to extend
REST to executable representations [6]. We have argued that the parameterized
model-checking and synthesis questions are especially relevant for web applica-
tions using REST. Constructing a practically usable verifier for REST properties
is itself a non-trivial task. We have experimented with simple examples verified
using SPIN [14]. An effort to use JPF [25] to verify applications written in the
JAX-RS extension of Java was unsuccessful, however, as JPF currently lacks
support for key libraries in JAX-RS. Our current focus is on creating a run-
time checker, which has the advantage of being independent of implementation
language.

To summarize, the formal modeling of REST clarifies its definition, and also
raises several challenging questions, both in modeling and in automated analysis.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS (1996)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
& Tools, Second Edition. Addison-Wesley (2007)

3. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web
(LDOW2008). In: WWW. pp. 1265–1266 (2008), talk by Tim Berners-Lee at TED
2009: http://www.w3.org/2009/Talks/0204-ted-tbl/

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Workshop on Logics of Programs. LNCS,
vol. 131. Springer-Verlag (1981)

5. Emerson, E., Clarke, E.: Proving correctness of parallel programs using fixpoints.
In: ICALP. LNCS, vol. 85 (1980)

6. Erenkrantz, J.R., Gorlick, M.M., Suryanarayana, G., Taylor, R.N.: From represen-
tations to computations: the evolution of web architectures. In: ESEC/SIGSOFT
FSE. pp. 255–264 (2007)

7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., Berners-Lee, T.: W3C RFC 2616 (June 1999),
http://www.w3.org/Protocols/rfc2616/rfc2616.html

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irving (2000)

9. Fielding, R.T.: http://roy.gbiv.com/untangled/2008/no-rest-in-cmis#

comment-697 (2008)
10. Fielding, R.T.: http://roy.gbiv.com/untangled/2008/rest-apis-must\

-be-hypertext-driven (2008)
11. German, S., Sistla, A.: Reasoning about systems with many processes. Journal of

the ACM (1992)
12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
13. Hernández, A.G., Garćıa, M.N.M.: A formal definition of RESTful semantic web

services. In: WS-REST. pp. 39–45 (2010)
14. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2003), also see

http://spinroot.com

15. Klein, U., Namjoshi, K.S.: Formalization and Automated Verification of RESTful
Behavior. Tech. rep., Bell Labs (2011)

16. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Proc. of the Conf.
on Logics of Programs (1985)

17. Milner, R.: Communication and Concurrency. Prentice-Hall (1990)
18. Namjoshi, K.: Symmetry and completeness in the analysis of parameterized sys-

tems. In: VMCAI. LNCS, vol. 4349 (2007)
19. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
20. Pnueli, A.: The temporal logic of programs. In: FOCS (1977)
21. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible

invariants. In: TACAS’01. pp. 82–97. LNCS 2031 (2001)
22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. pp. 179–

190 (1989)
23. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CE-

SAR. In: Proc. of the 5th International Symposium on Programming. LNCS, vol.
137 (1982)

24. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: IEEE Symposium on Logic in Computer Science (1986)

25. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model check-
ing programs. Autom. Softw. Eng. 10(2), 203–232 (2003), JPF web page:
http://babelfish.arc.nasa.gov/trac/jpf

26. SOAP version 1.2 part 1: Messaging framework (second edition). W3C Recommen-
dation (2007), http://www.w3.org/TR/soap12-part1/

27. Uniform Resource Identifier (URI): Generic Syntax. W3C RFC 3986 (2005)

