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Abstract
Memory errors such as buffer overruns are notorious security vulnerabili-
ties. There has been considerable interest in having a compiler ensure the
safety of compiled code either through static verification or through in-
strumented runtime checks. While certifying compilation has shown much
promise, it has not been practical, leaving code instrumentation as the next
best strategy for compilation. We term such compilers Memory Error Sani-
tization Compilers (MESCs). MESCs are available as part of GCC, LLVM
and MSVC suites. Due to practical limitations, MESCs typically apply
instrumentation even-handedly and indiscriminately to every memory ac-
cess, and are consequently prohibitively expensive and practical to only
small code bases. This work proposes a methodology that applies state-of-
the-art static analysis techniques to eliminate unnecessary runtime checks,
resulting in more efficient and scalable defenses. The methodology was
implemented on LLVMs Safecode, Integer Overflow, and Address Sani-
tizer passes, using static analysis of Frama-C and Codesurfer. The bench-
marks demonstrate an improvement in runtime performance that makes
incorporation of runtime checks a viable option for defenses.

1. Introduction
Security vulnerabilities resulting from unsafe memory accesses such as
buffer overruns are notorious. Starting from the highly publicized Morris
worm in the 80s, exploits resulting from memory safety errors have re-
ceived considerable attention. Prevention of these errors has been a topic
of intense research over the past two decades.

While manual methods are currently the most widely adopted ap-
proach, they are either error prone or tedious for large applications as well
as legacy code. We thus focus here on automated approaches.

An attractive automated method for vulnerability protection is to use
a compiler for ensuring safety of the code it produces. Code that passes
through a compiler can be checked or retrofitted with defenses, and the
approach can be transparently applied to large codebases.

There are two broad ways by which a compiler can ensure safety
of the code it produces. The first approach is through verification of
the compiled code. This is the approach followed by several verification
efforts [7, 16, 17, 31]. While the approach holds promise, current state-of-
the-art technologies do not enable this approach to be scalable.

A second approach is to have the compiler instrument the compiled
code with runtime checks that ensure the safety of memory related ac-
cesses. We term such compilers Memory Error Sanitization Compilers
(MESCs). MESCs are available as part of GCC, LLVM and MSVC
suites. Since every piece of code that is compiled goes through a com-
piler toolchain, it is possible for this approach to be transparently applied
to codebases that use the compiler toolchain. Compared to stand-alone

tools [23] for retrofitting code, a compiler-based retrofitting strategy has a
better chance of critical mass adoption.

A main challenge with code that is retrofitted for memory safety is
performance. While there has been considerable research in the recent
past to address this issue, much of this work has not become part of
MESCs. One reason is that compiler writers hesitate to include analysis
algorithms of high complexity in the compiler toolchain for reasons of
(static) compile-time performance. The GCC wiki 1 has as rule 1: “Do not
add algorithms with quadratic or worse behavior, ever.”

Due to the lack of high-precision algorithms for performing a precise
instrumentation, MESCs typically apply instrumentation indiscriminately
to every memory access. (Section 2 has a brief analysis of the performance
of LLVM’s instrumentation). Hence, they do not scale, resulting in pro-
hibitive overhead.

Our work proposes a methodology to curb the performance costs of
software compiled with a MESC. The main idea is to facilitate the use
of state-of-the-art static analysis techniques by incorporating their results
inside the compiler to eliminate unnecessary runtime checks, making this
class of defenses more efficient and scalable. The main benefits of our
approach are:

• No compiler modification for analysis Our approach utilizes the results
of state-of-art analysis algorithms inside the compiler, without changing
the compiler analysis procedures. (Our approach does require modifica-
tions to the retrofitting module of the compiler in order to make use of
these results.)

• Generality Our approach is general enough to include the results of any
static analysis tool. In our implementation, we have utilized the results
of Frama-C and CodeSurfer.

• Performance Our approach has been tested with a variety of bench-
marks, including small and large applications. These benchmarks demon-
strate improvements in runtime performance that make incorporation of
runtime checks a viable option for defenses.

This paper is organized as follows: Section 2 motivates the work, de-
scribing the need for runtime checks and the shortcomings of current im-
plementations. Section 3 provides the high-level architecture of the design.
Section 4 details the implementation. Section 5 presents data from our
experiments using the method. Section 6 describes previously published
work that address these issues. Conclusions are given in section 7.

2. Background and Problem Statement
Memory safety related errors constitute some of the most critical security
bugs in programs. There is a long history of security incidents whose root-

1 https://gcc.gnu.org/wiki/Speedup areas



cause is due to errors such as out-of-bounds access, integer overflow, and
use-after-free scenarios.

There is also a long history of security defenses for these types of
attacks, a focus of intense research over two decades. Our focus here is
on directly addressing vulnerabilities; mitigation defenses are discussed in
section 6.

Despite the intense level of focus, software vulnerabilities abound. One
reason for this is the lack of critical mass adoption. Many defense tech-
niques developed have been through stand-alone implementations or ad-
hoc extensions of existing compilers. For a defense technique to become
mainstream, critical mass adoption in a developer-transparent toolchain
framework is essential. A second, related reason is performance concerns.
The overhead of runtime checking that is required to prevent memory
safety errors has been high (overheads from 2x to 80x).

There has been considerable progress made with respect to perfor-
mance and we can hope that this trend will lead to efficient defenses. How-
ever, given that a wide range of software is developed and distributed, in
order to achieve critical mass, they need to be hardened through developer-
transparent toolchains. Compiler writers have recognized this need, and
have integrated memory error sanitization techniques in the compilation
cycle. We call these compilers Memory Error Sanitization Compilers
(MESCs). MESCs are an attractive solution to the critical mass adop-
tion problem. MESCs have been developed for gcc (as of gcc 4.8), LLVM
(from Clang 3.1) and Microsoft Visual Studio platforms. While these san-
itization passes are rarely incorporated in production software due to per-
formance concerns, their functionality aids in testing, error detection and
error diagnosis.

2.1 Analysis of runtime overheads
In preliminary work we assessed candidate benchmarks for testing the
efficacy and usability of three sanitization protocols, measuring the per-
formance overhead imposed on the applications by the inserted runtime
checks [4]. The three sanitization protocols, Safecode, Address, and Inte-
ger Overflow, are discussed in detail below. Similar conditions obtained as
for the measurement runs reported in the Evaluation section. Our runtime
data is shown in Table 1.

We find large overhead for most of the benchmarks, with some exhibit-
ing a slowdown exceeding a factor of 50; a few showed modest perfor-
mance cost, as low as 22%. These costs present a challenge to the security
community, for runtime enhancements to become acceptable in production
software. The current work addresses this situation by designing strategies
for targeted restriction of runtime checks insertion.

Benchmark Safecode IOC Address

oggenc 0.28 0.21 3.48
LasPack 30.30 0.97 4.29
gzip 15.70 0.22 0.94
debie1 46.12 0.56 4.46
appbt 97.98 4.85 2.60
bzip2 70.15 0.39 3.87
susan 18.23 2.35
quicklz 19.04 0.59 1.80
cpumaxmp64 4.00 0.09 0.07
linpack 28.00 0.34 3.44
NEC-Matrix 55.67 1.88 4.63

Table 1: Benchmark Overhead due to Runtime Checks, for Three Saniti-
zation Protocols

2.2 Optimizing runtime checks
Current implementations of runtime checks in MESC deal only with re-
ducing the overhead of the runtime infrastructure through a variety of im-
plementation strategies that involve the runtime data-structures (e.g., fat
pointers [12, 18], shadow memory [25], pool allocation [13]).

One way of reducing overheads due to runtime checks is to make use
of precise static analysis. The results from such analysis could be used to-
wards removing those checks that can be statically determined to be safe.

Figure 1: Steps on the Pathway from the Analysis Tools to the Safety
Instrumentation

Indeed, every MESC employs several static analysis algorithms to per-
form optimizations, but production compilers typically restrict these algo-
rithms to the most efficient ones, not necessarily the most precise. Prac-
tical (compile-time) performance requirements on a production compiler
do not facilitate using advanced analysis techniques (for instance, using
quadratic or even super-linear algorithms). This limits the precision of the
analysis results and, in turn, the optimizations which can be performed.
Secondly, it requires non-trivial effort to build compiler passes passes that
incorporate algorithms yielding more precise results. As a result of these
two factors, end users of MESCs do not benefit from the recent advances
in static analysis algorithms that could improve the runtime overheads due
to instrumentation.

The goal of this paper is advance the performance of MESC compiled
code by leveraging external static analysis tools. We aim to develop an
approach that has the same safety guarantees of a conventional MESC
without the runtime overheads, specifically retaining memory safety while
removing unnecessary checks. To guarantee the safety, if proof cannot be
obtained, we leave the checks untouched.

We highlight that while using external static analysis tools will add
their running times as overhead to the compilation, very often, for safety
critical programs (e.g., web servers), such cost may be justified by the
better performance and security at runtime.

3. Design
To leverage the analysis power of current tools for MESCs, we design a
methodology that connects the analysis tools with the safety instrumen-
tation frameworks. This path is responsible for transporting analysis in-
formation related to runtime checks from external analysis tools, through
a compiler’s front and backend, to the code that implements the safety
instrumentation (Figure 1). We highlight that while some information-
propagation infrastructure exists inside compilers to transport information
from the frontend to the backend (e.g., # pragma directives or profiling
metadata), this is highly specialized and can be used only for very spe-
cific optimization purposes. Our framework, in contrast, provides a general
way to bring any analysis information generated by external analyzers, to
any safety instrumentation implementation, where such information can
be used.

In a larger context, not explored in this paper, our framework may be
used to open a path among external analyzers and other backend optimiza-
tions, further enhancing them by providing high quality analysis informa-
tion, which is not available to a production compiler.
Requirements and issues. Our design is required to preserve the safety
of the checks inserted by the MESCs. This must be guaranteed by the
established soundness of the external tool analysis, restricting the choice
of these tools. Given sound analysis, we must then bridge the semantic
gap between tool output, and the assertion descriptions to be injected into
the code: each tool has its own representation for analysis results, and
these must be translated to a form usable by the compiler. Finally, the
representation within the compiler of these analyses must not interfere with
the ordinary work of the compiler.

Overview.A high level view of the main components and steps along
this path is depicted in Figure 1. In the first step, C programs are given
as input to external analyzers, which produce facts and information use-
ful for removing unnecessary runtime checks; this information is encoded
as assertions. For instance, if a runtime check’s purpose is to catch out



1 int* p = (int*) malloc (100* sizeof(int));
2 int i=0;
3 while(i <100) {
4 p[i] = i*i;
5 i++;
6 }
7 // ....
8 free(p);
9 // ....

10 for(i=0;i <100;i++)
11 p[i] = 0;

Listing 1: The running example in C source

1 if(shadow(i)!=0) throw_UAF_Exception ();
2 while(i <100) {
3 if(i< 0 || i >= getSize(p))
4 throw_OOB_Exception ();
5 if(shadow(p[i]) !=0) throw_UAF_Exception ();
6 t = multiply.with.overflow(i, i);
7 if(t.overflow == true)
8 throw_IOF_Exception ();
9 p[i] = t;

10 i++;
11 }

Listing 2: Program from the running example with runtime checks

of bounds access, the information in the assertions is about object bound-
aries and variable ranges. In the next step, the assertions are given as in-
put to the compiler’s frontend and are transported through the parsing and
IR code generation phases to the backend. In the backend, the informa-
tion contained in the assertions is associated with the intermediate code
and transported through the chain of optimizations to the instrumentation
framework, where it is finally used to remove checks.

After introducing a running example, in the rest of this section, we
provide details about each of these steps.
Running Example. To illustrate our approach, we provide a simple run-
ning example in Listing 1 containing several operations that are instru-
mented with runtime checks. In reality, these runtime checks are inserted
in the intermediate code generated by the front end, however, we show
them in the source code for clarity. In Line 4, the variable i is used as an
index into the array starting at p, where such access might cause an out of
bounds access for values of i greater than 100. In the same line, i is also
used as the operands of a multiplication, whose result may cause integer
overflow for large values of i. Finally, in Line 8, the variable p is deallo-
cated, and then used in Line 11. To prevent memory safety errors, MESCs
insert runtime checks into the program. Listing 2 illustrates such checks,
related to the while loop from Listing 1.

Lines 1 and 5 of listing 2 contain checks inserted by Address Sanitizer.
Address Sanitizer creates for every memory region, such as the memory
region where p[i] is allocated, a shadow memory location, which contains
the status of the program’s region. When the program’s memory region
is not valid anymore (e.g., because of free), Address Sanitizer sets the
shadow region to a non-zero value. In our example, the check in Line 5
computes the shadow memory location associated with the variable p[i],
which is used inside the condition of the while loop, and checks that it is
still allocated.

Lines 3-4 contain another runtime check, inserted by Safecode. The
check verifies that the access is within the bounds of the array pointed by
p and throws an exception if this is not true. The function getSize ex-
emplifies the Safecode operations to retrieve the runtime size of the object
pointed to by p. Finally, Lines 6-8 contain the code transformed by the
Integer Overflow Check instrumentation. Here, the original multiplication
is substituted with a safe multiplication function, which returns a structure
containing the result and a flag indicating if overflow occurred.

Evidently, the runtime checks inserted in Listing 2 by the safety instru-
mentations are not necessary. In fact, the value of i is between 0 and 100
for every possible run, therefore out of bounds checks and integer overflow
checks are not necessary. In addition, the use of p[i] inside the while
loop occurs before the free, therefore a check for detecting use after free
is not necessary for that use.

We highlight at this point that existing compiler optimizations, such
as O3, are, in general, not able to determine if the runtime checks are
unnecessary. This is due to several reasons. First, many runtime checks
are implemented as calls to functions that are not available at compile time
but are linked with the code in a later phase. In addition, due to efficiency
constraints, the algorithms used by these optimizers to analyze the code do
not perform an analysis as deep as other static analysis tools who do not
have those constraints. Additional optimizations performed by MESCs,
are in general concerned with other aspects of the implementation. For
instance, Safecode uses several link time optimizations to remove checks
on bounds checks to single-element objects (e.g., scalars, or single element
arrays), or uses caching of previously accessed arrays in the look-ups, so
that a bounds check that has already been performed is removed.

Our framework brings such information from static analysis tools to
MESCs, improving the performance of target programs by reducing un-
necessary runtime checks. In the following subsections, we present differ-
ent steps in this path: carrying assertions from static analysis tools to the
compiler backend, and leveraging the compiler to use the provided asser-
tions to produce optimized code.

3.1 Deep Analysis
The goal of this step is to use external analyzers to produce informa-
tion about a program, which can be used to remove unnecessary runtime
checks. To remove runtime checks dedicated to preventing out of bounds
memory accesses and use after free bugs, we use as external analyzers two
tools, Frama-C and Codesurfer [11][3][26][2]. These tools exhibit several
advantages with respect to LLVM’s analysis capabilities. They can per-
form whole program analysis, spanning multiple compilation units and
procedures. Furthermore, they are not as constrained as LLVM with re-
spect to performance, and can perform a deeper and more complex analy-
sis.
Frama-C. This is an analysis framework for C programs. One of its most
widely used plugins is the value analysis plugin, which derives the value
ranges that variables can assume at runtime using abstract interpretation.
When available, these ranges can determine at compile time if an out of
bounds access is possible. The results of Frama-C’s value analysis are
guaranteed to be sound [11]. For instance, in Listing 1, Frama-C is able
to determine that the range of the index i is between 0 and 100 for every
possible program execution. Therefore, the access to the array in Line 4
will never be out of bounds and the out of bounds check for that operation
can be removed. Furthermore, using the same bounds information derived
by Frama-C, we can infer that the result of the multiplication in Line 4
can never overflow and therefore an integer overflow check related to that
operation can be removed.
CodeSurfer. This framework provides different types of facilities for an-
alyzing full programs. After the code is parsed, several program represen-
tations are built, including full program abstract syntax trees, control flow
graphs, and system dependency graphs. The latter represent the data and
control dependencies among program points. If the value of a variable at a
point A depends on operations carried out at a point B, there is a data de-
pendency edge from B to A. If execution of A depends on some condition
at a point C, then there is a control dependency edge from C to A.

CodeSurfer provides several advanced analysis and query capabilities,
as well as an API to build plugins for customized queries. Backward
program slicing with respect to a program point A retrieves all the program
points that can influence the values of the variables used in A. Forward
program slicing with respect to a program point A retrieves all the program
points that can be influenced by A. CodeSurfer also provides pointer and
alias analysis capabilities and is able to discover pointer aliases and to
include the effects of aliasing in the analysis.

Data and control dependencies provide valuable information about the
possible order of execution of program points. A data dependency edge



between points A and B means there is at least one path in the control
flow graph where A is executed before B. This precedence information es-
tablishes a relative order of execution between program points containing
free statements and statements where pointers are used, which is used to
determine if the use of a variable appears before or after a free statement.

For instance, in Listing 1, executing a backward slice query from the
program point at Line 8, returns the program points for Lines 1 and 4,
which contain the variable p used in Line 8. A forward slice query instead
returns the program point 11, which is affected by the execution of Line 8.
Once these dependencies are discovered, they can be used to assert that any
use of a pointer that does not have a dependency from a free statement is
safe; therefore the runtime check associated with that use can be removed.

To use these programs as external analyzers in our framework, there are
several issues that need to be resolved.
Information granularity. One of the main problems in using external an-
alyzers for removing checks is that of the granularity between the opera-
tions and information produced by these analyzers, and the operations of
the safety instrumentation frameworks. In fact, the latter usually operate at
the LLVM IR level, while the former at the source code level. For instance,
Safecode instruments with runtime checks the LLVM IR code, while the
Frama-C analyzer performs abstract interpretation on the C source code
and computes the variables’ value ranges.

To deal with this problem, we fix the granularity to the source variables’
uses and definitions, and thus retrieve from the analyzers information about
variable uses and definitions. The advantage of this choice is that these uses
are readily available to the instrumentation framework of the compiler.
Analysis soundness. External static analyzers, in general, employ several
approximations leading to false positives and negatives. To ensure that
our framework does not violate the safety provided by the instrumentation
frameworks, only sound analysis results are used to remove checks. If an
analyzer cannot infer the information needed to remove a check with 100%
certainty, we do not remove that check. The practical effect of this choice
is that a significant percentage of runtime checks may not be removed.

3.2 Annnotation Capture.
Once the information about variable uses and definitions is produced by
the external analyzers, it needs to be propagated to the backend. There are
several challenges to address in this step.
Language Heterogeneity. The information derived from external analy-
sis must track the compiler mapping from source code language to the
intermediate representation. Due to the SSA nature of the LLVM IR lan-
guage, one source code variable can be mapped to multiple IR variables,
and a source statement may be split into different statements. We solve
this problem by using debug information, which contains a mapping be-
tween source and LLVM variables, as well as by injecting the assertions as
special constant strings in the program (see Listing 4).
Analysis Format. Another issue in this step is integration of the analy-
sis results from different external analyzers in a common representation
format, which can be used for different instrumentations. In particular, we
design two types of assertions, one expressing the range of every variable
use, and another expressing the safety of that use with respect to free
statements. We provide more details about these assertions in Section 4.2.

3.3 Transport to the Backend
Once the assertions are available to the backend, they are propagated
through the chain of optimizations to the instrumentation passes. The main
challenge in this step is the fact that the optimizations along the chain
may change the code by transforming and removing instructions. For
example, consider LLVM’s mem2reg optimization, which minimizes the
traffic between memory and registers by removing unnecessary load and
store statements, by inserting phi nodes into the code, and so on. This
code transformation modifies the mappings between source and LLVM
variables discovered in the previous step, thus invalidating the assertions.

A general solution to this problem is provided in a prior work [21]. In
general, to ensure mapping correctness, witnesses to the transformations
performed by the optimization passes can be inserted for each pass with
very little implementation overhead. These witnesses are responsible for
relating the target and the source program after every optimization and can

be used to update the assertions correspondingly. However, in this paper,
we do not use such solution, since the code is not transformed before
it reaches the instrumentation passes, and thus the assertions are always
correct.

Two of the more problematic transformations for our approach are
the introduction of temporary variables in LLVM to hold intermediate
results or the deletion of LLVM instructions. To deal with this problem,
we try to associate as many instructions as possible with the corresponding
assertions, so that even when instructions are deleted we can recover
assertion information from the remaining instructions. For instance, in
code Listing 5, all the instructions are associated with a copy of the range
of variable i. In addition, we compute new assertions by using existing
ones. For instance, in Listing 5, if the range of the variable %i is known,
the range of the multiplication result in Line 3 is computed from that of i.
We provide more details about this task in Section 4.3.

3.4 Check Elimination
When the assertions reach the instrumentation passes, the information they
contain determines whether a check is needed. In particular, to remove
Safecode out of bounds checks, we use two types of information: 1)
the range information associated with the variables and discovered by
Frama-C, and 2) the size of arrays (when known at compile time). If such
information is known, then the check is as simple as determining if the
values contained in range of the variable fall within the array size. When
this check is positive, we can avoid the insertion of the runtime check.

For Address Sanitizer, a similar elimination procedure is used. In this
case, the information about the safety of a pointer use is already available
and no further computations need to be done. If a memory access is
associated with an assertion that claims that it is safe, we skip the runtime
check insertion. For instance, Listing 3 shows the code resulting from
removing the unnecessary checks. As can be seen, the only remaining
check is that in Lines 9-10, since there is a dependency between Line 6,
where the variable p is freed and Line 11, where it is used.

1 while(i<100) {
2 p[i] = i*i;
3 i++;
4 }
5 // ...
6 free(p);
7 // ....
8 for(i=0;i <100;i++){
9 if(shadow(p[i]) !=0)

10 throw_UAF_Exception ();
11 p[i] = 0; // use after free
12 }

Listing 3: Optimized program after leveraging assertions

4. Implementation
Our implementation is built on top of LLVM 3.2 (for Safecode) and LLVM
3.4 (for Address Sanitizer). LLVM is a popular compiler backend, which
is used to perform a wide range of optimizations and final code genera-
tion. The optimizations in LLVM are structured as a sequence of passes
that operate on an intermediate representation of the code called LLVM
bytecode (LLVM IR), which is generated by the compiler’s frontend. The
safety instrumentations are built as additional passes on top of the other
passes in LLVM. They operate by intercepting LLVM load and store
statements (Safecode and Address Sanitizer), which load and store values
from memory locations to registers, and by inserting runtime checks be-
fore those statements. Our implementation is composed of a series of tools
that extend this architecture. A high level overview of our architecture is
shown in Figure 2.

In the first step of the implementation architecture, the program files
are given as input to Frama-C and Codesurfer. These two tools have been
extended by plugins that we wrote to perform the analysis and to generate
analysis results useful for removing unnecessary checks. The results are
output as a list of assertions associated with a line number and a file name.
Next, a CIL rewriter uses this list of assertions to inject them in the source
code at the specified line number. The output is an annotated file, as shown
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Figure 2: Implementation Architecture.

in Listing 4 where each of the lines 2-3, 6-8, 10, and 17, contains an
assertion about the use of the variables in the first line of the original code
following those assertions.

Next, the annotated file is passed as input to the Clang frontend, which
translates it to LLVM IR, without performing any code optimizations. The
resulting LLVM IR is next passed in input to an LLVM pass that we wrote,
the Assertion Mapper pass, which is responsible for mapping the source
variables to the LLVM variables and associating the source assertions with
the LLVM instructions. The output of this step is an annotated LLVM IR
file, where the annotations contain the assertions about the value ranges
and the uses before the free statements. Finally, the LLVM bytecode is
given as input to the safety instrumentation passes, Safecode and ASAN,
which have been modified to read the annotations and use them to avoid
the insertion of unnecessary runtime checks.

We next provide details about each of these steps2.

4.1 Analyzers Implementation
Frama-C and Frama-C plugin. The value-range information of variables
is computed by the Frama-C Value Analysis plugin. However, the com-
puted ranges are internal to the Frama-C framework and cannot be ex-
plicitly extracted. To perform such extraction, we implemented a Frama-C
plugin using the APIs provided by this tool. This plugin visits every in-
struction in the AST tree inside Frama-C, extracts all the variables at each
node, and queries the value analysis plugin for each variable to get the cor-
responding value ranges. The results are then stored in a file to be used
later by the CIL-based rewriter.
CodeSurfer and CodeSurfer plugin. To ultimately remove the checks in-
serted by Address Sanitizer we built a plugin for CodeSurfer that executes
the following two tasks:

1. Using the data dependency graph, we issue backward and forward slic-
ing queries to find the order of execution among statements containing a
call to a free and statements that use the pointer being freed. If there ex-
ists a dependency edge from a statement free(p) to a statement where
pointer p (or any of its aliases) is used, then there exists a potential use
after free vulnerability. This implies that the Address Sanitizer’s checks
inserted at those uses must not be removed. If, on the other hand, there
exists a dependency between a statement where a pointer p (or any of its
aliases) is used and a statement free(p), then the statement is executed
before the free(p) along some path. Finally, if dependencies exist in
both directions, then the two statements can be executed in any order.

2. Find the program points that contain uses that are not related to a
free(p) statement. These include all those uses for which runtime
checks are inserted by Address Sanitizer, but which are not usually freed
in a program (e.g., non pointer variable uses).

The plugin uses Codesurfer’s APIs to execute both tasks and outputs
a file of annotations about the safety of the program points, together with
line numbers. The output of the plugin is an assertion file associated with

2 Our implementation source code, including the analyzer plugins, the rewriter, and
LLVM passes, is available on http://goo.gl/VsM4fd. The full framework will
be avaialble by the time of publication or upon request.

1 i n t ∗ p = ( i n t ∗ ) m a l loc (100∗ s i z e o f ( i n t ) ) ;
2 char∗ a s s e r t 1 = ‘ ‘ @ ass e r t i ==0 ’ ’ ;
3 char∗ a s s e r t 2 = ‘ ‘ @ asse r t s a f e ( i ) = t r u e ’ ’ ;
4 i n t i =0 ;
5 whi le ( i <100) {
6 char∗ a s s e r t 3 = ‘ ‘ @ ass e r t i >=0 && i <100 ’ ’ ;
7 char∗ a s s e r t 4 = ‘ ‘ @ ass e r t s a f e ( p ) = t r u e ’ ’ ;
8 char∗ a s s e r t 5 = ‘ ‘ @ ass e r t s a f e ( i ) = t r u e ’ ’ ;
9 p [ i ] = i ∗ i ;

10 char∗ a s s e r t 6 = ‘ ‘ @ ass e r t i >=0 && i <100 ’ ’ ;
11 i ++;
12 }
13 . . . .
14 f r e e ( p ) ;
15 . . . .
16 f o r ( i =0 ; i <100; i ++){
17 char∗ a s s e r t 7 = ‘ ‘ @ ass e r t s a f e ( p )= f a l s e ’ ’ ;
18 p [ i ] = 0 ; / / u se a f t e r f r e e
19 }
Listing 4: Program from the running example with injected assertions

every source code file. Each assertion contains the safety information of
the corresponding variable use, together with the line number where that
use occurs.

4.2 From the Analyzers to the Frontend
To provide a common framework for both the out of bounds and use
after free optimizations, we specify an assertion language to express
value-range and memory safety information. This specification is designed
to represent value-range and memory safety assertions about variables in
each program location. The syntax of our specification is described in
Table 2. The basis syntax includes file name, line of code, and assertions.
We need both file name and line of code to instrument the assertions in
the right place. There are two type of assertions: (1) value-range assertions
represents the value range and (2) safety memory of a specific variable.

<assertion spec> ::= filename:lineofcode#assertions
<assertions> ::= (@assert <assertion>;)+
<assertion> ::= <value assertion>

| <safety assertion>
<value assertion> ::= <expression> (’&&’<expression>)∗

| <expression> (’||’<expression>)*
<expression> ::= <variable> op <value>

op ::= ′ ==′ | ′ >=′ | ′ <=′

<safety assertion> ::= safe(<variable>) = boolean
<variable> ::= <string literal>
<filename> ::= <string literal>

<lineofcode> ::= integer
<value> ::= integer | real

Table 2: Syntax of the common assertion language

As our framework is designed to use different analysis tools, we need
a consistent way to introduce assertions into code. To this end, we use a
transformation in which the assertions are introduced in the program in the
form of string variables, which are specially named to avoid interference
with the existing program variables. These variables are injected before
the corresponding instructions in the source, and are propagated to the
compiler backend through the standard code generation phase of the Clang
frontend.

This transformation is based on CIL (C Intermediate Language) [22].
Our CIL plugin takes as input a C source file and the corresponding set of
assertion specifications, and visits all instructions in that C source file and
introduces the assertions. Listing 4 demonstrates the output of our trans-
formation tool that inject assertions in string variables in corresponding
source location.



1 %1 = l o a d %i
2 %2 = l o a d %i
3 %3 = mul %1, %2
4 %4 = l o a d %i
5 %5 = l o a d %p
6 %6 = GEP(%5 , %4)
7 s t o r e %3, %6

Listing 5: LLVM IR code compiled from the running example

4.3 Backend Implementation
Since the assertions are inserted in the source code file as assignments to
string variables, these assignments are translated by the Clang frontend
together with the rest of the program. To attach the assertions to the
LLVM IR code, so that they are available to the instrumentation passes, we
designed an Assertion Mapper LLVM pass. This pass is run immediately
after the code generation phase of Clang, before any other optimization
passes. In fact, since the assertion assignments are semantically orthogonal
to the rest of the program and not used anywhere else, they may be
removed by the optimization passes as dead code. The Assertion Mapper
pass works according to the steps described below.
Source-IR mapping. The Assertion Mapper’s first job is the creation of a
mapping between all source code variables and the corresponding LLVM
allocated memory locations. This mapping is necessary for associating as-
sertions with the correct instructions in the LLVM IR code. This mapping
is created by using the debug information contained in the code, which pro-
vides the name of the source variable for every LLVM allocated memory
location.

For instance, in Listing 5, we show the portion of the LLVM IR code
corresponding to the assignment p[i] = i*i; in the source code. In
the Listing, identifiers start with a % sign. In Lines 1-2, there are two
copies of the variable %i loaded into two registers %1 and %2 before the
multiplication in Line 3. Next, the value of the pointer p is loaded into a
register %5, and the pointer to the i-th element starting from p is obtained
through the GetElementPointer (GEP) instruction. Finally, the result of
the multiplication is stored into that element.

As can be noted from the example, there are several copies of the value
of the variable i, each one having a different name. Therefore, an assertion
about i (e.g., an assertion that the range of i is between 0 and 100) is valid
for all those copies and needs to be associated with all of them. To solve
this issue, we use the debug information, which contains a mapping among
C source variables and LLVM IR memory locations.
Metadata attachment. Next, for every load, store and gep instruction,
the corresponding assertions are extracted from the code, with the help
of the previously created mapping, and attached to those instructions as
LLVM metadata. An example of the output of this step is shown in Listing
6. For every LLVM instruction, the text after the ! shows the safecode-
related metadata. These contain the range information corresponding to
the value contained in the LLVM identifier. For instance, the metadata
associated to the variable %4 in line 4 provides the range of the array index,
and the metadata associated to line 5 provides the size of the array. The
GEP instruction returns a pointer to the element indexed by the variable %4
inside the array starting at the memory address pointed by %5.

The metadata related to the Address Sanitizer’s check are similarly
attached to load and store statements. These metadata simply contain
information about the safety of the instruction.
Metadata Propagation An additional task of the Assertion Mapper is to
propagate metadata to the temporary variables that appear in the LLVM IR.
In particular, given an instruction, Assertion Mapper checks if the operands
of the instruction contain any metadata, and if possible, merges those meta-
data using the same semantics of the instruction and assigns the new meta-
data to the result of the operation. For instance, in Listing 6, the assertions
about the variables %1 and %2, are used to derive the assertion attached to
the multiplication result in Line 3. Currently, Assertion Mapper supports
this propagation for LLVM’s arithmetic and sign extension operations.

1 %1 = l o a d %i ! ‘ ‘%1 >= 0 && %1 < 100 ’ ’
2 %2 = l o a d %i ! ‘ ‘%2 >= 0 && %2 < 100 ’ ’
3 %3 = mul %1, %2 ! ‘ ‘%3 >= 0 && %3 < 10000 ’ ’
4 %4 = l o a d %i ! ‘ ‘%4 >= 0 && %4 < 100 ’ ’
5 %5 = l o a d %p ! ‘ ‘ s i z e (%5) = 100 ’ ’
6 %6 = GEP(%5 , %4)
7 s t o r e %3, %6

Listing 6: LLVM IR Annotated with Assertion Metadata

4.4 Check Removal Implementation
To remove the insertion of run time checks by Safecode and Address San-
itizer, we modify the code of the corresponding LLVM passes. Our mod-
ification includes additional code that intercepts the same load, store,
and gep instructions intercepted by these passes and reads the metadata
associated with those instructions.
Safecode checks removal. Safecode uses several LLVM passes for adding
the out of bounds run time checks. These passes are responsible for
tracking the allocated regions, storing their sizes, and checking that every
access to those regions does not fall outside of the bounds. In particular, for
every array access, the run time check inserted by Safecode ensures that
the pointer to the referenced array element does not fall out of the array
bounds.

In our implementation, we modify each of these passes. In particular,
our implementation starts by reading the range associated with an array
index from the metadata and retrieves the size of the array using the LLVM
API. For instance, in Listing 6, the metadata associated with the arguments
(%4, %5) of the LLVM GEP instruction, contain the size of the array and
the range of the index. For fixed sized arrays that are allocated inside the
same function as the array access (either on the stack or on the heap),
the size information is readily available. For arrays that are passed as
parameters in input to a function, the size determination is more complex.
In fact, the array may have been allocated in any of the callers of that
function or any of its predecessors in the function call graph, and it may
have been passed in as a parameter along the sequence of function calls.
That is, at run time the array may have any number of sizes depending on
the caller. To retrieve the array size, we travel backwards one step in the
function call graph and retrieve the possible array sizes. If the sizes can be
retrieved this way, we use the minimum size, as the safest option. When
the size of the array cannot be determined in this way, we choose the safest
course of action and do not remove the run time check.
Integer overflow check removal. The implementation of the integer
overflow checks removal is very similar to that of Safecode. In partic-
ular, our implementation removes the checks that are inserted by the
-fsanitize=signed-integer-overflow and -fsanitize=
unsigned-integer-overflow options of Clang. These checks are in-
serted by the frontend, which, based on the signedness of the operands,
replaces several arithmetic operations with equivalent LLVM intrinsics
during the code generation. For instance, additions of signed integers are
replaced with llvm.sadd.with.overflow. In addition, the pass inserts
a check over the overflow flag set by the LLVM intrinsic. In our imple-
mentation, we intercept every such intrinsic accompanied by a check of its
overflow flag, and, if the variable ranges of the operands are available, we
perform the same arithmetic operation using the value ranges as operands.
Next, we compare the resulting value range with the maximum integer
of the framework and remove the check if all the values of the range fall
below that maximum integer.
Use after free check removal. The implementation of this check is fairly
simple. In the same way as for the other instrumentations, we intercept
every load and store instruction that Address Sanitizer intercepts. Next,
we read the metadata information that tells us if the instruction is safe. In
this case, we skip the check insertion.



Bench-
mark

Description Line
Count

Annotation
Count

% Lines
Annotated

oggenc Audio Compression
Utility

48347 880 1.82%

Laspack Solve large sparse
systems of equations

7656 100 1.31%

gzip File compression utility 5352 1451 27.11%
de-
bie1

Analysis of
Micro-Meteoroid
Impacts

5243 1279 24.39%

bzip2 Block-Sorting File
Compressor

5115 563 11.01%

appbt Differential Equation
Solver

3047 10 0.33%

susan Image processing 1463 109 7.45%
quicklz Fast File Compression

Utility
870 64 7.36%

cpumax Simple Add Instructions 585 15 2.56%
lin-
pack

Measure system floating
point computing power

579 166 28.67%

NEC-
Matrix

Matrix operation with a
fixed size

113 70 61.95%

Table 3: Benchmark Source Size and Annotation Coverage

5. Evaluation
5.1 Setup
The results of our approach are shown below. Our framework incorporates
out-of-bounds runtime checks inserted by LLVM passes for safecode,
address sanitizer, and signed and unsigned integer overflow sanitizer. The
evaluation was done by instrumenting each benchmark program to track
and output user time for the course of its execution. Each program was
run at least ten times and the times were averaged. Our runtime tests
were performed on a GNU-Linux machine running the LINUX Ubuntu
distribution 12.04, on an Intel Xeon CPU at 2.40GHz.

5.2 Benchmarks
We selected open source test applications that cover a range of sizes and
operational characteristics. Some applications were CPU-intensive, like
the matrix manipulation and equation solver programs, and some were I/O
intensive, like the media conversion and file compression utilities. Half the
test programs had small line counts, with less than 2000 non-commentary
source lines (CLOC); half were larger applications with thousands of non-
commentary source lines. To illustrate the optimizations of our framework,
we selected benchmarks with a wide range of non-commentary source
lines, also looking for many (hundreds) of array references.

Table 3 illustrates the source code line counts and the percentage of
source lines that were annotated by Frama-C, with variable value range
information. The chart is ordered from largest to smallest total CLOC; the
display is divided between two groups of large and small line counts, in
this table and in the next several figures.

There is a weak anti-correlation between line counts and annotation
coverage. Typically, no more than 25% of the source lines were anno-
tated; for some applications the percentage is very low, 1-2%. The smallest
benchmark, NEC-matrix, achieved the highest annotation rate, at 62%. In
the discussion to follow we find it useful to divide the benchmarks into
large and small groups, with a cutoff at around 2000 CLOC. Generally
there are higher percentages of annotated lines in the smaller benchmarks,
with some exceptions. The two largest benchmarks have among the low-
est annotation rates, due to large portions of the programs depending on
runtime values not available to Frama-C. In such cases the abstract inter-
pretation finds relatively few instances of sound results.

Figure 3: Safecode Benchmarks Performance

Figure 4: Integer Overflow Check Benchmark Performance

5.3 Annotation Analysis
The next three figures illustrate strategically removing runtime checks that
our analysis proved were safe to remove, thereby improving benchmark
performance. Each chart shows benchmarks ordered from largest to small-
est. Two metrics are given in the charts: the percentage of runtime checks



that were removed by our protocol, and the percentage of the performance
overhead due to runtime checks that was recovered by the framework:
%Overhead Recovered = 1 − Some Checks Removed − Original

All Checks Present − Original
Safecode. Figure 3 shows results following removal of safecode checks.
We note that those checks, added by Safecode, are not removed by the
O0 − 3 optimizations. This class of runtime checks had the most severe
effect on performance overhead, as seen above in Table 1. Measuring the
performance benefits of check removal, we see mixed results, ranging
from no recovery of overhead, all the way to 100% recovery. The latter
is associated with the benchmark with the smallest measured overhead, so
its impact on absolute program effort is not as great as it is for programs
with larger overhead penalties.

We attribute results showing no overhead recovery to the removal of
safety checks in regions of code that are seldom executed, such as initial-
ization code. Results with significant overhead recovery are attributed to
checks removal in frequently executed code, particularly program loops.
This effect was manually verified in some smaller benchmarks. There is
not close tracking between the percentage of checks removed and the per-
centage of runtime recovery, since there is wide variation over whether
removed checks are in frequently executed sections of code.
Integer Overflow. In the experiments on integer overflow (Figure 4), the
percentage of checks removed and the performance improvement due to
removal of checks are more substantial than was seen in the safecode
experiments; again, the values are quite variable across all the benchmarks.
Here the improvements in performance roughly correlate with removal of
runtime checks, with some exceptions. We note that these experiments
were conducted using O3, so the improvements are after O3 optimizations.
The LasPack results illustrate how removal of a few percentage points of
checks can recover most of the overhead; this strong benefit would be
difficult to achieve by manual analysis.

For removal of integer overflow checks, not only are the overhead re-
covery measurements quite robust, with 7 of the 11 programs exceeding
40% removal, but overhead levels are much smaller than with safecode.
Therefore these results represent strong measurable gains in secure pro-
gram performance.
Address Sanitization. We also performed measurements on removal of
checks inserted by the sanitize=address compiler pass. These checks
are introduced for trapping use-after-free events; data is shown in Figure
5. As can be noted, the improvements in the run time overhead of Address
Sanitizer range between 15-40%. In the instance of the susan benchmark,
runtime memory safety errors prevented running to completion.

Many of the address sanitization checks that are removed are associated
with non-pointer variables. We note that a significant portion of Address
Sanitizer’s overhead depends also on another instrumentation of the pro-
gram aimed at detecting out of bounds checks, which are not removed in
the current implementation. Again, most benchmarks exhibit substantial
recovery of overhead.

Benchmark Safecode IOC Address

oggenc 0.28 : 0.00 0.21 : 0.21 3.48 : 2.68
LasPack 30.30 : 30.30 0.97 : 0.42 4.29 : 3.57
gzip 15.70 : 14.88 0.22 : 0.21 0.94 : 0.20
debie1 46.12 : 45.61 0.56 : 0.31 4.46 : 1.78
appbt 97.97 : 98.20 4.85 : 0.03 2.60 : 2.17
bzip2 70.15 : 69.52 0.39 : 0.00 3.87 : 2.49
susan 18.23 : 16.46 2.35 : 1.96
quicklz 19.04 : 18.41 0.59 : 0.07 1.80 : 1.30
cpumaxmp64 4.00 : 4.00 0.09 : 0.09 0.07 : 0.05
linpack 28.00 : 0.91 0.34 : 0.21 3.44 : 2.65
NEC-Matrix 55.67 : 35.33 1.88 : 0.21 4.63 : 2.25

Table 4: Net Benchmark Overhead Following Check Elimination

Summary.
Results of our benchmark experiments are encouraging, although vary-

ing widely with the programs and sanitizations being tested. Our best runs
show recovery of more than half the overhead due to runtime security
checks. Net overhead for all the experiments is seen in Table 4, where

Figure 5: Address Check Benchmark Performance

results in each case are presented as the overhead factor with all checks
in place, followed by an arrow, followed by the overhead factor after some
checks were removed by our protocols. This presentation is more revealing
than the charts in Figures 3, 4, and 5, which only illustrate the relative im-
provements due to checks removal. Table 4 gives the absolute overheads
running the optimized programs, compared with the performance of the
original, unsafe code.

6. Related Work
Memory safety is a widely studied problem and there exists a large body of
work that addresses it. The large majority of this work proposes different
schemes that instrument programs to detect and prevent memory errors at
runtime [5, 9, 10, 12, 15, 18, 19, 25, 28, 30]. In these techniques, a runtime
infrastructure is added on top of the programs to create, update, and query
information about every memory access. These approaches deal both with
“spatial memory safety”, which prevents out of bounds memory errors
such as buffer overflows, and “temporal memory safety”, which prevents
other memory errors dependent on order of execution, such as use-after-
free and double-free.

These techniques can incur high overheads. This issue is widely rec-
ognized and several optimization efforts have been carried out. Almost all
of these optimizations, however, deal with the efficiency of the runtime
infrastructure added to the program. Address Sanitizer ([25]), for exam-
ple, uses shadow memory, which computes the location of the status infor-
mation very quickly; other approaches incorporate different efficient data
structures ([6]). A recent approach in the diirection of removing runtime
checks is ASAP, which, given a budget on the maximal desired overhead,
profiles the programs, ranks the runtime checks in order of their execution
counts, and removes the most frequent ones [27]. However, this system
makes no safety guarantees, and it may remove checks which are neces-
sary for safety.

[4, 20] tackle the problem of propagating assertions in a compiler. [20]
develops the theory using refinement relations and [4] provides a simple
concrete instance of this approach. Our work is more comprehensive in
this regard, by developing a detailed system design and implementation,
applying it to several bounds checks and evaluating with large benchmarks.



DangNull instruments the intermediate code to keep track of pointer
aliases at runtime. In addition, the code is also instrumented to nullify all
the aliases of a pointer when that pointer is freed [15].

Other techniques rely on changing the memory allocation layouts,
so that memory safety errors do not occur, or occur with low likeli-
hood [5, 8, 13]. Among these, Pool Allocation is a strategy to detect and
prevent memory safety errors [13]. It relies on a type homogeneous allo-
cation strategy (where variables of the same type are allocated in the same
memory pool) to enable restrictions on the memory regions that are allo-
cated and referenced. However, this strategy works only on a subset of the
C language.

DieHard and Cling use additional memory space to decrease the likeli-
hood of accessing previously allocated memory addresses [5, 8]. However,
they come with a high memory usage overhead.

Additional tools, created in the context of program debugging, can be
used to detect memory errors. Among these, Valgrind’s Memcheck [24]
and Electric Fence [14] also have a very high overhead both in memory
and running time.

Similarly to our approach, USHER [29], analyses programs at compile
time to remove unnecessary checks inserted by MemorySanitizer [1] to
detect uninitialized reads. However, they build their own analysis frame-
work for this specific problem inside LLVM, while in our approach, we
use existing tools to feed analysis information inside the LLVM backend.

7. Conclusions
In this paper, we present a framework for improving the performance of
programs instrumented with run time checks. Our framework uses exter-
nal analysis tools to complement the compiler’s analysis and provide in-
formation for proving spatial and temporal safety of memory operations.
Our contribution is providing a mechanism to transmit constraint infor-
mation discovered by the external tools through the compiler phases, to
explicitly target removal of unnecessary runtime checks. This mechanism
significantly alleviates much of the performance burden due to incorpora-
tion of memory safety checks, and is a significant step towards acceptance
of compiler-based security defenses in production software.
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