
From Veri�cation to Optimizations

Rigel Gjomemoa, Kedar S. Namjoshib, Phu H. Phungc,a, Venkat
Venkatakrishnana, and Lenore D. Zucka

a University of Illinois at Chicago, {rgjomemo,phu,venkat,lenore}@cs.uic.edu
b Bell Laboratories, Alcatel-Lucent, kedar@research.bell-labs.com

c University of Gothenburg, Sweden

Abstract. Compilers perform a static analysis of a program prior to
optimization. The precision of this analysis is limited, however, by strict
time budgets for compilation. We explore an alternative, new approach,
which links external sound static analysis tools into compilers. One of
the key problems to be solved is that of propagating the source-level
information gathered by a static analyzer deeper into the optimization
pipeline. We propose a method to achieve this, and demonstrate its fea-
sibility through an implementation using the LLVM compiler infrastruc-
ture. We show how assertions obtained from the Frama-C source code
analysis platform are propagated through LLVM and are then used to
substantially improve the e�ectiveness of several optimizations.

1 Introduction

An optimizing compiler is commonly structured as a sequence of passes. The
input of each pass is a source code that is �rst analyzed and, using the analysis
information, transformed to a target code, which then becomes the source of the
next pass in the sequence. Each pass uses static analysis to guide optimization,
but the precision of this analysis is limited due to strict time budgets for compil-
ing (e.g., the GCC wiki has as rule 1: �Do not add algorithms with quadratic or
worse behavior, ever.") As a result, end users of compilers such as LLVM do not
bene�t from advances in algorithms for program analysis and veri�cation. These
advanced methods are, however, implemented in static analysis tools, which are
now widely used to detect programming errors during software development.
Examples such tools for C programs include BLAST [10], Frama-C [5], and F-
Soft [11], all of which employ SMT solvers to produce high-quality and precise
(inductive) invariants.

Static analysis tools are less time-constrained and are thus able to carry
out much deeper analysis of program behavior. In this work we explore how
the information gathered by such tools can be used to augment the internal
analysis of a compiler, and whether this o�ers any practical bene�t. While the
compile-time cost of employing additional tools may be high, it is often the
case that runtime improvements in optimization outweigh this additional cost,
for example, for large frequently used code such as kernels and name servers.
One approach is to implement these as optional features inside the compiler.



Yet another option, employed here, is that of importing the analysis results
computed by external static analysis and software veri�cation tools. There is
much to be gained from this modular approach, which decouples analysis from
transformation. However, there are two key challenges to be overcome: Linking
the output of an analysis tool to the C program representation in the compiler
front-end, and propagating the assertions through the program transformations
performed at the back-end.

Let us consider the problem of propagating information through a series
of optimization passes. The static analysis tool produces information about a
source program, say S. However, the various passes of a compiler transform S
successively into programs S = S0, S1, S2, . . . , Sf = T , where T denotes the �nal
target code. To use information gathered for S0 at the kth compilation stage
(k > 0), one must have a way of transforming this information into a form that
is meaningful for program Sk−1.

A simple example can illustrate this problem. Suppose that the program S
has variables x and y, and the static analysis tool concludes that (x < y) is
invariant. Now suppose that the �rst stage of compilation renames x and y to
�temporary" variables t1 and t2 respectively. The assertion (x < y) is meaning-
less for the second compilation stage (from S1 to S2); to be useful, it must be
transformed to (t1 < t2).

How can assertions be transformed? It is desirable to avoid manually tailoring
the propagation of assertions to each transformation, a laborious and possibly
error-prone task. Our approach o�ers a uniform method for assertion propaga-
tion, which is based on the notion of re�nement �witnesses" [14]. Note that when
the re�nement relation induced by a transformation is available, it can be used
to transform any invariant on the source program to an invariant on the target
program 1. We obtain the re�nement relation by instrumenting the optimization
to produce a re�nement relation as it transforms a program. (The validity of
the generated relation can be checked independently, using SMT solvers. A valid
relation is a �witness" to the correctness of the optimization, hence the name.)

Many standard optimizations only introduce, remove, or rename variables.
Thus, witness relations are often conjunctions of equalities between a pair of cor-
responding source/target variables at a program point (or of the form vt = E(Vs)
where vt is a target variable, Vs are a source variables, and E is a simple
arithmetic expression.) For example, the witness for a dead-variables elimina-
tion transformation states that the values of live variables are preserved. In the
common case that the invariant depends on a single variable, its propagation
can be carried out by simply keeping track of the action that is applied to the
variable, without requiring logical manipulations.

In the implementation described in this paper, we handle this common case.
The invariants are obtained from the value-range analysis of the Frama-C source
code analysis platform [5, 3]. Among other information, Frama-C (via its Value
Analysis plug-in) produces invariants which express constant limits on the range

1 Precisely, if ϕ is invariant for program S, and T re�nes S through relation W , then
〈W 〉ϕ is invariant for T .

2



of a program variable (e.g., 10 ≤ x ≤ 20). Such invariants are propagated through
LLVM optimizations using a mechanism we describe in Sec. 3. The propagated
invariants are used to augment LLVM's own analysis information for optimiza-
tions such as instruction combination and bu�er overrun checking2. Sec. 5 de-
scribes some experimental results showing gains vary depending on the relative
accuracy of LLVM vs. Frama-C for each benchmark.

The prototype of our implementation is available at http://www.cs.uic.edu/
~phu/projects/aruna/index.html.

2 Approach By Example

We use LLVM [12] as our target compiler infrastructure due to its widespread
use in academic and industrial settings, as well as its ability to handle a wide
variety of source languages. Among several tools (e.g., [5, 2, 18, 9, 1, 13]) that can
be used to obtain external assertions to feed into LLVM, we focus our discussion
on Frama-C. In particular, we focus on the use of Frama-C to perform value
analysis, an abstract-interpretation-based analysis, to obtain various domains
of integers (sets of values, intervals, periodic intervals), �oating points, and ad-
dresses for pointers. The value range analysis results obtained from Frama-C are
more powerful than those available in most compilers, and, as we demonstrate,
in LLVM.

Consider the code in Fig. 1(a). Even when compiled using the most aggressive
optimization scheduler (-O3 option of Clang), LLVM's optimizer does not detect
that the else branch in location L6 is dead (and leaves the branch L6-L7 intact.)

In Fig. 1(b) we show the ACSL ([6], see also http://frama-c.com/acsl.html)
assertions produced by the Frama-C's Value Analysis as comments. We note
that here examples are given at the C-level for readability, rather then the SSA
LLVM bitcode. The assumption of SSA form allows to consider each assertion
in a basic block (single-entry single-exit straight line code) to be implicitly the
conjunction of assertions preceding it.

We thus omit describing how the assertions produced by Frama-C (comments
in Fig. 1(b)) are propagated from the Clang input. The �rst pass that LLVM
performs that is relevant to us is to replace weak inequalities by strict inequal-
ities, possibly at the �cost� of introducing new variables, and replacing, signed
comparisons between integers with unsigned ones (subscripted by u) whenever
the integers are known to be non-negative.

Consider the uncommented lines in Fig. 1(c). There, a new line (L0) is added
in which a temporary variable tmp1 is assigned the value i − 1, which, when
i ≥ 1, is non-negative, and hence line L1 does not test it is greater than 0. This
allows LLVM to replace the conjunction of the test in L1 by a single unsigned
test for tmp1 <u 10. Following the quest to replace tests of weak inequality to
tests for strict inequalities, LLVM replaces that tests in L2 and L3 by their strict
equivalents. Finally, the j + i expression that appears in line L4 (Fig. 1(b)) is

2 The latter inserts checks; the invariants help identify some which as unnecessary.

3



replaced by two lines, one (L3.1) that assigns a new tmp2 the value j + i, and
the other (L4) tests whether tmp2 ≥ k (this inequality is left in its weak form,
since neither of the operands is a constant.)

Since the original program does not have the new temporaries, there is no
value-range analysis for them. However, we can propagate the assertion i ≥
1 ∧ i ≤ 10 to the assertion tmp1= i− 1 ∧ tmp1 ≥ 0 ∧ tmp1 ≤ 9, as appears in
L1' of Fig. 1(c). Similarly, using the assertion for i and the assertion j ≥ 5 (from
L2'), we can propagate the assertion tmp2 = i+ j ∧ tmp2 ≥ 6, which is shown in
line L3.1' of Fig. 1(c). Since k ≤ 4 and tmp2 ≥ 6, the test in L4 can be �agged as
trivially true, so that the else branch can be eliminated, resulting in the code in
Fig. 1(d). (The LLVM passes that accomplish this optimization are instruction
combination followed by constant folding followed by jump threading and dead
code elimination.)

L1: if(i>=1 && i<=10)

L2: if(j>=5)

L3: if(k <= 4)

L4: if(j+i >= k)

L5: j++;

L6: else

L7: j�;

L8: return j;

(a) source

L1: if(i>=1 && i<=10)

L1': /*@assert i >= 1 && i<=10*/

L2: if(j>=5 )

L2': /*@assert j >= 5 */

L3: if(k <= 4)

L3': /*@assert k <= 4*/

L4: if(j+i >= k)

L5: j++;

L6: else

L7: j�;

L8: return j;

(b) with value analysis

L0: tmp1 = i-1

L1: if(tmp1 <u 10)

L1':/*@assert tmp1>=0 && tmp1 <=9*/

L2: if(j>4)

L2': /*@assert j >= 5 */

L3: if(k < 5)

L3': /*@assert k <= 4*/

L3.1: tmp2 = j+i

L3.1': /*@assert tmp2 >= 6*/

L4: if(tmp2 >= k)

L5: j++;

L6: else

L7: j�;

L8: return j;

(c) before instruction combination.

L0: tmp1 = i-1

L1: if(tmp1 <u 10)

L1':/*@assert tmp1>=0 && tmp1 <=9*/

L2: if(j>4)

L2': /*@assert j > 4*/

L3: if(k < 5)

L3': /*@assert k < 5*/

L5: j++;

L8: return j;

(d) after using assertions.

Fig. 1. Code example illustrating our approach

4



3 External Invariant Usage in LLVM

In this section, we discuss our approach for propagating and using invariants
produced by third party veri�cation tools inside LLVM's code transformation
passes. As indicated in the introduction, the general approach is based on con-
structing a re�nement witness for each optimization. We describe the theoretical
foundations, practical considerations, and the implementation. [14] has a detailed
description of the approach while here we only give an overview of it.

Re�nement Relations. Consider an optimization opt. The optimization opt can
be viewed as a transformer from the source program S into the target program
T = opt(S). Informally, opt is correct if every behavior of T is a possible behavior
of S � i.e., the transformation does not introduce unde�ned outcomes (such
as a divide-by-zero) or non-termination, which do not already exist in S. If S
is transition deterministic and S and T have identical initial states, this also
implies that every behavior of S has a corresponding one in T . This notion can
be formalized in several ways, depending on the notion of behavior that is to
be preserved. We choose to apply a re�nement relation that maps T -states into
S-states. A valid re�nement relation for a single procedure must:

� Relate every initial S-state into an initial T -state;
� Relate every initial T -state into an initial S-state;
� Be a simulation relation from T to S. The simulation condition may be

single-step simulation or the more relaxed stuttering simulation, and
� Relate every �nal state T -state into a �nal S-state with the same return

value(s).

(Note that here we are assuming that both S and T have the same observables
and that the return values are observables. Extending the de�nition for the case
where the observables are not the same requires adding a mapping between
observables.)

These conditions ensure (by induction) that for any terminating T -computation
there is a corresponding terminating S-computation with same return value, and
that every non-terminating T -computation has a corresponding non-terminating
S-computation. With the assumption of transition determinism, this also im-
plies that every terminating S-computation has a corresponding terminating
T -computation.

Invariant Propagation Constructing a re�nement relation from T to S ensures
the correctness of the transformation T = opt(S). We call such a relation a
witness. A witness also provides a means to propagate invariants from S to T
through the following theorem.

Theorem 1 Given a witness W for T = opt(S), and let VS (resp. VT ) denote
S's (resp. T 's) variables. Let 〈W 〉(ϕ) = (∃VS : W (VT , VS) ∧ ϕ(VS)) (thus,
〈W 〉(ϕ) is the pre-image of ϕ under W ). Then for any invariant ϕ of S, 〈W 〉(ϕ)
is an invariant for T . Moreover, if ϕ is inductive, so is 〈W 〉(ϕ).

5



Proof. Consider any execution σ of T . By de�nition of W , there is an execution
δ of S such that every state of σ is related by W to a state of δ. As ϕ is an
invariant for S, every state of δ satis�es ϕ; hence (by de�nition), every state of
σ satis�es 〈W 〉(ϕ). Inductiveness is preserved since the relation W connects a
step of T to a (stuttering) step of S. ut

Generating witnesses. The problem of determining whether a program re�nes
another is, in general, undecidable. However, in the cases we study here, it's
usually possible to generate a witness relation by augmenting an optimization
opt with a witness generator � an auxiliary function, wgen, that computes a
candidate witness, W = wgen(T, S), for a source S and a target T . The tuple
(T,W, S) can then be passed to a re�nement checker, which checks the validity of
W = wgen(T, S) (by checking each re�nement condition). Note that generation
and propagation are independent steps.

E�ective manipulation of witnesses. Obviously, to make the above work in prac-
tice it is vital that the generation and propagation of witnesses be carried out
e�ectively. This implies that the witness should be expressed in a logic for which
checking is decidable, and for which propagation is computable.

We suppose that witnesses are de�ned on a basic-block level. Thus, for the
check, a program transition is execution of the straight-line (non-looping) code
in a basic block. This can usually be expressed as a quanti�er-free, array theory
formula. (The arrays encode memory.)

What makes this feasible in practice is that the witness relations for standard
optimizations can also be expressed in quanti�er-free, decidable theories. In fact,
they are often simply conjunctions of equalities of the form vT = E(uS) where
v is either a variable name or memory content and E(uS) is similar or possibly
a simple arithmetic expression over source variable names and constants. For
instance, a renaming of variable x to x′ has witness x′T = xS , dead code elimi-
nation has a witness which asserts the equality xT = xS for all live variables x,
and so forth. (More examples are given in [14].)

Propagation is the computation of 〈W 〉(ϕ). For witnesses and assertions ex-
pressed in a logic which supports quanti�er elimination, one can compute a
�closed form� solution. If not, one can still use witnesses to answer queries, as
follows. To check whether an assertion q is true in T given the propagated invari-
ant for ϕ, one must check the validity of [〈W 〉(ϕ) ⇒ q]. This is equivalent to
the validity of [ϕ(VS) ∧ W (VT , VS) ⇒ q(VT )]. Note that, when ϕ is quanti�er-
free, so is the second formula. Thus, it is not necessary to carry out quanti�er
elimination in order to use propagated invariants.

For the experimental work described here, the invariants obtained from Frama-
C are of the form

∧
v∈V lv ≤ v ≤ hv where the lv and hv are integer constants.

The transformations of of the form VT = E(VS) where E is a simple arithmetic
expression over VS . Using similarly simple arithmetic manipulations one can
compute the pre-image of the invariant. E.g., if 2 ≤ x ≤ 4 is ϕ and y = 2x + 1
is W , then the propagated invariant is 5 ≤ y ≤ 9.

6



Formally, for value-range analysis, ϕ is of the form
∧

v∈VS
lv ≤ v ≤ hv. We

then have:

〈W 〉(ϕ) = (∃VS : VT = E(VS) ∧
∧

v∈VS

lv ≤ v ≤ hv)

which is of the form
∧

v∈VT
lv ≤ v ≤ hv. To compute the exact bound for each

u ∈ VT we need only to track the bounds of the S-variables that appear in the
r-h-s of u's de�nition (as per W ) and do the obvious arithmetic manipulations
to obtain the bounds for u.

4 System Description

4.1 Background on LLVM

LLVM's back-end comprises a set of passes that operate on a single static assign-
ment intermediate (SSA) language referred to as LLVM IR or bitcode, which is
produced by the Clang front end. There are two types of these passes. One set
of passes, called the analysis passes gather di�erent types of information about
the program, such as loop, alias, and variable evolution, but do not perform any
code transformations. The other set, called the transformation passes in turn
use the information gathered by the analysis passes to reason about and opti-
mize the code. Taken together, they implement several algorithms for program
analysis and transformation, such as alias analysis, scalar evolution, instruction
simpli�cation, etc.

As mentioned in Sec. 1, recent advances in analysis and veri�cation tech-
niques are not usually included in production compilers due to performance
requirements and the implementation e�ort needed. Our approach aims to ad-
dress this problem by facilitating the use of results from external veri�cation
tools inside the compiler. Using the witness mechanism described in the previ-
ous section, we propagate assertions (for which we also use the term annotations
interchangeably) obtained from tools such as Frama-C through the various back-
end passes of LLVM. By this, we decouple the need for updating the compiler
frequently as newer or improved program analysis algorithms become available,
as our system is designed to obtain assertions from cutting-edge program analy-
sis tools such as Frama-C. We propagate the assertions to the compiler backend,
and employ them in program optimization. However, in realizing this approach,
there are a number of practical challenges that must be overcome.

4.2 Practical Challenges

These challenges stem from language heterogeneities among the source and in-
termediate language as well as the code transformations along the sequence of
passes. We describe each of these challenges in more detail.

7



Source-IR Mapping. The �rst challenge faced by our approach is that of
propagating invariants from the source code through the front-end to the LLVM
IR. In fact, due to the LLVM IR's SSA nature, every source variable can be
mapped to several SSA versions in the LLVM IR, and consequently invariants
about that source variable must also be bound to those SSA versions. In the
case of the C language, an additional problem is posed by its scoping rules
where same-named local variables can live in di�erent scopes.

For example, Fig. 2(a) containing a snippet of C source code and Fig. 2(b)
containing the corresponding LLVM IR code (simpli�ed for space reasons) up to
the comparison i+size<200. The two variables i declared in two di�erent scopes
(L3, L8) are both declared in the entry block in the LLVM IR (L15 for the outer
scope i, and L16 for the inner scope i). However, the invariants (L2, L7) are
both with respect to the same identi�er i, and need to be correctly bound to
the corresponding IR variables. Furthermore, these variables are used in di�erent
basic blocks; Their values are loaded from memory into SSA variables (L20, L21,
L28), which are then used in the following instructions.

L0: int j = 0;

L1: int Arr[N];

L2: /*@assert i>=0 &&

i<=20*/

L3: int i=getArrNo();

L4: /*@assert size>=0 &&

size<=100*/

L5: int size=getArrSize(i);

L6: while(j<size)

L7: /*@assert i>=0

&& i<=99*/

L8: int i = getArrVal();

L9: if(i+size<200)

L10: Arr[j] = setVal(i);

L11: else

L12: ...

L13: j++;

(a) C source code.

L14: entry: //entry basic block

L15: %i = alloca i32 //allocate outer i

L16: %i1 = alloca i32 //allocate inner i

L17: ...

L18: br BB %5 //jump to basic block 5

L19: BB:5 //basic block 5

L20: %7 = load %j

L21: %8 = load %size

L22: %9 = icmp slt i32 %8, %9 //j<size

L23: br %9, ifTrue %10, ifFalse %22

//conditional jump

L24: BB:10

L25: %11 = call @getArrVal() //call function

L26: store %11, %i1 //store result in %i1

L27: %12 = load %i1

L28: %13 = load %size

L29: %14 = add %12, %13 //i+size

L30: %15 = icmp slt %14, 200 //i+size<200

L31: br %15, ifTrue %16, ifFalse %19

//conditional jump

(b) Corresponding LLVM IR

Fig. 2. Example illustrating propagation challenges from C code to LLVM bitcode

Intermediate Operations . Another problem introduced by LLVM's IR is its
three address code nature: Consider the test i+size < 200 in L9 of Fig. 2(b).
It is compiled to two loads (L27, L28) and an addition (L29), followed by the
comparison L30, which based on the invariant information will always be true.

8



In order to fold it and set the value of %15 to true, it is necessary to propagate
the value-range information on size and i (therefore on %12 and %13) to the
value-range information on %14.

Code Transformation . The LLVM IR undergoes transformations along the
sequence of passes, and the assertions must be transformed accordingly. Con-
sider, the transformation of L1 from Fig. 1(b) to Fig. 1(c), where the test
(i ≥ 1) ∧ (i ≤ 10) is replaced by the assignment tmp1= i − 1 followed by the
test tmp1 <u 10. This entails computing the bounds on tmp1 and verifying the
correct use of <u. Other passes, such as mem2reg, which promotes memory to
registers, may make even more drastic changes such as removing load and store

operations or introducing φ functions.

4.3 System Architecture

The architecture of our system is depicted in Figure 3. The input to the system
is a C source program and a set of invariants generated for that program by
veri�cation tools. The C source code is annotated with the invariants and the
annotated source code is compiled by the front end into LLVM IR. Before be-
ing passed to the standard LLVM backend, the IR program is processed by two
LLVM passes that we wrote: Annotation Mapping and Annotation Propagation.
The former binds the assertions contained in the annotations to the SSA ver-
sions of the source code variables, while the latter combines the assertions and
propagates them to the intermediate operations that use those variables. These
two passes are run before any other pass, in order to operate on the IR program
version produced by the front end' s code generation step.

We assume that every optimization pass generates a witness of its correct-
ness (see [14]), and, with the assertions produced by the external static analysis
tools, the witnesses are propagated to the passes that can utilize them. The ex-
periments described in this paper use per-variable value range assertions, hence
the assertions propagated are conjunctions of equalities (as described in Sec. 3)
and are easy to implement, without the need for explicit logical manipulation,
as explained in Sec. 3.

The value range invariants are currently used in three optimizations, namely
array bounds check insertion, integer over�ow check removal, and instruction
combination. The �rst is a set of passes that insert run time checks for every
array reference in a program to detect out of bounds accesses. The second is an
optimization pass that we wrote to safely remove run time checks inserted by
LLVM when it is invoked with the bounds-checking option. The third is a mod-
i�ed instruction combination pass that operates on comparison simpli�cations.
We describe each component of our system in more detail next.

CIL-based rewriter. Our approach uses a subset of ACSL to express assertions,
which are supplied to the framework through an input �le (see Figure 1). ACSL
allows for a wide variety of �rst order global and statement assertions. For

9



 

 

Program C 
Source 

Annotations 

CIL-based 
Rewriter 

Annotated 
C Source 

 

Frontend 
(Clang) 

 

Annotation 
Mapping 

  
Annotation 
Propagation 

  

Instruction 
Combination 

  

Overflow  
Check 

Removal 

Bounds Check 
(Safecode) 

  

 

  

  

witness 

witness 

LLVM Back End 
  Our Implementation 

  Outputs 

 Modified Passes 

LLVM IR + 
Invariants 

  

  Unmodified Code 

Fig. 3. System Architecture

instance, this includes value-range assertions about variables and ghost variables
in each program location of the type a ≥ 0 ∧ a ≤ 10 and a = 10.

One of our goals is to support a wide variety of program analysis tools as
sources for assertions. A clean, compiler-independent way to do this is by storing
the assertions in `dummy' string variables before the corresponding instructions
in the source code. These variables are specially named so that they do not
interfere with the existing program variables. As the assertions are encoded as
assignments to special variables, these assertions are propagated to the LLVM
IR. To do this, we implemented a rewriter based on CIL [16] to inject assertion
strings into C source �les. The result of this rewriting is shown in Listing 1.2,
where statement 1 is the injected one.

Listing 1.1. C Source.

1 int* a=malloc(X*Y

2 *sizeof(int));

3 *(a+X+Y-1)= Z;

4 m= max(a, X*Y);

Listing 1.2. Annotated Code.

1 char *acsl_b_1 ="X==2 && Y==4";

2 int* a=malloc(X*Y*sizeof(int));

3 *(a+X+Y-1)= Z;

4 m= max(a, X*Y);

Annotation Mapping. The goal of the Annotation Mapping pass is to bind every
invariant written in terms of source variables to the correct SSA variable versions
in the IR code. These variables are typically created by LLVM load instructions
before being used. To achieve its goal, the Annotation Mapping pass consults
the debugging information, which contains mappings between load instructions

10



and source code variables as well as information about the source scope of the
original variable. The scope information is used to disambiguate between the
SSA versions of the same-named source code variables.

Our pass binds invariants to load instructions by attaching to them LLVM
metadata containing the upper and lower bound of the range of the correspond-
ing variable. For instance, with respect to Fig. 2(b), the invariant (%12 ≥ 0∧ %12

≤ 99) is attached as metadata to the instruction L27. These metadata are valid
until the next store instruction to the same variable or until a new invariant
about the same variable appears. The metadata are currently per-instruction
and are not modi�ed by the normal transformation passes, except when the in-
struction and its uses are removed, in which case the metadata are also lost. In
those cases when an instruction or group of instructions are replaced by simpler
ones, the invariant information contained in their metadata is combined and
added as new metadata to the target instructions. Metadata are orthogonal to
the IR and the choice of using them for storing invariants enables us to imple-
ment a large range of additional logic and witness propagation while minimizing
the interference with the outputs of standard LLVM passes.

Annotation Propagation. Starting from the load metadata, this pass propagates
range information to the other instructions in the IR code, especially those that
compute intermediate results. With respect to Fig. 2(b), this pass combines the
invariant on L27 (%12 ≥ 0∧%12 ≤ 99) and the one on L28 (%13 ≥ 0∧ %13 ≤ 100)
to obtain a new invariant that is attached to L29 (%14 ≥ 0∧ %14 ≤ 199).

Currently, the supported LLVM instructions include add, sub, store, mul,

sdiv, udiv, sext, zext, and getelementptr.3 The binary arithmetic instruc-
tions are supported via an LLVM class, ConstantRange, which is used to rep-
resent constant ranges and provides the capability to perform such arithmetic
operations on ranges. The sext and zext operations on ranges yield the same
range. For the getelementptr operation, which takes in input an array reference
and an index and returns a pointer to the corresponding array element, we use
two types of metadata, one contains the index range and the other contains the
size of the array, if known at compile time. This latter type of metadata is widely
used in the bounds check elimination pass.

4.4 Optimizations

Bounds Check Removal (Safecode). Safecode [7] is a tool composed as a sequence
of passes, which insert calls to run time bounds checking procedures before ev-
ery array access in the LLVM IR. While ensuring safety of memory accesses,
however, it introduces substantial overhead at run time. More speci�cally, these
functions are inserted before every getelementptr instruction and store or
load instruction that makes use of the value returned by getelementptr. For
instance, consider Fig. 4, which contains the rest of the LLVM IR code that
follows Fig. 2(b) and which contains an array access. In this code, a function

3 http://llvm.org/docs/LangRef.html

11



call (L38) is inserted after the getelementptr instruction (L37) and before the
store instruction (L39). In addition to bounds checking, these functions perform
several pointer arithmetic operations increasing the program's execution costs.

If, however, at compile time, it can be proved that an array access will never
be out of bounds during execution, then the bounds checks on that access can
be removed. To do so, in our implementation, we modify the Safecode passes
to consult the two types of metadata (related to the index range and to the
array size) for the getelementptr instructions. If, using this information, it is
determined that out of bounds access is not possible, then the calls to the bounds
checking functions are removed.

L32: BB:16

L33: %17 = load %i1

L34: %18 = call @setVal(%17) //setVal(i)

L35: %19 = load %j

L36: %20 = sext %19 to i64

L37: %21 = getelementptr %array, %20 //Arr[j]

L38: %el = call @checkGEP(%array, %21, 200)

L39: call @checkStore(%array, %el, 200)

L40: store i32 %18, i32* %21 //Arr[j] <- setVal(i)

L41: br BB %19

L42: BB:19

L43: ...//j++

L44: br %5

Fig. 4. An Example (continued)

Integer Over�ow Check Removal. Another use of the range information is to
remove unnecessary integer over�ow checks inserted by some of the -fsanitize
family of Clang options. As shown in Fig. 5, these options transform every oper-
ation that may result in over�ow into a procedure call (L3), which performs the
operation and sets an over�ow �ag. If over�ow occurs, the control �ow jumps to
an error handling procedure (basic block handle_overflow), otherwise execu-
tion proceeds normally (basic block cont).

The key intuition here is that if range information is available at compile time
for the operands, then the possibility of over�ow may be checked at compile time
and unnecessary checks will be removed. In fact, each check transforms simple
(and frequent) operations like additions into procedure calls and comparisons,
incurring in high performance costs. Our pass, which at compile time is run after
the -fsanitize passes, checks the possible value range of the result and removes
the integer over�ow procedure calls if it determines that over�ow is not possible.

Instruction Combination. Instruction combination is a powerful transformation
pass in LLVM, which simpli�es instructions based on algebraic properties. One
instruction on which the pass operates is the integer comparison instruction

12



L1: %12 = load %i1

L2: %13 = load %size

L3: %14 = call @llvm.sadd.with.overflow(%12, %13)

L4: %15 = extract overflow flag

L5: br %15, ifTrue %cont, ifFalse %handle_overflow

L6 handle_overflow:

L7: call usban_handle_overflow()

L8: br %cont

L9: cont:

L10 ...

Fig. 5. Integer Over�ow Detection Example

(icmp), which performs comparisons between integers. The result of this in-
struction is placed in a boolean variable, which is usually consulted by branching
instructions to issue jumps to the true or false target basic blocks.

The use of range information in this case is fairly straightforward once it
is available to the pass. In particular, if the ranges of the two variables being
compared at run time are known at compile time and disjoint, then the com-
parison result is folded to either true or false. With respect to Fig. 2(b), using
the range information on the variable %14, the comparison is folded and L31 is
transformed into (br TRUE, ifTrue %16, ifFalse %19). Next, the standard
jump-threading pass replaces L31 with an unconditional jump (br %16), while
the dead code elimination pass removes L30 and L29, which are not used any-
more.

5 Evaluation

In this section, we present our experimental results on above mentioned opti-
mization passes in LLVM using our framework. We use a set of small to medium
size benchmarks that are listed in Table 1.

Benchmark Brief description LoC Frama-C (ms)

Susan7 Low Level Image Processing 1463 528

NEC Matrix8 Matrix operations 113 2

CoreMark9 CPU performance with list and matrix operations 1831 251

Linpack10 Floating point computing power 579 11044

Dijkstra7 Network routing 141 6

Mxm10 Matrix-matrix multiplication problem A = B * C 373 9
Table 1. Benchmarks with brief description and size information

13



Experimental Methodology As mentioned earlier, we use the Frama-C tool [5]
as our input source for assertions for the benchmarks. Frama-C is based on ab-
stract interpretation and it can be con�gured with di�erent options that control
its running time and accuracy. The running times of Frama-C on the benchmark
�les, with its default options, are displayed in Table 1. For the Linpack bench-
mark instead, Frama-C was con�gured to unroll loops 1000 times. In particular,
we extract the value range information from Frama-C's internal state, and its
translation to ACSL format. To this end, we have implemented a Frama-C plug-
in, which visits the program's AST tree and the value analysis plug-in's state,
and writes the value ranges available at each program point in a separate an-
notation �le. Using these assertions, the CIL-based rewriter transforms the C
source �le by injecting these assertions at the corresponding program locations
as described in Section 4.3. After the rewriting step, the annotated sources are
passed through the Clang front end of the LLVM compiler.

In our experiments, we report on the optimizations to the benchmarks. Our
comparisons are made by running the benchmarks under the unmodi�ed LLVM
that does not include our optimizations. We report both the percentage of checks
that are removed using our framework (a static measure of improvements), and
also the percentage savings in running time (a runtime measure of improve-
ments). Our runtime tests were performed on a GNU-Linux machine running
the Ubuntu distribution 12.04, with Intel Xeon CPU at 2.40GHz.

5.1 Array bound-check optimization

10	  

49	  

24	  
35	  

8	  

29	  

6	  

36	  

1	  

93	  

2	  

40	  

0	  

20	  

40	  

60	  

80	  

100	  

Susan	   NEC	  Matrix	  CoreMark	   Linpack	   Dijkstra	   Mxm	  

%
	  Im

pr
ov
em

en
t	  

Check	  eliminaCon	   RunCme	  

Fig. 6. Percentage check elimination and Runtime Improvement of Boundcheck (Safe-
code) optimization.

7 http://www.eecs.umich.edu/mibench/source.html
8 Part of the NEC Lab benchmarks for F-soft [11]
9 http://www.eembc.org/coremark/download_coremark.php

10 http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.

html

14



Fig. 6 shows our check elimination and runtime improvement results over
the benchmarks. Each benchmark is presented in two bars for check elimination
and runtime improvement percentage. The check elimination improvements are
observed by counting the number of checks on original code and comparing them
with the results on optimized code.

As illustrated by Fig. 6, there is a wide variety in our improvement results.
This variety is due to several factors. Some of these include the following: (a)
Frama-C is not able to produce assertions for every array access as it is not pos-
sible to determine the size of those arrays at compile time, or (b) because our
prototype does not support certain types of array accesses yet. In particular, we
noticed that in some benchmarks, it is not possible for Frama-C to determine the
size of the arrays in the case these array initializations depend on some runtime
arguments. In these cases, the improvement results are not signi�cant. For exam-
ple, among the benchmarks, Dijkstra (a network routing algorithm) only obtains
8% of bound check elimination since its computations heavily depend on runtime
arguments which are based on the input data. In contrast, with a good quality
of assertions, our approach obtains very appealing improvements. For instance,
NEC Matrix gains the best improvement of 49% in our experiments. This is due
to fact that the benchmark has many array accesses, and most of which have
good assertions from Frama-C. In addition, the runtime improvements depend
on the location of the eliminated checks. If they are located in portions of code
that are not executed very often (e.g., initialization code in CoreMark), then
the runtime improvement is not signi�cant. If, however, they are located in a
portion of the code that is executed often (e.g., Linpack) the improvements can
be signi�cantly better. It is worth noting that our optimizations are done based
on Frama-C's sound analysis, and therefore carry the same guarantees of the
safety of array accesses under LLVM's Safecode bounds checking.

5.2 Integer Over�ow Check

The chart in Fig. 7 illustrates the improvement on the integer over�ow check
elimination by our framework. Similar to the previous experiment, here too we
report on both check elimination and runtime improvements for the benchmarks.
The checks are inserted for the LLVM IR's operations of multiplication (mul),
addition (add), and subtraction (sub). As shown in the �gure, the improvement
ranges from 7% (Susan) to 60% (Mxm) of checking code of integer over�ow
on the benchmarks. As before, the improvements are dependent on the quality
of assertions and the benchmark itself. For Susan, most of values of variable
depend on runtime arguments so that we do not get good assertions from Frama-
C. On the other hand, Mxm benchmark contains a large percentage of integer
computations and these computation variables have good assertions from Frama-
C.

15



7	  

59	  

28	  

60	  

2	  

50	   49	  

8	  

0	  
10	  
20	  
30	  
40	  
50	  
60	  
70	  

Susan	   NEC	  Matrix	   Linpack	   Mxm	  

%
	  Im

pr
ov
em

en
t	  

Check	  eliminaAon	   RunAme	  

Fig. 7. Percentage check elimination and runtime improvement of Integer Over�ow
Check Optimization.

5.3 Instruction Combination

To take advantage of range information for folding comparisons as described
in our examples, we have modi�ed the Instruction Combination pass in LLVM
(-instcombine). We have tested our implementation with a number of small ex-
amples and our implementation is able to perform the optimization successfully.
In our experiments with the above benchmarks, the opportunities for applying
these optimization does not arise. This is due to the fact that, in these bench-
marks, Frama-C does not produce assertions for branch expressions that lead
the branch condition to be evaluated to either true or false at compile time. We
have noticed that larger benchmarks such as bind and gcc and oggenc provide
opportunities for such optimization, but Frama-C does not successfully com-
pile these benchmarks out of the box. We have been working with the Frama-C
development team to get assertions on these larger benchmarks.

6 Related Work

To the best of our knowledge, our work is the �rst that uses analysis infor-
mation derived by third party tools, which are not as restricted as production
compilers, to improve compiler optimizations. The key issue is that of invari-
ant propagation. Our implementation results show that, for the common case of
single-variable invariants, we can carry out this propagation quite simply, which
results in substantial improvements to compiler optimizations. Propagation lets
a compiler use the results of sophisticated program analyses without incurring
the cost of the analysis during compilation. We strongly believe that this is a
promising approach that will has much potential for improvements.

There are several tools and compiler extensions which combine sophisticated
analysis with code transformation. Examples are Klee [4] (for symbolic execu-
tion), Polly [9] (for polyhedral optimization), CCured [15] (for bounds checking)
and IOC (Integer Over�ow Checker) [8]. The key new element introduced by

16



our work is in loosening the coupling between analysis and optimization, i.e.,
providing a mechanism for introducing the results of any sound program anal-
ysis into a standard compiler (or, more generally, a program transformation),
without requiring that the analysis be built into the compiler.

The idea of propagating assertions through a witness mechanism was �rst
introduced in [14]. Witness generation is itself a variant of the translation vali-
dation framework introduced in [17] and developed by several researchers (cf. the
citations in [14]). Just like the translation validation framework, it does not de-
pend on speci�c passes (even though the generation of witnesses, on which we
do not focus here, does depend on speci�c optimizations), but it depends on the
ability to �tweak" the compiler, as well on the assumptions that each optimiza-
tion is a separate, easy-to-identify, pass.

7 Conclusion and Future Work

We describe a methodology, supported by tools, for enabling compilers to use
the results of external program analysis tools to enable better optimizations.
The assertions produced by the external tools are propagated, through the wit-
ness approach, through the LLVM optimizations passes. We demonstrate the
methodology by improving three LLVM optimizations using the Frama-C value
analysis plugin. We are currently expanding our approach to encompass other
static analyses as well as targeting other LLVM passes, such as scalar evolution
and loop optimizations.

Acknowledgements We thank Drew Dean for pointing us to this topic in the context
of the DARPA CSFV project. Thanks are due to Ted Ballou and Anokh Kishore for
their help with the experiments. We also thank Jens Palsberg for many useful com-
ments on this work. Phu Phung is supported by the Swedish Research Council (VR)
under an International Postdoc grant. This material is based on research sponsored by
DARPA under agreement number FA8750-12-C-0166. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the o�cial
policies or endorsements, either expressed or implied, of DARPA or the U.S. Govern-
ment.

References

1. A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins. An overview
of the Saturn project. In 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, (PASTE), pages 43�48, 2007.

2. A. Albarghouthi, A. Gur�nkel, Y. Li, S. Chaki, and M. Chechik. UFO: Veri�cation
with interpolants and abstract interpretation. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 7795 of Lecture Notes in
Computer Science, pages 637�640, 2013.

3. R. Bonichon and P. Cuoq. A mergeable interval map. Studia Informatica Univer-
salis, 9(1):5�37, 2011.

17



4. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In 8th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI'08, pages 209�224.
USENIX Association, 2008.

5. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C, a software analysis perspective. In International Conference on Software
Engineering and Formal Methods (FMICS'12), 10 2012.

6. M. Delahaye, N. Kosmatov, and J. Signoles. Common speci�cation language for
static and dynamic analysis of C programs. In 28th Annual ACM Symposium on
Applied Computing, SAC, pages 1230�1235, 2013.

7. D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds Checking for C
with Very Low Overhead. Technical report, Shanghai, China, May 2006.

8. W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer over�ow in
C/C++. In 34th International Conference on Software Engineering, ICSE '12,
pages 760�770. IEEE Press, 2012.

9. T. Grosser, A. Gröÿlinger, and C. Lengauer. Polly � performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Processing Letters,
22(4), 2012.

10. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, pages 58�70, 2002.

11. F. Ivan£i¢, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar. F-SOFT:
Software Veri�cation Platform. In 17th International Conference on Computer
Aided Veri�cation (CAV), pages 301�306. Springer-Verlag, 2005.

12. C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75�88, 2004. Webpage at llvm.org.

13. K. R. M. Leino. Extended Static Checking: A ten-year perspective. In Informatics
� 10 Years Back. 10 Years Ahead., pages 157�175, 2001.

14. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In Proc.
20th Static Analysis Symposium, volume 7935 of LNCS, pages 304�323, 2013.

15. G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-
safe retro�tting of legacy software. ACM Trans. Program. Lang. Syst., 27(3):477�
526, May 2005.

16. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In 11th International
Conference on Compiler Construction (CC), pages 213�228. Springer-Verlag, 2002.

17. A. Pnueli, O. Strichman, and M. Siegel. Translation validation: From DC+ to c*.
In Applied Formal Methods - International Workshop on Current Trends in Applied
Formal Method(FM-Trends), volume 1641 of LNCS, pages 137�150. Springer, 1998.

18. T. Teitelbaum. Codesurfer. ACM SIGSOFT Software Engineering Notes, 25(1),
2000.

18


