Securing The SSA Transform

Chaogiang Deng' and Kedar S. Namjoshi?

! New York University deng@cs.nyu.edu
2 Bell Laboratories, Nokia kedar.namjoshi@nokia-bell-labs.com

Abstract. Modern optimizing compilers use the single static assign-
ment (SSA) format for programs, as it simplifies program analysis and
transformation. A source program is converted to an equivalent SSA form
before it is optimized. The conversion may, however, create a less secure
program if fresh SSA variables inadvertently leak sensitive values that
are masked in the original program. This work defines a mechanism to re-
store a program to its original security level after it has been converted to
SSA form and modified further by a series of optimizing transformations.
The final program is converted out of SSA form by grouping variables
together in a manner that blocks any new leak introduced by the initial
SSA conversion. The grouping relies on taint and leakage information
about the original program, which is propagated through the optimizing
transformations using refinement proofs.

1 Introduction

A compiler carries out a transformation of a high level, abstract program to low
level executable code. Ensuring that compilation preserves program semantics
is, therefore, a critical question. It has received much attention, both from the
point of view of detecting errors in existing compilers (cf. [20,11] and related
work) and from the viewpoint of formally guaranteeing correct compilation (cf.
[15,12] and related work). In today’s world, it is important to also guarantee that
compilation does not weaken security properties. For example, compiler trans-
formations should not inadvertently introduce new pathways that leak sensitive
data. It is this issue that is considered in this paper.

Correctness and security turn out to be distinct issues. A well-known illustra-
tion is the dead-store elimination optimization, which removes a store instruction
from a program if the value stored is never used. This has an unfortunate con-
sequence that removal of stores may introduce an information leak. A simple
example is the program shown on the left in Figure 1. It reads a password into
a variable x, checks it for validity, and subsequently clears the secret from x by
setting it to 0. As the value 0 stored to x is never used, this store is removed
(silently) by the dead-store optimization. That leaves the password on the stack
or in a register longer than was originally intended, making it possible for an
attack elsewhere in the program to obtain the password. The optimization is
correct in that it preserves the input-output behavior of the original program;
however, it is insecure.

In recent work [6], we formulate a notion of a secure program transformation
in terms of information flow (precisely, non-interference as in [7]) and show that
checking the security of a dead-store elimination after the fact is undecidable in
general. We also define a method which limits the removed dead stores to those
where removal provably preserves security. In that paper it is also shown that
the static single assignment (SSA) transformation is insecure. The technique
used for securing dead-store elimination unfortunately does not apply to SSA.
The question of how to secure SSA was left open. In this work, we present a
mechanism to secure the SSA transformation.

void foo () void foo ()
{ {
int x; int x1,x2;
x = read_password(); x1 = read_password();
use (x); use (x1);
x = 0; // clear password x2 = 0;
other (); other ();
return; return;
} }

Fig. 1. C program illustrating the insecurity of SSA transformation, from [6]

An example of how SSA may cause an information leak is shown in Figure 1,
taken from [6]. The source program is the password-reading program described
above. The SSA transform introduces fresh names x1 and x2 for the assignments
to x. Suppose that x1 and x2 are assigned distinct registers. The assignment to
x2 then has no effect and at the call to function other, the password is in
the clear, stored in the register assigned to x1. Suppose further that there is a
vulnerability in the function other by which an attacker can gain control of the
program. The attacker can then read off the password, which is either in the
register assigned to x1, or is stored on the call stack. This is a new information
leak, one that is not present in the original program.

The leak can be prevented if x1 and x2 are always allocated the same register
which cannot, however, be guaranteed. Moreover, it is inefficient and not always
correct to forcibly clear any tainted data before an untrusted function call. This
is because a sound taint analysis is generally over-approximate: variables that
are declared tainted may, in fact, always contain either non-sensitive data, or
sensitive data that is used after the function call.

Our method, therefore, does not modify the program in any essential manner.
The unSSA transform groups together related SSA variables and renames every
variable in a group G to a single fresh variable, say zg. A register allocator is
thus forced to assign a single register to the group (subject to live range splitting,
which we discuss at the end of the paper). For the example program, x1 and

x2 are placed in the same group so the renaming, in effect, restores the original
program.

As grouping and renaming destroys the single assignment property of SSA,
this transformation must be placed in the compiler only after all SSA-dependent
transformations have been performed. This introduces a key problem. A modern
compiler first converts a source program P to its SSA form, say Qg, then applies
a series of SSA-to-SSA optimizations, which result in equivalent but syntacti-
cally different intermediate programs Q1,...,Q,. The unSSA conversion must,
therefore, be applied to the final program @,,, but block leaks introduced in the
initial conversion to Q). Doing so correctly requires preserving leakage-relevant
information through the series of SSA optimizations, which is done with the help
of refinement proofs for each transformation. The unSSA transform uses the pre-
served information to determine a proper grouping of variables in @,,. Although
it is helpful for register allocation to produce small groups, we show that finding
the optimal partitioning is undecidable. The unSSA transformation thus relies
on sound but approximate analysis information to define the grouping.

The unSSA transform converts the SSA program @,, to a non-SSA program
R; the executable program X is then created by register allocation on R. The
overall correctness claim shows that the object code X is at least as secure as
the original program P. This is a relative security claim: one obtains only that
any information leak in X has a corresponding leak in P, not that X is free
of information leaks. It is analogous to the claim of compiler correctness, which
also shows only that every input-output behavior of X can be found in P; not
that X is correct in an absolute sense with respect to a specification.

To summarize, the paper studies the important question of making certain
that a compiler transformation does not introduce new information leaks. We
show that fresh leaks introduced by conversion to SSA form can be blocked by
a suitable unSSA transformation, which groups SSA variables into equivalence
classes. We show that finding the optimal grouping is, unfortunately, undecid-
able; hence, our algorithm relies on approximate taint and control-flow informa-
tion. We also show that leaks may be introduced during register allocation, in
particular during live-range splitting, and suggest a simple mechanism to block
such a leak. The result is a secure end-to-end compilation.

2 Background

This section contains background on information leakage and taint analysis.
Several basic definitions are taken from [6].

Program Syntax and Semantics. As illustrated in the introductory example,
the SSA transformation leaks information when sensitive data is retained in
registers that can be accessed in a nested procedure call. We can thus consider
the point of invocation of an untrusted procedure as a potential leak point and
require that any leak through a leak point in the final program is a leak that
occurs in the source. To simplify the formal development and bring out the

key features of the proposed method, the formal development is in terms of
structured WHILE programs over integer variables, defined by the syntax below.
The program operates on a set of input and state variables. Input variables are
partitioned into H (“high security”) and L (“low security”) variables. All state
variables are considered to be low security variables.

reX variables
ecEu=clx]| fler,...,en) expressions: f is a function, ¢ a constant
geG Boolean conditions on X
S €S :=skip|out(e) |z :=e||li: v; := ¢(via,viB)|S1;52 |

if g then Sy else Sy fi | while g do S od statements

A program can be represented by its control flow graph (CFG). (The con-
version is standard, and omitted.) A node of the CFG represents a program
location, and an edge is labeled with a guarded command, of the form “g — a”,
where g is a Boolean predicate and a is a primitive statement, one of skip, out
(output), or assignment. A special node, entry, with no incoming edges, defines
the initial program location, while a special node, exit, defines the final program
location. Values for input variables are specified at the beginning of the program
and remain constant throughout execution.

Dominance. Node n of a CFG post-dominates node m if all paths in the CFG
from m to the exit node pass through n.

Program Semantics. The semantics of a program is defined in the standard
manner. A program state s is a triple (m, e, p), where m is a CFG node, referred
to as the location of s; if m is not the entry node, then e is the entry edge, (k, m)
for some k, and p is a function that maps each variable to an integer value.
The function p can be extended to evaluate an expression in the standard way
(omitted). An initial state has the form (entry, L, p) where p(x) = 0 for all state
variables z. A final state has the form (exit, e, p).

A pair of states, (s = (m,e,p),t = (n, f,q)) is in the transition relation if
f = (m,n) is an edge of the CFG, and for the guarded command g — a on that
edge, the guard g holds of p, and the function ¢(y) is identical to p(y) for all
variables y other than those modified by the statement a, for which it is defined
as follows. If a is an assignment x := e, the only variable modified is z and ¢(x)
equals p(e). For the assignment ||i : v; := ¢(v; 4, v; B), the variables modified
are the v;’s, and ¢(v;) is given by p(v; 4), if e = A, and by p(v; B), if e = B. For
skip and out statements, ¢ = p.

The guard predicates for all of the outgoing edges of a node form a parti-
tion of the state space, so that a program is deterministic and deadlock-free. A
execution trace of the program (referred to in short as a trace) from state s is
a sequence of states sy = s, s1,... such that adjacent states are connected by
the transition relation. A computation is a trace from the initial state. A com-
putation is terminating if it is finite and the last state has the exit node as its
location.

Information Leakage. Information leakage is defined using the standard concept
of non-interference (cf. [3,7]). A program P is said to leak information if there
is a pair of H-input values {a, b}, with a # b, and an L-input c¢ such that the
computations of P on inputs (H = a,L = ¢) and (H = b, L = c¢) either (a) differ
in the sequence of output values, or (b) both terminate but differ in the value
of one of the L-variables at their final states. We call (a, b, ¢) a leaky triple for
program P.

Taint Proofs. Leakage is approximated by the notion of taint. Each variable in
a program is marked as either “tainted” or “untainted”. High inputs are always
tainted, low inputs are always untainted. The correctness of these markings is
expressed as a taint proof. Each program point is decorated with a taint assertion
E, a function from variables to taint values. In earlier work [6], we define a sound
taint proof system in the style of the Volpano-Irvine-Smith proof system [19],
which sets up consistency conditions on these taint assertions. The soundness of
the proof system implies that a leak cannot occur through any untainted variable.
On the other hand, the fact that a variable is tainted does not necessarily imply
that there is a leak through that variable.

Correct Transformation. For simplicity, we only consider program transforma-
tions which do not alter the set of input variables. A transformation from pro-
gram P to program @) may alter the code of P or the set of state variables. The
transformation is correct if, for every input value a, the execution of @ on a
has a corresponding execution of P on a with an identical sequence of output
values. Termination is considered an output, so that a terminating execution of
@@ must have a matching terminating execution of P. A correct transformation
thus offers the relative correctness guarantee that every input-output behavior
of @ is present in P. It does not assure the correctness of either program with
respect to a specification.

Secure Transformation. A transformation is secure if the set of leaky triples for
@ is a subset of the leaky triples for P. A secure transformation ensures relative
security, i.e., that @ is not more leaky than P. It does not ensure that either P
or () are free of information leaks. Suppose that a transformation from P to @ is
correct. For any leaky triple (a, b, ¢) for @, if the computations of @ from inputs
(H =a,L =c¢)and (H =b,L = ¢) differ in their output, this difference must
also (by correctness) appear in the corresponding computations in P. Hence, the
only way in which @ can be less secure than P is if the computations on inputs
(H=a,L=c)and (H =b,L = ¢) terminate in @ with different L-values, but
the corresponding P-computations (which must terminate, too, by correctness)
have identical L-values.

The SSA Transformation. A program P is converted to its SSA form @ es-
sentially by replacing each assignment to a variable z with a fresh name, say
x; for the i’th assignment. ¢-functions are inserted at merge points to combine
values that reach that point from different branches of a conditional or while

statement. Not all merge points need a ¢ function; efficient algorithms to deter-
mine the optimal placement of ¢ functions are given in [5,18]. To illustrate the
SSA transform by an example, consider the programs shown in Figure 2. The
program on the left is transformed to the program on the right. In the process,
variable x is given three versions: x1, 2 and 3, and ¢-functions are inserted at
the start of the loop to merge the values of z1,z3 into x2, and of i1, 43 into 2.

for (i=0, x=0; i < N; i++) il = 0;
{ x1 = 0;
X = x+i; loop:
} i2 = phi(i1,i3),
|l x2 = phi(x1,x3);

if (i2 >= N) goto end;
x3 = x2 + i2;
i3 = i2 + 1;
goto loop;
end:

Fig. 2. Illustrating the SSA transformation.

3 Securing SSA

The problem addressed in this work is stated precisely as follows. A program
P is converted by a compiler to its SSA form, @y, which is transformed by a
series of SSA-to-SSA optimizations through intermediate programs Q1, ..., Q.
The conversion from P to) may introduce new leaks, as illustrated in the
introduction. The goal is to block these new leaks via a new, final transform,
called the “unSSA” transform, which converts @), into a program R that is at
least as secure as P. We use this naming convention throughout the section.

3.1 An Overview

The essential idea behind the unSSA transform can be understood by considering
the changes that the SSA transformation makes in converting P to Q. A variable
x of P is represented by several versions, say x1,Ts,...,Z, in QQg. Programs P
and Qo have identical control-flow graphs and are observationally equivalent:
the bisimulation relation is that at each common program point p, the value of
a variable z at point p in P equals the value of one of its versions, z;, at point
p in @, where the index 7 is a function of the location p.

Each version of z in @ represents an assignment to x in P. This exposes
all intermediate values of 2 and is the source of the new leaks, as illustrated
in the introduction. In order to block such leaks, one has to reverse the SSA
transformation, and assign multiple variants of = the same name. This is done

by partitioning the variants of = into groups and rewriting the name of every
variable in a group, say G, to a fresh name, say zq.

The grouping must, however, be done carefully. One option is to group all
variants of x into a single class, in which case the result is a program isomorphic
to the original P. But that negates an important advantage of the SSA conver-
sion. The conversion naturally splits the live range of a variable = (the extent
to which it is live, or used) into disjoint sub-ranges for x1, s, ..., zk, reducing
interference and improving register allocation. Ideally, one would like to choose
a partition that is as fine as possible but no finer: i.e., it should maximize the
number of independent groups. This, unfortunately, is undecidable in general.

Theorem 1 It is undecidable to determine whether two instances of a variable
must be grouped together.

Proof: Consider an arbitrary program P. For a fresh high-security input h and a
fresh low security state variable I, define the program Q(h) as P; 1 := h; [l := 0.
Its SSA form is P; l; := h; ly := 0, where P is the SSA form of P. The SSA
transformation of @ leaks the value of h if, and only if, P terminates. Hence
{l1,12} must be grouped together if, and only if, P terminates. EndProof.

The naming scheme followed in Q)¢ holds clues to the origin of a variable: for
instance, xg is a variant of the original variable x. This facilitates grouping: xg
is never to be grouped with, say, y3. Subsequent transformations, may, however,
alter the set of variables and modify control flow, making it difficult to recover
the origin of a variable. If, for example, variables xg and y3 are renamed to
u, v, respectively, it is no longer clear from the names that v and v should not
be in the same group. A key problem that must be resolved, therefore, is the
discovery of the relationships between the variables of the final program @,
and the variables of)y, so that the grouping in @, can be done correctly. Our
solution is to utilize the refinement relations that connect successive programs
@; and @;11. These relations implicitly hold information that relate variables
across transformations. The sketch of the overall procedure is as follows.

— Each transformation from @; to Q;+1 is witnessed by a refinement relation,

&;. From this, one identifies a “core” set of variables, C;, for each @;. The
core set is defined so that any leak through the core variables of);11 induces
a leak via the core variables of Q;.
The core set Cy for Qg is defined by the bisimulation relation between P
and @Qg. For each variable x of P, its variant x; is in the core set Cy if x;
is related to x by the bisimulation at the exit node. (In the introductory
example, the core set is {xo}.) By transitivity, a leak via the final core set
C,, induces a leak in P.

— The variables in @Q,, are partitioned into groups, each with a representative
variable that is either a core variable, or an untainted non-core variable. The
unSSA transform converts @, to R by renaming all occurrences of a variable
in a group G to the name of the representative of G.

Additional properties are required to ensure the existence of such a parti-
tioning, and to ensure the correctness of renaming. Those properties, labeled

(P1)-(P3) below, hold for program @)y and must be preserved by each trans-
formation.

The constructions guarantee that correctness is preserved when passing from
P to R. They also ensure end-to-end security: a leak in R translates to a leak via
the core variables of @,,, which translates to a leak in P. The requirement that
properties (P1)-(P3) are preserved across transformations potentially constraints
the set of transformations that can be applied. We show that several common
transformations do meet those conditions. The rest of this section defines these
concepts and properties and gives a proof of the claimed result.

3.2 Core Sets

A “core” set of @Q;+1 relative to @); is a subset X of the variables of ;41 such
that if two end-states of ;41 differ in the value of some variable in X, the
corresponding low end-states of @; differ in the value of some variable in the
core set C; of Q);. Given the core set C; of Q;, a set X is a core set of ;41 if it
meets the following constraint.

[Ei(t,s) A finalip1(t) A &G, 8") A finali1(t) A s=¢, 8" = t=xt] (1)

In the formulation, the predicate final;(¢) holds of a state if its location is the
exit node of program @;; the relation &; is a refinement relation from @;y1 to
Q@;; and the relation =y represents equality of states on the set Y of variables.
Le., t =x t' is short for ¢[x] = ¢'[z], for all x € X. Informally, the constraint
says that a leak in @, that is witnessed by end-states ¢, ¢’ which differ on some
variable in X has a corresponding leak in @Q;, with end states s, s’ that differ in
some variable of C;.

It is easy to see from the constraint that if X and Y are core sets, so is XUY;
and if X is a core set and Y a subset of X, then Y is a core set. By closure under
union, there is a largest core set. By closure under subset, the largest core set
can be calculated as the set of variables u of ;41 for which the constraint holds
with X = {u}. Thus, the largest core set of @Q;41 relative to C;, denoted C;1,
can be determined with a linear number of validity checks, one for each variable

in Qit1-

The core set Cj is defined in Section 3.1. Starting with Cy, one can succes-
sively determine the core sets Cy,Co,...,C), using the construction procedure
above for the programs @1, Q2,...,Q,. The main consequence of the core-set

definition is the following theorem.

Lemma 1 For every i, a leak in Q;11 via its core set Ci1 has a corresponding
leak in Q; via its core set C;.

Proof: Consider a leaky triple (a,b,c) for Q;41. Let the induced computations
on the inputs (H = a,L = ¢) and (H = b,L = ¢) be 0, and 0. As the leak
is through C;11, the final states of these computations, say t, and t;, differ for

some variable in C;yi. By the refinement relation &;, there are corresponding
computations ¢, and d, of Q); whose final states, s, and s;, are related to t, and
ty, respectively, by &;. From implication (1), s, and s; differ in C;; thus, there is
a leak in @Q; via C;. EndProof.

Theorem 2 Any leak in Q. via its core set C,, has a corresponding leak in P.

Proof: Using Lemma 1, by induction on the length of the @ sequence, one
obtains that a leak in @, via C),, corresponds to a leak in Qg via Cy. By the
definition of Cj, this induces a leak in P. EndProof.

3.3 Grouping Variables

While Theorem 2 ensures that a leak through a core set is reflected as a leak
in P, it does not cover leaks via non-core variables in @,,. (In the introductory
example, the variable x; through which the password is leaked is a non-core
variable.) To stop such leaks, the unSSA transform partitions variables of @,
into groups. Each variable is given the name of its representative, which is either
a core variable or an untainted non-core variable. The grouping must be such
that (1) it preserves correctness; and (2) it is as lax as possible, i.e., the number
of groups is large, to give the register allocator more freedom.

We satisfy these requirements by requiring the following property: for each
program @;, there is a taint proof and a partition of its variables into classes
such that

— (P1) Each class of the partition has a representative variable, which is either
a core variable or an untainted non-core variable

— (P2) The variables in a class have mutually disjoint live ranges, assuming
that the core variables C; are live at the end point (Variables with mutually
disjoint live-ranges are said to be interference-free.)

— (P3) The definition of the representative variable in a class post-dominates
the live range of any other variable in its class

These properties hold of the core set Cy of the initial SSA program, Q. The
partition has a class for each variable x of the original program P. The class
associated with x holds all variants z1,...,x; of x in Q9. The representative of
each class is the variant that is in the core set Cp, which satisfies (P1). Property
(P2) holds as the variants of x have disjoint live ranges by definition. Property
(P3) holds as the members of Cy are chosen based on the bisimulation between
P and Qg at the final states.

We show that these properties, applied to @, suffice to define a correct,
secure unSSA transform. We then give sufficient conditions which ensure that a
transformation preserves (P1)-(P3). Since the properties hold of Qq, any series
of transformations which preserve those properties results in a @Q,, to which the
unSSA transformation can be applied.

3.4 The unSSA Transform
The unSSA transformation from @, to R operates as follows:

1. Construct the core set C,,

2. Perform a taint analysis of @,

3. Partition the variables of @), into groups such that properties (P1)-(P3)
defined above are satisfied

4. For each class Y, create a fresh variable, ry, and rename each occurrence of
a variable in Y with ry

The result is the program R.
Theorem 3 The unSSA transformation is correct.

Proof Sketch: The variables in each class are interference-free by (P2). Re-
naming the variables in class Y with a fresh variable, ry, is analogous to the
allocation of a physical register to a group of interference-free variables. Correct-
ness thus follows from a standard bisimulation property of register allocation (cf.
[16]): the control flow graphs of @,, and R are isomorphic, and at a point p, the
value of 7y in program R equals the value of a specific variable of class Y in Q.
EndProof.

Properties (P1)-(P3) can, in fact, be established through standard coloring
algorithms used for register allocation. The interference graph is built from all
variables. Fix a set of representative variables, which include all core variables
and some untainted non-core variable names. An interference edge between vari-
ables z and y indicates that either the live ranges of = and y intersect, or that
x is a representative variable that does not dominate y. The representative vari-
ables form the set of colors, and are each colored with their own color. The set of
variables that are colored with variable v form the group for v. By construction,
there are no edges between variables colored v, so those variables have mutually
disjoint live ranges and the representative variable dominates all others.

Theorem 4 Any leak in program R induces a corresponding leak in P.

Proof:

Let (a,b,c) be a leaky triple for program R. Thus, the computations o, and
op from respective inputs (H = a,L = ¢) and (H = b, L = ¢) differ at their final
states in the value of some variable of R, say ry. Consider the corresponding
computations, §, and dy, of program @Q,,. Suppose ry corresponds to a class Y
of variables in @,,. By the bisimulation relation for register allocation described
in the proof of Theorem 3, at each point, the value of ry on o, (0p) equals
the value of a specific variable in class Y at the corresponding point on &, (d).
Assume that ry corresponds to variable u € Y at the end node, then the value
of u is different at the end of o, and o,, hence u cannot be untainted. By (P3),
u must be the representative variable in Y. By (P1), as u is a representative and
tainted, it must be a core variable of @),,. Therefore, §, and ¢ differ in the value
of a core variable of Q,,. By Theorem 2, this leak in @Q,, via a core variable has
a corresponding leak in P. EndProof.

10

3.5 Preserving the Partitioning Properties

The previous theorems assume that a partitioning of @,, with properties (P1)-
(P3) can be established. As shown, these properties hold for the initial SSA
program @Qg. We provide sufficient conditions on SSA-to-SSA transformations
which preserve these properties, and show in the following section that these
conditions hold for common transformations such as constant propagation and
loop unrolling.

The conditions require establishing a simulation relation, v;, between the
CFG’s of ;41 and @Q; that preserve variable definitions and uses, according to
a mapping p from variables of ;11 and @;. Note that this simulation relation
is structural, and thus different from the &; relation referred to earlier, which is
on the semantics of the programs.

— (C1) If y is a core or untainted non-core variable of @;, there is « such that
u(x) =y and z is a core or untainted non-core variable of @Q;41

— (C2) The simulation relation v; from the CFG of Q;11 to the CFG of Q;
preserves variable definitions and uses. lL.e., for any variable = of Q;41, if
is defined on an edge (n,n’) and n is simulated by m, then p(z) is defined
on the simulating edge (m,m’), and similarly for uses of =

Lemma 2 Consider a transformation from Q; to Q;11 which satisfies conditions
(C1)-(C2). If variables z,y interfere in Q;y1, then u(x), u(y) interfere in Q;.

Proof: We use the fact that both Q; and @;41 are in SSA form. For SSA pro-
grams, as shown in [10], variables x and y interfere if, and only if, the definition
of one of the variables, say x, dominates the definition of y, and z is live at
y. Thus, there is a path in the CFG of Q;y1 from definition of z through the
definition of y to a use of x. By (C2), this has a simulating path in @; which
preserves defs and uses; thus, the corresponding path in Q; starts at the defini-
tion of u(x), passes through the definition of u(y) to a use of u(z). Hence, u(x)
and p(y) interfere in @Q;. EndProof.

Theorem 5 Consider a transformation from Q; to ;11 which satisfies condi-

tions (C1)-(C2). If Q; satisfies (P1)-(P3), so does Q1.

Proof: Consider variables z,y to be equivalent in Q;41 if p(z) and u(y) are
equivalent in @);. For a class C of Q;41, let D be the class of @); that the members
of C' are mapped to by u. Let d be the representative of D. By (P1), d is either a
core variable or an untainted non-core variable. By (C1), there is a variable ¢ such
that p(c) = d and c is a core or untainted non-core variable; this variable must
be in class C. Pick one such c¢ as the representative of class C. This establishes
(P1).

Now consider variables z,y in C. Then u(x), u(y) are in D and are, there-
fore, non-interfering. By the converse of Lemma 2, x and y are non-interfering,
establishing (P2). Finally, let be any variable in C' other than the representa-
tive c¢. Consider a path ¢ in the CFG of Q;41 from a use of x to the exit node.

11

By (C2), there is a simulating path v from a use of u(x) to the exit node. By
(P3) for Q;, v must pass through an edge e that defines the core variable p(c).
Hence, the edge corresponding to e on o defines ¢. Therefore, every use of z is
post-dominated by the definition of ¢, establishing (P3). EndProof.

4 Example Transformations

We give examples of compiler optimizations which preserve properties (P1)-(P3).

4.1 Constant propagation and folding

This transformation replaces expressions that have a constant value with the
value. This is illustrated with the programs in Fig. 3. The original program P is
in the top left corner, and has a constant secret value. The SSA transform yields
program (g that is in the top right, with core set is {z2}. Constant propagation
and folding optimizes Qg to @ that is in the bottom left. In @1, the core set
is unchanged and z1 can be grouped with 2. After the unSSA transform, the
result is program R in the bottom right, where the information leak introduced
by SSA from variable z1 is revoked.

void foo () void foo ()

{ {
int x; int x1, x2;
X = secret; x1 = secret;
use (x); use (x1);
x = 0; x2 = 0;

} }

void foo () void foo ()

{ {
int x1, x2; int x2;
x1 = secret; X2 = secret;
use (secret); use (secret) ;
x2 = 0; x2 = 0;

} }

Fig. 3. C program illustrating constant propagation and folding

In general, consider a program ;41 that is obtained from @; through con-
stant propagation and folding. The control-flow and variables are unchanged in
the transformation. Suppose that there is a taint proof and a partition of vari-
ables in @); that satisfies (P1)-(P3). First, note that the same taint proof carries

12

over to Q;+1. To see this, consider a statement z := e that is replaced with
x := e, where e is obtained by replacing variables in e with their constant val-
ues, and folding any constant expressions. Then a taint triple {E}x := e{F'} is
valid in Q; if F(e) C F(z) and E(y) C F(y), for all other variables y. As replac-
ing variables with constants can only lead to a stronger taint value, it is the case
that E(e) C E(e); hence, E(e) C F(x) by transitivity. Let the function p be
the identity function. As the set of core variables and the taint proof is identical
in both programs, condition (C1) holds. Let v be the identity relation on the
control-flow graph nodes; then v is a simulation which respects uses and defs of
variables, establishing (C2). By Theorem 5, conditions (P1)-(P3) are preserved
across the transformation.

4.2 Loop unrolling

Loop unrolling is a transformation that replicates the body of a loop. We consider
the basic case in Fig. 4, where the original loop is executed an even number of
times, and the unrolling factor is 2. The program in the top-left is the original
program P, and the program in the top-right is the SSA transformed program Qg
whose core set is {i2,22}. After loop unrolling, the program @; in the bottom-
left is generated, with the same core set. In the course of unrolling the body
of the loop, all statements are duplicated and the phi-assignment and the test
of the loop condition are simplified. The variable partition groups all variants
of i together, and all variants of = together, as the corresponding live ranges
are disjoint. Renaming the variables in each group and simplifying the resulting
statements, one obtains the program R in the bottom-right, which is as secure
as the original program P.

Loop unrolling preserves the set of variables and the core set, introducing new
variables only inside the loop being unrolled. Suppose that there is a taint proof
and a partitioning that satisfies properties (P1)-(P3) for program @;. Then the
taint proof carries over essentially unchanged to the unrolled loop. In place of
the original taint invariant I for the loop, one has the extended taint invariant
I’ where I'(z) = I(z) for any original variable z, and I'(z') = I(x), for the
copy 2’ of variable x which is introduced in the unrolling. Other taint assertions
are unchanged. Let p be the function defined by u(x) = x, if x is an original
variable, and p(z') = x, if 2’ is the copy of z introduced in the unrolling. As core
variables and taints are unaffected by the transformation, condition (C1) holds
with this definition of x. Let v be the relation which connects control-flow nodes
in the copy of the loop body with their original nodes. One may verify that v is
a simulation which preserves defs and uses according to p, establishing (C2). In
the example above, x4 is a copy of x2 so u(x4) = x2. The transition defining x4
in @Q;+1 is matched by the transition defining x2 in @;; similarly, the definition of
x5 is matched by the transition defining x3. By Theorem 5, conditions (P1)-(P3)
are preserved across the loop unrolling transformation.

13

void foo ()
{

int i, x;

for(i = 0; i < 2xK; i++)

x = f(x,1);

return;

void foo ()
{
int i1,i2,i3,1i4,1i5,
x1,x2,x3,x4,x5;

x1 = 0;

il = 0;

loop:
x2 phi(x1, x5) ||
i2 phi (i1, i5);
if (i2 >= 2xK) goto end;
x3 = £(x2,i2);
i3 = i2 + 1;
x4 x3 || // phi
i4 = i3;
skip; // test
x6 = f(x4,i4);
i5 = i4 + 1;
goto loop;

end:

return;

void foo ()
{
int i1,i2,1i3,
x1,x2,x3;
x1 = 0;
il = 0;

loop:
x2 = phi(x1l, x3) ||
i2 = phi(il, i3);
if (i2 >= 2xK) goto end;
x3 = f(x2,i2);
i3 = i2 + 1;
goto loop;
end:

return;

void foo ()
{

int i2, x2;

x2 = 0;
i2 = 0;
loop:
if (i2 >= 2xK) goto end;
x2 = £(x2,i2);
i2 = i2 + 1;
x2 = f(x2,i2);
i2 = i2 + 1;
goto loop;
end:

return;

Fig. 4. C program illustrating loop unrolling

4.3 Secure DSE

The transformations considered so far preserve (P1)-(P3) but do not make use
of the properties in defining the transformation itself. This section proposes a
novel dead store elimination (DSE) transformation for SSA programs which does
both. Similar to the DSE transformation introduced in [6], this is a heuristic to
determine whether it is secure to remove a certain dead store. To be precise, for a
SSA program Q; satisfying partitioning properties (P1)-(P3), the transformation
removes a dead assignment “x := e” is removed if either the partition containing
x has size 1, or x is not a representative variable for its partition.

Lemma 3 The single-step DSE transformation preserves (P1)-(P3).

Proof: Consider a taint proof for program @Q;. Let E be the taint assertion just
before the dead assignment to x. As @; is in SSA form, this is the only assignment
to x. As it is dead, = is never referenced in Q;. At all points in Q;11, let the
taint status of x be “untainted”. As x is never referenced in);, this change does
not affect the taint status of any other variable. As x is never modified in Q;41,
it is correct to assert that z is untainted throughout.

Suppose the variables in @); are partitioned into classes Y7, Y3, ..., Y,,, and
variable x comes from class Yj. If the size of Y}, is 1, then the original partitioning
is valid for @;41, and clearly satisfies the properties (P1)-(P3). Otherwise, the
size of Y is larger than 1 and x is not the representative of Yj. Let Y/ =
Yi\{z}, and let Y} = {z} be the new classes that are introduced. Clearly, Y}’
satisfies (P1)-(P3). We now consider Y,. The representative for this class is the
representative for Yj. It is easy to check that properties (P1)-(P3) hold for Y.
EndProof.

Theorem 6 The DSE transformation preserves properties (P1)-(P3).

Proof: The actual DSE transformation is a sequence of steps, each of which
removes only one dead store. Then, this theorem follows immediately from the
preservation of partitioning properties in each step shown in Lemma 3. End-
Proof.

In the introductory example, zo is the representative variable of its class,
hence the dead assignment to x5 will not be removed by this transformation.
Another example is introduced in Fig. 5. The original program P is on the left,
and the program (g on the right is the corresponding SSA transformed program
whose core set is {3}. There are two non-trivial valid partitions of the three
variables of Qq:

(1) {z1, 23}, {x2}: the core variable x3 is selected as the representative vari-
able of tainted non-core variable z1. In this case, the dead assignment to x5 will
be removed, since x5 is from a class of size 1. After assigning a fresh variable
name to both z; and x3 by the unSSA transformation, the final program will be
as secure as the original program P.

(2) {1, 22}, {x3}: the untainted non-core variable x5 is selected as the rep-
resentative variable of tainted non-core variable ;. In this case, the dead assign-
ment to x3 will be removed, since x3 is from a class of size 1. After assigning a

15

fresh variable name to both x; and x5 by unSSA transformation, no information
about password could be leaked and the final program becomes more secure than
the original program P.

void foo () void foo ()

{ {
int x; int x;
x = read_password(); x1 = read_password();
use (x); use (x1);
X = O; X2 = O;
x = read_password2(); x3 = read_password2();
return; return;

} }

Fig. 5. C program illustrating secure DSE

5 Related Work And Conclusions

The SSA transformation is a standard component of modern compilers, including
LLVM and GCC. It continues to be extensively investigated, for its properties
and applications to optimization (cf. the “SSA Book” [1]). The fact that it in-
troduces information leaks was noted in our earlier work [6]. In this work, we
investigate the question of SSA leaks in some depth, and offer a procedure that
blocks the newly introduced leaks by partially reversing the SSA transformation
prior to register allocation. Existing work on secure compilation (cf. [8,13]) does
not apply to the SSA problem. To the best of our knowledge, the insecurity of
SSA and the design of mechanisms that remedy it has not been investigated
in the literature. The SWIPE algorithm [9] is a source-to-source transforma-
tion which introduces instructions that erase potentially sensitive data after the
last use of such data. While the transformation enhances security at the source
level, the effect of the new erasure instructions may be negated by the compiler’s
internal SSA conversion, as illustrated by the introductory example.

The major technical difficulty is to connect the leakage that may occur in a
program obtained by a series of optimizations to the leakage introduced by the
original conversion to SSA form. Our method tracks these connections using the
refinement relations that witness each transformation. Further constraints are
needed to ensure that the grouping of variables in the unSSA transformation is
correct. We give sufficient conditions to show that transformations preserve those
constraints, which do hold of the original SSA program, and demonstrate that
some common transformations meet these conditions. Loosening the conditions
to accommodate more transformations is an important subject for future work.

16

This work considers a formulation of security that is binary: either a triple
is leaky or it is not. This ignores the information content of a leak, making
no distinction between, say, the leak of an entire password and the leak of a
single character of the password. It is difficult to formulate and analyze the
quantitative information content of a leak (cf. [17] for a survey) but one may
consider qualitative, knowledge-based formulations (cf. [2]) that are easier to
analyze. The construction of a theory that lets one reason about the reduction
of the information content of leaks across transformations is an important topic
for further research.

This work has not investigated the security of register allocation, which fol-
lows the unSSA transform. In LLVM, allocation is done after a straightforward
lifting of the program out of SSA form by eliminating phi-functions. Although
allocation directly on SSA form is also possible [14], the unSSA transform already
produces a non-SSA form program, so those techniques cannot be applied.

Register allocation algorithms, in the main, decide to allocate the live range
of a variable either to memory (“spilling”) or to a register. Those operations do
not introduce a security leak. However, in order to better pack live ranges, an
allocator may decide to break up the live range of a variable. This has an effect
similar to that of the SSA transform: for instance, the live range of z in the
introductory example could be broken up into ranges that correspond to those
of the SSA variables 1 and x5. These sub-ranges are individually allocated to
either registers or memory. In order to preserve security, the allocator should
either disable splitting (which could reduce performance) or insert code that
clears unused register or memory locations. For example, suppose the range for
x is divided up into three sections, corresponding to fresh variables z1,zs and
x3, and x7 is allocated register A; x3 is allocated register B; while x5 is spilled
to memory. If 1 may hold a taint, then the contents of A should be cleared after
they are copied to memory. Similarly, when the content in memory is copied to
B at the start of z3, the memory entry should be cleared. Adding those instruc-
tions also introduces overhead. However, as splitting is usually attempted around
loops [4], it is possible that this overhead is not as considerable as that induced
by entirely avoiding splitting. These questions need to be further investigated in
an experimental setting.

Acknowledgements. Kedar Namjoshi was supported, in part, by grant
CCF-1563393 from the National Science Foundation. We thank our colleagues
at Bell Labs and UIC for helpful comments on this work.

References

1. Static single assignment book. http://ssabook.gforge.inria.fr/latest/book.pdf.

2. A. Askarov and S. Chong. Learning is change in knowledge: Knowledge-based
security for dynamic policies. In S. Chong, editor, 25th IEEE Computer Security
Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012,
pages 308-322. IEEE Computer Society, 2012.

3. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations,
vol. 1-III. Technical Report ESD-TR-73-278, The MITRE Corporation, 1973.

17

10.

11.

12.

13.

14.

15.

16.

17.

K. D. Cooper and L. T. Simpson. Live range splitting in a graph coloring regis-
ter allocator. In K. Koskimies, editor, Compiler Construction, 7th International
Conference, CC’98, Held as Part of the Furopean Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings, volume 1383 of Lecture Notes in Computer Science, pages 174—187.
Springer, 1998.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13(4):451-490, 1991.

C. Deng and K. S. Namjoshi. Securing a compiler transformation. In X. Rival,
editor, Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK,
September 8-10, 2016, Proceedings, volume 9837 of Lecture Notes in Computer
Science, pages 170-188. Springer, 2016.

D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504-513, 1977.

V. D’Silva, M. Payer, and D. X. Song. The correctness-security gap in compiler
optimization. In 2015 IEEE Symposium on Security and Privacy Workshops, SPW
2015, San Jose, CA, USA, May 21-22, 2015, pages 73-87. IEEE Computer Society,
2015.

K. Gondi, P. Bisht, P. Venkatachari, A. P. Sistla, and V. N. Venkatakrishnan.
SWIPE: eager erasure of sensitive data in large scale systems software. In
E. Bertino and R. S. Sandhu, editors, Second ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY 2012, San Antonio, TX, USA, February
7-9, 2012, pages 295-306. ACM, 2012.

S. Hack. Interference Graphs of Programs in SSA Form. Technical Report 2005-15,
Universitat Karlsruhe, June 2005.

V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence modulo in-
puts. In M. F. P. O’'Boyle and K. Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 201/, pages 216-226. ACM, 2014.

X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107—
115, 2009.

M. Patrignani and D. Garg. Secure compilation and hyperproperty preservation.
In CSF, 2017. (to appear).

F. M. Q. Pereira and J. Palsberg. SSA elimination after register allocation. In
O. de Moor and M. I. Schwartzbach, editors, Compiler Construction, 18th Inter-
national Conference, CC 2009, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, volume 5501 of Lecture Notes in Computer Science, pages 158-173.
Springer, 2009.

A. Pnueli, O. Shtrichman, and M. Siegel. The code validation tool (CVT)- auto-
matic verification of a compilation process. Software Tools for Technology Transfer,
2(2):192-201, 1998.

S. Rideau and X. Leroy. Validating register allocation and spilling. In R. Gupta, ed-
itor, Compiler Construction, 19th International Conference, CC 2010, Held as Part
of the Joint FEuropean Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6011 of Lecture
Notes in Computer Science, pages 224-243. Springer, 2010.

G. Smith. Recent developments in quantitative information flow (invited tutorial).
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015, pages 23-31. IEEE, 2015.

18

18. V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing phi-nodes. In
R. K. Cytron and P. Lee, editors, Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pages 62-73. ACM Press, 1995.

19. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167-188, 1996.

20. X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in
C compilers. In M. W. Hall and D. A. Padua, editors, Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 283-294. ACM, 2011.

19

	Securing The SSA Transform

