
Securing A Compiler Transformation

Chaoqiang Deng1 and Kedar S. Namjoshi2

1 New York University deng@cs.nyu.edu
2 Bell Laboratories, Nokia kedar@research.bell-labs.com

Abstract. A compiler can be correct and yet be insecure. That is, a
compiled program may have the same input-output behavior as the orig-
inal, and yet leak more information. An example is the commonly ap-
plied optimization which removes dead (i.e., useless) stores. It is shown
that deciding a posteriori whether a new leak has been introduced as
a result of eliminating dead stores is difficult: it is PSPACE-hard for
finite-state programs and undecidable in general. In contrast, deciding
the correctness of dead store removal is in polynomial time. In response
to the hardness result, a sound but approximate polynomial-time algo-
rithm for secure dead store elimination is presented and proved correct.
Furthermore, it is shown that for several other compiler transformations,
security follows from correctness.

1 Introduction

Compilers are essential to computing: without some form of compilation, it is not
possible to turn a high level program description into executable code. Ensuring
that a compiler produces correct code – i.e., the resulting executable has the
same input-output behavior as the input program – is therefore important and a
classic verification challenge. In this work, we assume correctness and investigate
the security of a compiler transformation.

Compilers can be correct but insecure. The best-known example of this phe-
nomenon is given by dead store elimination [10,7]. Consider the program on the
left hand side of Figure 1. It reads a password, uses it, then clears the memory
containing password data, so that the password does not remain in the clear on
the stack any longer than is necessary. Dead-store elimination, applied to this
program, will remove the instruction clearing x, as its value is never used. In the
resulting program, the password remains in the clear in the stack memory, as
compilers usually implement a return from a procedure simply by moving the
stack pointer to a different position, without erasing the procedure-local data.
As a consequence, an attack elsewhere in the program which gains access to pro-
gram memory may be able to read the password from the stack memory. Stated
differently, the value of the password is leaked outside the function foo. The
input-output behavior of the function is identical for the two programs, hence
the dead-store removal is correct.

There are workarounds which can be applied to this example to fix the prob-
lem. For example, x could be declared volatile in C, so the compiler will not re-
move any assignments to x. Specific compiler pragmas could be applied to force

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // clear password
return ;

}

void foo ()
{

int x;

x = read_password ();
use(x);

return ;
}

Fig. 1. C programs illustrating the insecurity of dead-store elimination

the compiler to retain the assignment to x. But these are all unsatisfactory, in
several respects. First, they pre-suppose that the possibility of a compiler intro-
ducing a security leak is known to the programmer, which may not be the case.
Next, they suppose that the programmer understands enough of the compiler’s
internal workings to implement the correct fix, which need not be the case either
– compilation is a complex, opaque process. Furthermore, it supposes that the
solution is portable across compilers, which need not be true. And, finally, the
fix may be too severe: for instance, an assignment x := 5 following the clearing
of x can be removed safely, as the x := 0 assignment already clears the sensitive
data – marking x as volatile would prohibit this removal. A similar issue arises if
a compiler inserts instructions to clear all potentially tainted data at the return
point; as taint analysis is approximate, such instructions may incur a significant
overhead. For these reasons, we believe it is necessary to find a fundamental
solution to this problem.

One possible solution is to develop an analysis which, given an instance of
a correct transformation, checks whether it is secure. This is a Translation Val-
idation mechanism for security, similar to those developed in e.g., [15,12,18]
for correctness. We show that translation validation for information leakage is
undecidable for general programs and difficult (PSPACE-hard) for finite-state
programs. This proof considers a dead store elimination transformation where
the input and output programs as well as the location of the eliminated stores
is supplied. On the other hand, given the same information, correctness can be
determined in polynomial time. The large complexity gap suggests that transla-
tion validation for information leakage is likely to be much more difficult than
the corresponding question for correctness.

Faced with this difficulty, we turn to algorithms that guarantee a secure
dead-store elimination. Our algorithm takes as input a program P and a list of
dead assignments, and prunes that list to those assignments whose removal is
guaranteed not to introduce a new information leak. This is done by consulting
the result of a control-flow sensitive taint analysis on the source program P .
We formalize the precise notion of information leakage, present this algorithm,
and the proof that it preserves security. Three important points should be noted.
First, the algorithm is sub-optimal, given the hardness results. It may retain more

stores than is strictly necessary. Second, the algorithm does not eliminate leaks
that are originally in P ; it only ensures that no new leaks are added during the
transformation from P to Q. Thus, it shows that the transformation is secure in
that it does not weaken the security guarantees of the original program. Finally,
we assume correctness and focus on information leakage, which is but one aspect
of security. There are other aspects, such as ensuring that a compiler does not
introduce an undefined operation, e.g., a buffer overrun, which might compromise
security. That is part of the correctness guarantee.

The difference between correctness and security is due to the fact that stan-
dard notions of refinement used for correctness do not necessarily preserve se-
curity properties. We develop a strong notion of refinement that does preserve
security, and use it to show that other common optimizations, such as constant
propagation, are secure.

To summarize, the main contributions of this work are (1) results showing
that a posteriori verification of the security of compilation has high complexity,
(2) a dead-store elimination procedure with security built in, along with a formal
proof of the security guarantees that are provided, and (3) a general theorem
which reduces security to correctness through a strong refinement notion. These
are first steps towards the construction of a fully secure compiler.

2 Preliminaries

In this section, we define the correctness and the security of transformations on
a small programming language. The programming language is deliberately kept
simple, to more clearly illustrate the issues and the proof arguments.

Program Syntax and Semantics. For the formal development, we consider only
structured programs whose syntax is given in the following. (Illustrative exam-
ples are, however, written in C.) For simplicity, all variables have Integer type.
Variables are partitioned into input and state variables and, on a different axis,
into sets H (“high security”) and L (“low security”). All state variables are low
security; inputs may be high or low security.
x ∈ X variables
e ∈ E ::= c | x | f(e1, . . . , en) expressions: f is a function, c a constant
g ∈ G Boolean conditions on X
S ∈ S ::= skip | x := e | S1;S2 | if g then S1 else S2 fi | while g do S od

statements
A program can be represented by its control flow graph (CFG). (We omit a

description of this process, which is standard.) Each node of the CFG represents
a program location, and each edge is labeled with a guarded command, of the
form “g → x := e” or “g → skip”, where g is a Boolean predicate and e is an
expression over the program variables. A special node, entry, with no incoming
edges, defines the initial program location, while a special node, exit, defines the
final program location. Values for input variables are specified at the beginning
of the program and remain constant throughout execution.

The semantics of a program is defined in the standard manner. A program
state s is a pair (m, p), where m is a CFG node (referred to as the location of s)
and p is a function mapping each variable to a value from its type. The function
p can be extended to evaluate an expression in the standard way (omitted). We
suppose that a program has a fixed initial valuation for the state variables. An
initial state is one located at the entry node, where the state variables have this
fixed valuation. The transition relation is defined as follows: a pair of states,
(s = (m, p), t = (n, q)) is in the relation if there is an edge f = (m,n) of the
CFG which connects the locations associated with s and t, and for the guarded
command on that edge, either i) the command is of the form g → x := e, the
guard g holds of p, and the function q(y) is identical to p(y) for all variables y
other than x, while q(x) equals p(e); ii) the command is of the form g → skip,
the guard g holds of p, and q is identical to p. The guard predicates for all of the
outgoing edges of a node form a partition of the state space, so that a program
is deterministic and deadlock-free. A execution trace of the program (referred
to in short as a trace) from state s is a sequence of states s0 = s, s1, . . . such
that adjacent states are connected by the transition relation. A computation is
a trace from the initial state. A computation is terminating if it is finite and the
last state has the exit node as its location.

Post-domination in CFG. A set of nodes N post-dominates a node m if each
path in the CFG from m to the exit node has to pass through at least one node
from N .

Information Leakage. Information leakage is defined in a standard manner [2,6].
Input variables are divided into high security (H) and low security (L) variables.
All state variables are low-security (L). A program P is said to leak information
if there is a pair of H-input values {a, b}, with a 6= b, and an L-input c such that
the computations of P on inputs (H = a, L = c) and (H = b, L = c) either (a)
differ in the sequence of output values, or (b) both terminate, and differ in the
value of one of the L-variables at their final states. We call (a, b, c) a leaky triple
for program P .

Correct and Secure Transformations. For clarity, we consider program transfor-
mations which do not alter the set of input variables. A transformation from
program P to program Q may alter the code of P or the set of state variables.
The transformation is correct if, for every input value a, the sequence of output
values for executions of P and Q from a is identical. (The return value from
a function is considered to be an output.) The transformation is secure if the
set of leaky triples for Q is a subset of the leaky triples for P . By the defini-
tion of leakage, for a correct transformation to be insecure, there must be a
triple (a, b, c) for which the computations of Q with inputs (H = a, L = c) and
(H = b, L = c) terminate with different L-values, and either one of the cor-
responding computations in P is non-terminating, or both terminate with the
same L-values.

A correct transformation supplies the relative correctness guarantee that Q is
at least as correct as P , it does not assure the correctness of either program with
respect to a specification. Similarly, a secure transformation does not ensure the
absolute security of either P or Q; it does ensure relative security, i.e., that Q is
not more leaky than P .

This definition of a secure transformation does not distinguish between the
“amount” of information that is leaked in the two programs. Consider, for in-
stance, the case where both P and Q leak information about a credit card num-
ber. In program Q, the entire card number is made visible whereas, in P , only
the last four digits are exposed. By the definition above, this transformation is
secure, as both programs leak information about the credit card number. From
a practical standpoint, though, one might consider Q to have a far more seri-
ous leak than P , as the last four digits are commonly revealed on credit card
statements. It has proved difficult, however, to precisely define the notion of
“amount of information” – cf. [16] for a survey. We conjecture, however, that
the dead-store elimination procedure presented in this paper would not incur
greater amount of information leakage than the original program; a justification
for this conjecture is presented in Section 5.

3 The Hardness of Secure Translation Validation

One method of ensuring the security of a compiler transformation would be to
check algorithmically, during compilation, that the result program Q obtained
by the transformation on program P is at least as secure as P . This is akin
to the Translation Validation approach [15,12,18] to compiler correctness. We
show, however, that checking the security of a program transformation is hard
and can be substantially more difficult than checking its correctness. Focusing
on the dead store elimination procedure, we show that checking its security is
undecidable in general, PSPACE-complete for finite-state programs, and co-NP-
complete for loop-free, finite-state programs.

The precise setting is as follows. The input to the checker is a triple (P,Q,D),
where P is an input program, Q is the output program produced after dead store
elimination, and D is the list of eliminated assignments, which are known to be
dead (i.e., with no useful effect) at their locations. The question is to determine
whether Q is at most as leaky as P . To begin with, we establish that checking
correctness is easy, in polynomial time, for arbitrary while programs.

Theorem 1 The correctness of a dead store elimination instance (P,Q,D) can
be checked in PTIME.

Proof: The check proceeds as follows. First, check that P and Q have the same
(identical, not isomorphic) graph. I.e., the set of node names is identical, and
the transition relation is identical. Then check if Q differs from P only in the
labeling of transitions in D, which are replaced by skip. Finally, check that every
store in D is (syntactically) dead in P , by re-doing the liveness analysis on P .
Each step is in polynomial time in the size of the programs. EndProof.

We now turn to the question of security, and show that it is substantially
more difficult.

Theorem 2 Checking the security of a dead store elimination given as a triple
(P,Q,D) is PSPACE-complete for finite-state programs.

Proof: Consider the complement problem of checking whether a transformation
from P to Q is insecure. By definition, this is so if there exists a triple (a, b, c)
which is leaky for Q but not for P . Determining whether (a, b, c) is leaky can be
done in deterministic polynomial space, by simulating the program on the input
pairs (a, c) and (b, c) independently in parallel. Checking the pairs sequentially
does not work, as the computation from one of the pairs may not terminate. Non-
termination is handled in a standard way by adding an n-bit counter, where 2n

is an upper bound on the size of the search space: the number n is linear in the
number of program variables. A non-deterministic machine can guess the values
a, b, c in polynomial time, and then check that (a, b, c) is leaky for Q but not
leaky for P . Thus, checking insecurity is in non-deterministic PSPACE, which is
in PSPACE by Savitch’s theorem.

To show hardness, consider the problem of deciding whether a program with
no inputs or outputs terminates, which is PSPACE-complete by a simple re-
duction from the IN-PLACE-ACCEPTANCE problem [13]. Given such a pro-
gram R, let h be a fresh high security input variable and l a fresh low-security
state variable, both Boolean, with l initialized to false. Define program P as:
“R; l := h; l := false”, and program Q as: “R; l := h”. As the final assignment
to l in P is dead, Q is a correct result of dead store elimination on P . Consider
the triple (h = true, h = false,). If R terminates, then Q has distinct final values
for l for the two executions arising from inputs (h = true,) and (h = false,),
while P does not, so the transformation is insecure. If R does not terminate,
there are no terminating executions for Q, so Q has no leaky triples and the
transformation is trivially secure. Hence, R is non-terminating if, and only if,
the transformation from P to Q is secure. EndProof.

Theorem 3 Checking the security of a dead store elimination given as a triple
(P,Q,D) is undecidable for general programs.

Proof: (Sketch) The PSPACE-hardness proof of Theorem 2 can be applied to
general programs as well. Hence, the triple is insecure if, and only if, program R
terminates. EndProof.

In the full version of the paper, we show that establishing security is difficult
even for the very simple case of finite-state, loop-free programs.

Theorem 4 Checking the security of a dead store elimination given as a triple
(P,Q,D) is co-NP-complete for loop free programs.

4 A Taint Proof System

In this section, we introduce a taint proof system for structured programs. It
is similar to the security proof systems of [6,17] but explicitly considers per-
variable, per-location taints. It is inspired by the taint proof system of [3], which
is the basis of the STAC taint analysis plugin of the Frama-C compiler. There are
some differences in the treatment of conditionals: in their system, assignments
in a branch of an IF-statement with a tainted condition are tainted in an eager
fashion while, in ours, the taint may be delayed to a point immediately after the
statement.

The full version of this paper includes a proof of soundness for this system.
Moreover, the key properties carry over to a more complex taint proof system
for arbitrary CFGs. Although the focus here is on structured programs, this is
done solely for clarity; the results carry over to arbitrary CFGs.

4.1 Preliminaries

Let Taint be a Boolean set {untainted, tainted} where tainted = true and un-
tainted = false. A taint environment is a function E : V ariables→ Taint which
maps each program variable to a Boolean value. That is, for a taint environment
E , E(x) is true if x is tainted, and false if x is untainted. The taint environment
E can be extended to terms as follows:
E(c) = false, if c is a constant
E(x) = E(x), if x is a variable
E(f(t1, . . . , tN)) =

∨N
i=1 E(ti)

A pair of states (s = (m, p), t = (n, q)) satisfies a taint environment E if
m = n (i.e., s and t are at the same program location), and for every variable
x, if x is untainted in E (i.e., E(x) holds), the values of x are equal in s and t.

Taint environments are ordered by component-wise implication: E v F ⇔
(∀x : E(x) ⇒ F(x)). If E v F , then F taints all variables tainted by E and
maybe more.

4.2 Basic Properties

Proposition 1 (Monotonicity) If (s, t) |= E and E v F , then (s, t) |= F .

For a statement S and states s = (m, p) and s′ = (n, q), we write s S−→ s′

to mean that there is an execution trace from s to s′ such that m denotes the
program location immediately before S and n denotes the program location
immediately after S; s′ is the successor of s after executing S.

In addition, for taint environments E and F , we write {E}S {F} to mean
that for any pair of states satisfying E , their successors after executing S satisfy
F . Formally, {E}S {F} ⇔ (∀s, t : (s, t) |= E ∧ s S−→ s′ ∧ t S−→ t′ : (s′, t′) |= F).

Proposition 2 (Widening) If {E}S {F}, E ′ v E and F v F ′, then {E ′}S {F ′}.

4.3 Proof System

We present a taint proof system for inferring {E}S {F} for a structured program
S. The soundness proof is by induction on program structure, following the
pattern of the proof in [17].

S is skip: {E} skip {E}

S is an assignment x := e:
F(x) = E(e) ∀y 6= x : F(y) = E(y)

{E}x := e {F}

Sequence:
{E}S1 {G} {G}S2 {F}

{E}S1;S2 {F}

Conditional: For a statement S, we use Assign(S) to represent a set of variables
which over-approximates those variables assigned to in S. The following two cases
are used to infer {E}S {F} for a conditional:

Case A:
E(c) = false {E}S1 {F} {E}S2 {F}

{E} if c then S1 else S2 fi {F}

Case B:

E(c) = true {E}S1 {F} {E}S2 {F}
∀x ∈ Assign(S1) ∪Assign(S2) : F(x) = true

{E} if c then S1 else S2 fi {F}

While Loop:
E v I {I} if c then S else skip fi {I} I v F

{E} while c do S od {F}

Theorem 5 (Soundness) Consider a structured program P with a valid proof
such that {E}P {F} holds. For all initial states (s, t) such that (s, t) |= E: if
there are terminating computations from s and t such that s P−→ s′ and t

P−→ t′

hold, then (s′, t′) |= F .

The proof system can be turned into an algorithm for calculating taints.
The proof rule for each statement other than the while can be read as a mono-
tone forward environment transformer. For while loops, the proof rule requires
the construction of an inductive environment, I. This can be done through a
straightforward least fixpoint calculation for I based on the transformer for the
body of the loop. Let Ik denote the value at the k’th stage. Each non-final fix-
point step from In to In+1 must change the taint status of least one variable
from untainted in In to tainted in In+1, while leaving all tainted variables in
In tainted in In+1. Thus, the fixpoint is reached in a number of stages that is
bounded by the number of variables. In a nested loop structure, the fixpoint for
the inner loop must be evaluated multiple times, but this calculation does not
have to be done from scratch; it can be started from the incoming environment
E, which increases monotonically. The entire process is thus in polynomial time.

5 A Secure Dead Store Elimination Transformation

From the results of Section 3, checking the security of a program transformation
after the fact is computationally difficult. A translation validation approach to
security is, therefore, unlikely to be practical. The alternative is to build secu-
rity into the program transformation. In this section, we describe a dead store
elimination procedure built around taint analysis, and prove that it is secure.

1. Compute the control flow graph G for the source program S
2. Set each internal variable at the initial location as Untainted, each L-input as

Untainted, and each H-input as Tainted
3. Do a taint analysis on G
4. Do a liveness analysis on G and obtain the set of dead assignments, DEAD
5. while DEAD is not empty do

Remove an assignment, A, from DEAD, suppose it is “x := e”
Let CURRENT be the set of all assignments to x in G except A
if A is post-dominated by CURRENT then [Case 1]

Replace A with skip
Update the taint analysis for G

else if x is Untainted at the location immediately before A
and x is Untainted at the final location of G then[Case 2]

Replace A with skip
else if x is Untainted at the location immediately before A
and there is no path from A to CURRENT
and A post-dominates the entry node then[Case 3]

Replace A with skip
else

(* Do nothing *)
end

end
6. Output the result as program T

Fig. 2. Secure Dead Store Elimination Algorithm

The algorithm is shown in Figure 2. It obtains the set of dead assignments
and processes them using taint information to determine which ones are secure to
remove. For the algorithm, we suppose that the control-flow graph is in a simpli-
fied form where each edge either has a guarded command with a skip action, or
a trivial guard with an assignment. I.e., either g → skip or true → x := e. The
taint proof system is given for structured programs, so we suppose that the input
program is structured, and the CFG obtained from it corresponds to that for a
structured program. The “removal” of dead stores is done by replacing the store
with a skip, so the CFG structure is unchanged. (The restriction to structured
programs is for simplicity and may be relaxed, as discussed in Section 6.)

Removal of dead stores can cause previously live stores to become dead, so
the algorithm should be repeated until no dead store can be removed. In Case

1 of the algorithm, it is possible for the taint proof to change as well, so the
algorithm repeats the taint analysis. For cases 2 and 3, we establish and use the
fact that removal does not alter the taint proof.

As the algorithm removes a subset of the known dead stores, the transfor-
mation is correct. In the following, we prove that it is also secure. We separately
discuss each of the (independent) cases in the algorithm. For each case, we give
an illustrative example followed by a proof that the store removal is secure.

5.1 Case 1: Post-domination

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // Dead Store
x = 5; // Dead Store
return ;

}

void foo ()
{

int x;

x = read_password ();
use(x);

x = 5; // Dead Store
return ;

}

Fig. 3. C programs illustrating Case 1 of the algorithm

The example in Figure 3 illustrates this case. In the program on the left,
two dead assignments to x are redundant from the viewpoint of correctness.
Every path to the exit from the first assignment, x = 0, passes through the
second assignment to x. This is a simple example of the situation to which
Case 1 applies. The algorithm will remove the first dead assignment, resulting
in the program to the right. This is secure as the remaining assignment blocks
the password from being leaked outside the function. The correctness of this
approach in general is proved in the following lemmas.

Lemma 1 (Trace Correspondence) Suppose that T is obtained from S by elim-
inating a dead store, x := e. For any starting state s = (H = a, L = c), there
is a trace in T from s if, and only if, there is a trace in S from s. The cor-
responding traces have identical control flow and, at corresponding points, have
identical values for all variables other than x, and identical values for x if the
last assignment to x is not removed.

Proof: (Sketch) This follows from the correctness of dead store elimination,
which can be established by showing that the following relation is a bisimulation.
To set up the relation, it is easier to suppose that dead store x := e is removed
by replacing it with x := ⊥, where ⊥ is an “undefined” value, rather than by
replacement with skip. The ⊥ value serves to record that the value of x is not

important. Note that the CFG is unaltered in the transformation. The relation
connects states (m, s) of the source and (n, t) of the target if (1) m = n (i.e.,
same CFG nodes); (2) s(y) = t(y) for all y other than x; and (3) s(x) = t(x)
if t(x) 6= ⊥. This is a a bisimulation (cf. [11], where a slightly weaker relation
is shown to be a bisimulation). From this the claim of the corresponding traces
having identical control-flow follows immediately, and the data relations follow
from conditions (2) and (3) of the relation. EndProof.

Lemma 2 If α is a dead assignment to variable x in program S that is post-
dominated by other assignments to x, it is secure to remove it from S.

Proof: Let T be the program obtained from S by removing α. We show that
any leaky triple for the transformed program T is already present in the source
program S. Let (a, b, c) be a leaky triple for T . Let τa (resp. σa) be the trace in
T (resp. S) from the initial state (H = a, L = c). Similarly, let τb (resp. σb) be
the trace in T (resp. S) from (H = b, L = c). By trace correspondence (Lemma
1), σa and σb must also reach the exit point and are therefore terminating.

By the hypothesis, the last assignment to x before the exit point in σa and σb

is not removed. Hence, by Lemma 1, τa and σa agree on the value of all variables
at the exit point, including on the value of x. Similarly, τb and σb agree on all
variables at the exit point. As (a, b, c) is a leaky triple for T , the L-values are
different at the final states of τa and τb. It follows that the L-values are different
at the final states for σa and σb, as well, so (a, b, c) is also a leaky triple for S.
EndProof.

5.2 Case 2: Stable Untainted Assignment

int foo ()
{

int x, y;

x = 0; // Dead Store
y = read_user_id ();
if(is_valid (y)){

x = read_password ();
log_in (x, y);
x = 1; // Dead Store

}else{
printf (" Invalid ID");

}
return y;

}

int foo ()
{

int x, y;

y = read_user_id ();
if(is_valid (y)){

x = read_password ();
log_in (x, y);
x = 1; // Dead Store

}else{
printf (" Invalid ID");

}
return y;

}

Fig. 4. C programs illustrating Case 2 of the algorithm

An example of this case is given by the programs in Figure 4. Assume user
id to be public and password to be private, hence read password() returns a
H-input value while read user id() returns a L-input value. There are two dead
assignments to x in the program on the left, and the algorithm will remove
the first one, as x is untainted before that assignment and untainted at the
final location as well. This is secure as in the program on the right x remains
untainted at the final location, and no private information about the password
will be leaked via x. The general correctness proof is given below.

Lemma 3 Suppose that there is a taint proof for program S where (1) x is
untainted at the final location and (2) x is untainted at the location immediately
before a dead store, then it is secure to eliminate the dead store.

Proof: The same proof outline is valid for the program T obtained by replacing
the dead store “x := e with “skip”. Let {E}x := e {F} be the annotation for
the dead store in the proof outline. By the inference rule of assignment, we know
that F(x) = E(e) and that, for all other variables y, F(y) = E(y).

Now we show that E v F is true. Consider any variable z. If z differs from
x, then E(z) ⇒ F(z), as E(z) = F(z). If z is x, then by hypothesis (2), as x is
untainted in E , E(z)⇒ F(z) is trivially true, as E(z) = E(x) is false.

The annotation {E} skip {E} is valid by definition, therefore {E} skip {F} is
also valid by E v F and Proposition 2. Hence, the replacement of an assignment
by skip does not disturb the proof. The only other aspect of the proof that can
depend on the eliminated assignment is the proof rule for a conditional (Case
B). However, this remains valid as well, as it is acceptable for the set of variables
that are forced to be tainted to be an over-approximation of the set of assigned
variables.

By hypothesis (1), x is untainted at the final location in S. As the proof
remains unchanged in T , x is untainted at the final location in T . By the sound-
ness of taint analysis, there is no leak in T from variable x. Hence, any leak in
T must come from variable y different from x. By trace correspondence (Lemma
1), those values are preserved in the corresponding traces; therefore, so is any
leak. EndProof.

5.3 Case 3: Final Assignment

The example in Figure 5 illustrates this case. Assume the credit card number to
be private, so that credit_card_no() returns an H-input value. In the program
on the left, there are two dead assignments to x. The first one is post-dominated
by the second one, while the second one is always the final assignment to x in
every terminating computation, and x is untainted before it. By Case 1, the
algorithm would remove the first one and keep the second one. Such a transfor-
mation is secure, as the source program and result program leaks same private
information. But Case 3 of the algorithm would do a better job: it will remove
the second dead assignment instead, resulting in the program on the right. We
show that the result program is at least as secure as the source program (in this

void foo ()
{

int x, y;

y = credit_card_no ();
x = y;
use(x);
x = 0; // Dead Store
x = last_4_digits (y); // Dead Store
y = 0; // Dead Store
return ;

}

void foo ()
{

int x, y;

y = credit_card_no ();
x = y;
use(x);
x = 0; // Dead Store

y = 0; // Dead Store
return ;

}

Fig. 5. C programs illustrating Case 3 of the algorithm

very example, it is actually more secure than the source program), as x becomes
untainted at the final location and no private information can be leaked outside
the function via x. The following lemma proves the correctness of this approach.

Lemma 4 Suppose that there is a proof outline in the system above for program
S where (1) x is untainted at the location immediately before a dead store, (2)
no other assignment to x is reachable from the dead store, and (3) the store
post-dominates the entry node, then it is secure to eliminate the dead store.

Proof: Similar to Lemma 3, we can prove that the proof outline remains correct
for the program T obtained by replacing the dead store “x := e” with skip. By
hypothesis (1), x is still untainted at the same location in T .

By hypothesis (3), the dead store “x := e” is a top-level statement, i.e.
it cannot be inside a conditional or while loop, thus the dead store (resp. the
corresponding skip) occurs only once in every terminating computation of S
(resp. T). Let ta, . . . , t′a, . . . , t′′a be the terminating trace in T from the initial
state (H = a, L = c), and tb, . . . , t

′
b, . . . , t

′′
b be the terminating trace in T from

the initial state (H = b, L = c) where t′a and t′b are at the location immediately
before the eliminated assignment. By the soundness of taint analysis, x must
have identical values in t′a and t′b.

By hypothesis (2), the value of x is not modified in the trace between t′a and
t′′a (or between t′b and t′′b). Thus, the values of x in t′′a and t′′b are identical, and
there is no leak in T from x. Hence, any leak in T must come from a variable y
different from x. By trace correspondence (Lemma 1), those values are preserved
in the corresponding traces; therefore, so is any leak. EndProof.

Theorem 6 The algorithm for dead store elimination is secure.

Proof: The claim follows immediately from the secure transformation properties
shown in Lemmas 2, 3 and 4. EndProof.

Although the dead store elimination algorithm is secure, it is sub-optimal
in that it may retain more dead stores than necessary. Consider the program

“x = read_password(); use(x); x = read_password(); return;”. The sec-
ond store to x is dead and could be securely removed, but it will be retained by
our heuristic procedure.

The case at the end of Section 2, in which the transformed program reveals
the entire credit card number, cannot happen with dead store elimination. More
generally, we conjecture that this algorithm preserves the amount of leaked in-
formation. Although there is not a single accepted definition of quantitative
leakage, it appears natural to suppose that if two programs have identical com-
putations with identical leaked values (if any) then the amounts should be the
same. This is the case in our procedure. By Lemma 1, all variables other than x
have identical values at the final location in the corresponding traces of S and T .
From the proofs of Theorem 6, we know that at the final location of T , variable
x has either the same value as in S (Case 1) or an untainted value (Cases 2 and
3) that leaks no information, thus T cannot leak more information than S.

6 Discussion

In this section, we discuss variations on the program and security model and
consider the question of the security of other common compiler transformations.

6.1 Variations and Extensions of the Program Model

Unstructured While Programs. If the while program model is extended with
goto statements, programs are no longer block-structured and the control-flow
graph may be arbitrary. The secure algorithm works with CFGs and is therefore
unchanged. An algorithm for taint analysis of arbitrary CFGs appears in [5,6].
This propagates taint from tainted conditionals to blocks that are solely under
the influence of that conditional; such blocks can be determined using a graph
dominator-based analysis. The full version of this paper contains a taint proof
system for CFGs that is based on these ideas. It retains the key properties of the
simpler system given here; hence, the algorithms and their correctness proofs
apply unchanged to arbitrary CFGs.

Procedural Programs. An orthogonal direction is to enhance the programming
model with procedures. This requires an extension of the taint proof system to
procedures, but that is relatively straightforward: the effect of a procedure is
summarized on a generic taint environment for the formal parameters and the
summary is applied at each call site. A taint analysis algorithm which provides
such a proof must perform a whole-program analysis.

A deeper issue, however, is that a procedure call extends the length of time
that a tainted value from the calling procedure remains in memory. Hence, it
may be desirable to ensure that all local variables are untainted before a long-
running procedure invocation. This can be modeled by representing the location
before a procedure invocation as a potential leak location, in addition to the
exit point. We believe that the analysis and algorithms developed here can be
adapted to handle multiple leak locations; this is part of ongoing work.

6.2 The Security of Other Compiler Transformations

Dead store elimination is known to be leaky. In the following, we show that, for
several common compiler transformations, security follows from correctness.

The correctness of a transformation from program S to program T is shown
using a refinement relation, R. For states u, v of a program P , define u =L v
(u and v are “low-equivalent”) to mean that u and v agree on the values of
all Low-variables in program P . We say that R is a strict refinement if R is a
refinement relation from T to S and, in addition:

(a) A final state of T is related by R only to a final state of S
(b) If R(t0, s0) and R(t1, s1) hold, then t0 =L t1 (relative to T) if, and only if,

s0 =L s1 (relative to S). This condition needs to hold only when t0 and t1
are both initial states or are both final states of T .

Theorem 7 Consider a transformation from program S to program T which
does not change the set of high variables and is correct through a strict refinement
relation R. Such a transformation is secure.

Proof: Consider a leaky triple (a, b, c) for T . Let τa be the computation of T
from initial state (H = a, LT = c), similarly let τb be the computation of T from
initial state (H = b, LT = c). Let ta, tb be the final states of τa, τb, respectively.
As the transformation is correct, one needs to consider only the case of a leak
through the low variables at the final state. By assumption, there is a leak in T ,
so that ta =L tb is false. We show that there is a corresponding leak in S.

Let σa be the computation of S which corresponds to τa through R, such a
computation exists as R is a refinement relation. Similarly let σb correspond to
τb through R. By condition (a) of strictness, the state of σa (σb) that is related
to the final state of τa (τb) must be final for S, hence, σa and σb are terminating
computations. Apply condition (b) to the initial states of the corresponding com-
putations τa, σa and τb, σb. As the initial τ -states are low-equivalent, condition
(b) implies that the initial σ-states are low-equivalent. Applying condition (b)
to the final states of the corresponding computations, and using the assumption
that ta =L tb is false, the final σ-states are not low-equivalent. Hence, (a, b, c) is
also a leaky triple for S. EndProof.

Informally, a functional definition of the refinement relation ensures condition
(b) of strictness. Precisely, we say that a refinement relation R is functional if:

(a) Every low state variable x of S has an associated 1-1 function fx(Yx), where
Yx = (y1, . . . , yk) is a vector of low state variables of T . We say that each yi

in Yx influences x.
(b) Every low state variable z of T influences some low-state variable of S
(c) For every pair of states (t, s) related by R, s(x) equals fx(t(y1), . . . , t(yk))

Lemma 5 A functional refinement relation satisfies condition (b) of strictness.

Proof: Suppose that R(t0, s0) and R(t1, s1) hold. By conditions (a) and (c) of
the assumption, for every low state variable x of S, s0(x) equals fx(t0(Yx)) and
s1(x) equals fx(t1(Yx)).

First, suppose that t0 =L t1. As t0 and t1 agree on the values of all low
variables in Yx, s0(x) and s1(x) are equal. This holds for all x, so that s0 =L s1.
Next, suppose that t0 =L t1 does not hold. Hence, t0(y) 6= t1(y) for some low
state variable y of T . By condition (b) of the assumption, y influences some low-
state variable of S, say x. I.e., y is a component of the vector Yx in the function
fx(Yx). Hence, t0(Yx) and t1(Yx) are unequal vectors. Since fx is 1-1, it follows
that s0(x) = fx(t0(Yx)) and s1(x) = fx(t1(Yx)) differ, so that s0 =L s1 does not
hold. EndProof.

The refinement relations for a number of transformations are defined func-
tionally. For instance, constant propagation and control-flow simplifications do
not alter the set of variables, and the refinement relation equates the values of
each variable x in corresponding states of S and T . Hence, the relation meets the
conditions of Lemma 5 and, therefore, condition (b) of strictness. These relations
also satisfy condition (a), as the transformations do not change the termination
behavior of the source program.

Dead-store removal does not does not have a functionally defined refinement
relation. In the example from Figure 1, the final value of x in the source (which
is 0) cannot be expressed as a function of the final value of x in the result (which
is arbitrary).

6.3 Insecurity of SSA

Another important transformation which does not meet the functionality as-
sumption is the single static assignment (SSA) transformation. For instance,
consider this transformation applied to the example of Figure 1. In the program
on the right of Figure 6, the assignments to x have been replaced with single
assignments to x1 and to x2. The final value of x in the source is the final
value of x2; however, x1 does not influence x at all, violating condition (b) of
functionality.

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // clear password
return ;

}

void foo ()
{

int x1 ,x2;

x1 = read_password ();
use(x1);
x2 = 0;
return ;

}

Fig. 6. C programs illustrating the insecurity of SSA transformation

As SSA transformation is crucial to the operation of modern compilers, the
potential for a leak is particularly troubling. One possible resolution is to pass

on taint information to the register allocation stage, forcing the allocator to add
instructions to clear the memory reserved for x1, unless the memory has been re-
allocated subsequently to an untainted variable. Investigation of such remedies
is a topic for future work.

7 Related Work and Conclusions

The fact that correctness preservation is not the same as security preservation has
long been known. Formally, the issue is that refinement in the standard sense, as
applied for correctness, does not preserve security properties. Specifically, a low-
level machine model may break security guarantees that are proved on a higher-
level language model. Full abstraction has been proposed as a mechanism for
preserving security guarantees across machine models in [1]. A transformation
τ is fully abstract if programs P and Q are indistinguishable (to an attacker
context) at level L1 if and only if the transformed programs P ′ = τ(P) and
Q′ = τ(Q) are indistinguishable at level L2. Recent work on this topic [8,4,14]
considers various mechanisms for ensuring full abstraction. This work relates to
the preservation of security across machine levels, while our work relates to the
preservation of security within a single level. For a single level, one can show full
abstraction by proving that P and τ(P) are indistinguishable. That is essentially
the method followed in this paper.

The earliest explicit reference to the insecurity of dead store elimination that
we are aware of is [10], but this issue has possibly been known for a longer period
of time. Nevertheless, we are not aware of other constructions of a secure dead
store elimination transformation. The complexity results in this paper on the
difficulty of translation validation for security, in particular for the apparently
simple case of dead store elimination, are also new to the best of our knowledge.

Theorem 7 in Section 6, which shows that strong refinement relations do
preserve security is related to Theorem 10.5 in [4] which has a similar conclusion
in a different formal setting. The new aspect in this paper is the application of
Theorem 7 to reduce the security of several common compiler transformations
to their correctness.

In a recent paper [7], the authors carry out a detailed study of possible ways
in which compiler transformations can create information leaks. The authors
point out that the correctness-security gap (their term) can be understood in
terms of observables: establishing security requires more information about in-
ternal state to be observable than that needed to establish correctness. (This is
essentially the full abstraction property discussed above.) They describe several
potential approaches to detecting security violations. The inherent difficulty of
security checking has implications for translation validation and testing, two of
the approaches considered in [7]. Our secure dead code elimination algorithm
removes an important source of insecurity, while Theorem 7 reduces the secu-
rity of several other transformations to establishing their correctness with strong
refinement relations.

There is a considerable literature on type systems, static analyses and other
methods for establishing (or testing) the security of a single program, which we
will not attempt to survey here. In contrast, this paper treats the relative secu-
rity question: is the program resulting from a transformation at least as secure
as the original? This has been less studied, and it has proved to be an unex-
pectedly challenging question. Several new directions arise from these results.
Securing the SSA transformation is an important concern, as is understanding
the security of other common compiler transformations. A witnessing structure
for security, analogous to the one for correctness in [11], might be a practical way
to formally prove the security of compiler implementations. A different direction
is to consider transformations that enhance security, rather than just preserve it;
one such transformation is described in [9]. The ultimate goal is a compilation
process that is both correct and secure.

Acknowledgements. We would like to thank Lenore Zuck, V.N. Venkatakr-
ishnan and Sanjiva Prasad for helpful discussions and comments on this re-
search. This work was supported, in part, by DARPA under agreement num-
ber FA8750-12-C-0166. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

References

1. M. Abadi. Protection in programming-language translations. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Pro-
ceedings, volume 1443 of Lecture Notes in Computer Science, pages 868–883.
Springer, 1998.

2. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations,
vol. 1-III. Technical Report ESD-TR-73-278, The MITRE Corporation, 1973.

3. D. Ceara, L. Mounier, and M. Potet. Taint dependency sequences: A characteriza-
tion of insecure execution paths based on input-sensitive cause sequences. In Third
International Conference on Software Testing, Verification and Validation, ICST
2010, Paris, France, April 7-9, 2010, Workshops Proceedings, pages 371–380, 2010.

4. A. A. de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie,
B. C. Pierce, R. Pollack, and A. Tolmach. A verified information-flow architec-
ture. In S. Jagannathan and P. Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 165–178. ACM, 2014.

5. D. E. Denning. Secure information flow in computer systems. PhD thesis, Purdue
University, May 1975.

6. D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, 1977.

7. V. D’Silva, M. Payer, and D. X. Song. The correctness-security gap in compiler
optimization. In 2015 IEEE Symposium on Security and Privacy Workshops, SPW

2015, San Jose, CA, USA, May 21-22, 2015, pages 73–87. IEEE Computer Society,
2015.

8. C. Fournet, N. Swamy, J. Chen, P. Dagand, P. Strub, and B. Livshits. Fully
abstract compilation to JavaScript. In R. Giacobazzi and R. Cousot, editors, The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 371–384. ACM,
2013.

9. K. Gondi, P. Bisht, P. Venkatachari, A. P. Sistla, and V. N. Venkatakrishnan.
SWIPE: eager erasure of sensitive data in large scale systems software. In
E. Bertino and R. S. Sandhu, editors, Second ACM Conference on Data and Appli-
cation Security and Privacy, CODASPY 2012, San Antonio, TX, USA, February
7-9, 2012, pages 295–306. ACM, 2012.

10. M. Howard. When scrubbing secrets in memory doesn’t work, 2002.
http://archive.cert.uni-stuttgart.de/bugtraq/2002/11/msg00046.html. Also
https://cwe.mitre.org/data/definitions/14.html.

11. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In F. Logozzo
and M. Fähndrich, editors, Static Analysis - 20th International Symposium, SAS
2013, Seattle, WA, USA, June 20-22, 2013. Proceedings, volume 7935 of Lecture
Notes in Computer Science, pages 304–323. Springer, 2013.

12. G. Necula. Translation validation of an optimizing compiler. In Proceedings of the
ACM SIGPLAN Conference on Principles of Programming Languages Design and
Implementation (PLDI) 2000, pages 83–95, 2000.

13. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
14. M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens. Secure

compilation to protected module architectures. ACM Trans. Program. Lang. Syst.,
37(2):6, 2015.

15. A. Pnueli, O. Shtrichman, and M. Siegel. The code validation tool (CVT)- auto-
matic verification of a compilation process. Software Tools for Technology Transfer,
2(2):192–201, 1998.

16. G. Smith. Recent developments in quantitative information flow (invited tutorial).
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015, pages 23–31. IEEE, 2015.

17. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

18. L. D. Zuck, A. Pnueli, and B. Goldberg. VOC: A methodology for the translation
validation of optimizing compilers. J. UCS, 9(3):223–247, 2003.

	Securing A Compiler Transformation

