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Abstract A compiler optimization may be correct and yet be insecure. This
work focuses on the common optimization that removes dead (i.e., useless)
store instructions from a program. This operation may introduce new infor-
mation leaks, weakening security while preserving functional equivalence. This
work presents a polynomial-time algorithm for securely removing dead stores.
The algorithm is necessarily approximate, as it is shown that determining
whether new leaks have been introduced by dead store removal is undecidable
in general. The algorithm uses taint and control-flow information to determine
whether a dead store may be removed without introducing a new information
leak. A notion of secure refinement is used to establish the security preserva-
tion properties of other compiler transformations. The important SSA (static
single assignment) optimization is, however, shown to be inherently insecure.

1 Introduction

An optimizing compiler translates programs expressed in high-level program-
ming languages into executable machine code. This is typically done through a
series of program transformations, many of which are aimed at improving per-
formance. It is essential that each transformation preserve functional behavior,
so that the resulting executable has the same input-output functionality as the
original program. It is difficult to formally establish the preservation property,
given the complexity and the size of a typical compiler; this is a long-standing
verification research challenge.

Along with functional preservation, one would like to ensure the preser-
vation of security properties. I.e., the final executable should be at least as
secure against attack as the original program. At first glance, it may seem
that a functionally correct compiler should also be secure, but this is not so. A
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well-known example is dead store elimination [13,10]. Consider the program
on the left hand side of Figure 1. A secret password is read into a local variable
and used. After the use, the memory containing password data is erased, so
that the password does not remain in the clear any longer than is necessary. To
a compiler, however, the erasure instruction appears useless, as the new value
is not subsequently used. The dead-store elimination optimization targets such
useless instructions, as removing them speeds up execution. Applied to this
program, the optimization removes the instruction erasing x. The input-output
behavior of the two programs is identical, hence the transformation is correct.
In the resulting program, however, the password may remain in the clear in
the stack memory beyond the local procedure scope, as a procedure return is
typically implemented by moving the stack pointer to point to a new frame,
without erasing the current one. As a consequence, an attack that gains access
to the program stack in the untrusted procedure may be able to read the
password from the stack memory, as might attacks that gain access after the
procedure foo has terminated.

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // clear password
untrusted ();
return ;

}

void foo ()
{

int x;

x = read_password ();
use(x);
// skip
untrusted ();
return ;

}

Fig. 1 C programs illustrating the insecurity of dead-store elimination

There are workarounds for this problem, but those are specific to a lan-
guage and a compiler. For instance, if x is declared volatile in C, the com-
piler will not remove any assignments to x. Compiler-specific pragmas could
also be applied to force the compiler to retain the assignment to x. But such
workarounds are unsatisfactory, in many respects. First, a workaround can
be applied only when a programmer is aware of the potential problem, which
may not be the case. Next, a programmer must understand enough of the
compiler’s internal workings to implement the correct fix, which need not be
the case either – compilation is a complex, opaque process. Furthermore, the
solution need not be portable, as studied in [21]. Finally, the fix may be too
severe: for instance, marking x as volatile blocks the removal of any dead as-
signments to x, although an assignment x := 5 immediately following x := 0
can be removed safely, without leaking information. Inserting instructions to
clear potentially tainted data before untrusted calls is also inefficient; as taint
analysis is approximate, such instructions may do more work than is necessary.
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For these reasons, we believe it is necessary to find a fundamental solution to
this problem.

One possible solution is to develop an analysis which, given an instance of
a correct transformation, checks whether it is secure. This would constitute
a Translation Validation mechanism for security, similar to those developed
for correctness in e.g., [18,15,22]. We show, however, that translation valida-
tion for security of dead store elimination is undecidable for general programs
and PSPACE-hard for finite-state programs. On the other hand, translation
validation for the correctness of dead store elimination is easily decided in
polynomial time.

Faced with this difficulty, we turn to provably secure dead-store removal
methods. Our algorithm takes as input a program P and a list of dead as-
signments. It prunes that list to those assignments whose removal does not
introduce a new information leak, and removes them from P , obtaining the
result program Q. The analysis of each assignment relies on taint and control-
flow information from P . We formalize a notion of secure transformation and
establish that this algorithm is secure. Although the algorithm relies on taint
information, it is independent of the specific analysis method used to obtain
this information, as it relies only on the results of such a method, presented
as a taint proof outline for P .

Three important points should be noted. First, the algorithm is necessar-
ily sub-optimal given the hardness results; it may retain more stores than is
strictly necessary. Second, the algorithm enforces relative rather than absolute
security. I.e., it does not eliminate information leaks from P , it only ensures
that no new leaks are introduced in the transformation from P to Q. Finally,
the guarantee is for information leakage, which is but one aspect of program
security. Other aspects, such as protection against side-channel attacks, must
be checked separately.

The difference between correctness and security is fundamentally due to
the fact that correctness can be defined by considering individual executions,
while the definition of information flow requires the consideration of pairs of
executions. The standard proof methodology, based on refinement relations,
that is used to show the correctness of transformations, does not, therefore, al-
ways preserve security properties. We develop a stronger notion of refinement
which preserves information flow, and use it to show that several common com-
piler optimizations do preserve information flow properties. Unfortunately, an
optimization that is key to modern compilers, the SSA (static single assign-
ment) transformation, does not satisfy this stronger notion and will, in fact,
leak information. In follow-up work [7], we present a method to restore the
security level of a program after a series of SSA-dependent transformations.

To summarize, the main contributions of this work are a formulation of the
security of a transformation; results showing that a posteriori verification of
the security of dead store elimination is undecidable in general and difficult for
finite-state programs; a new dead-store elimination procedure which is prov-
ably correct and secure; and a general proof method, secure refinement, which
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helps establish security preservation for several standard compiler transforma-
tions. These are first steps towards the construction of a fully secure compiler.

2 Preliminaries

We formulate the correctness and security of program transformations for
a basic programming language. The language is deliberately kept simple to
clearly illustrate the issues and the proof arguments.

Program Syntax and Semantics. Programs are structured While programs
with syntax given below. (Illustrative examples are, however, written in C.)
All variables have Integer type. Variables are partitioned into input and state
variables and, on a different axis, into sets H (high security) and L (low se-
curity). All state variables are low security while input variables may be of
either level.

x ∈ X variables
e ∈ E ::= c | x | f(e1, . . . , en) expressions: f is a function, c a constant
g ∈ G Boolean conditions on X
S ∈ S ::= skip | out(e) | x := e | S1;S2 | if g then S1 else S2 fi |
while g do S od statements

A program can be represented by its control flow graph (CFG). (We omit
a description of the conversion process, which is standard.) Each node of the
CFG represents a program location, and each edge is labeled with a guarded
command, of the form “g → x := e” or “g → skip” or “g → out(e)”, where
g is a Boolean predicate and e is an expression over the program variables.
A special node, entry, with no incoming edges, defines the initial program
location, while a special node, exit, defines the final program location. Values
for input variables are specified at the beginning of the program and remain
constant throughout execution.

Program Semantics. The semantics of a program is defined in the standard
manner. A program state s is a pair (m, p), where m is a CFG node (referred
to as the location of s) and p is a function mapping each variable to a value
from its type. The function p can be extended to evaluate an expression in
the standard way (omitted). We suppose that a program has a fixed initial
valuation for its state variables. An initial state is one located at the entry
node, where the state variables have this fixed valuation. The transition re-
lation is defined as follows: a pair of states, (s = (m, p), t = (n, q)) is in the
relation if there is an edge f = (m,n) of the CFG which connects the locations
associated with s and t, and for the guarded command on that edge, either i)
the command is of the form g → x := e, the guard g evaluates to true at p,
and the function q(y) is identical to p(y) for all variables y other than x, while
q(x) equals p(e); ii) the command is of the form g → skip or g → out(e), the
guard g evaluates to true at p, and q is identical to p. The predicates guarding
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the outgoing edges of a node partition the state space, so that a program is
deterministic and deadlock-free. A execution trace of the program (referred to
in short as a trace) from state s is a sequence of states s0 = s, s1, . . . such that
adjacent states are connected by the transition relation. A computation is a
trace from the initial state. A computation is terminating if it is finite and the
last state has the exit node as its location.

Post-domination in CFG. A set of nodes N post-dominates a node m if each
path in the CFG from m to exit passes through at least one node from N .

Information Leakage. Information leakage is defined in a standard manner [4,
9]. A program P is said to leak information if there is a pair of H-input values
{a, b}, with a 6= b, and an L-input c such that the computations of P on inputs
(H = a, L = c) and (H = b, L = c) either (a) differ in the sequence of output
values produced by the out actions, or (b) both terminate but differ in the
value of one of the L-variables at their final states. We call (a, b, c) a leaky
triple for program P .

Correct Transformation. Program transformations are assumed not to alter
the set of input variables. A transformation from program P to program Q
may alter the code of P or the set of state variables. The transformation is
correct if, for every input value a, the sequence of output values for executions
of P and Q from a is identical.

Secure Transformation. A correct transformation supplies the relative cor-
rectness guarantee that Q is at least as correct as P ; it does not assure the
correctness of either program with respect to a specification. Similarly, a se-
cure transformation ensures relative security, i.e., that Q is not more leaky
than P ; it does not ensure the absolute security of either P or Q. We define a
transformation from P to Q to be secure if the set of leaky triples for Q is a
subset of the leaky triples for P .

Suppose that the transformation from P to Q is correct. Consider a leaky
triple (a, b, c) for Q. If the computations of Q from inputs (H = a, L = c) and
(H = b, L = c) differ in their output, from correctness, this difference must
also appear in the corresponding computations in P . Hence, the only way in
which Q can be less secure than P is if both computations terminate in Q
with different values for low-variables, while the corresponding computations
in P terminate with identical values for low-variables.

Quantifying Leakage. This definition of a secure transformation does not dis-
tinguish between the amount of information that is leaked by the two pro-
grams. Consider, for instance, a program P which leaks the last four digits of
a credit card number, and a (hypothetical) transformation of P to a program
Q where the entire card number is made visible. This transformation would be
considered secure by the formulation above, as both programs leak informa-
tion about the credit card number. From a practical standpoint, though, one
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might consider Q to have a more serious leak than P , as the last four digits
are commonly printed on credit card statements and can be considered to be
non-secret data. For this example, it is possible to make the required distinc-
tion by partitioning the credit card number into a secure portion and a “don’t
care” final four digits. More generally, a formulation of secure transformation
should take the “amount of leaked information” into account; however, there
is as yet no standard definition of this intuitive concept, cf. [19] for a survey.
We conjecture, however, that the secure dead-store elimination procedure pre-
sented here does not allow a greater amount of information leakage than the
original program. A justification for this claim is presented in Section 5.

3 The Hardness of Secure Translation Validation

The Translation Validation approach to correctness [18,15,22] determines,
given input program P , output program Q, and (possibly) additional hints
from the compiler, whether the functional behavior of P is preserved in Q.
We show, however, that translation validation for secure information flow is
substantially more difficult than validation for correctness. The precise setting
is as follows. The input to the checker is a triple (P,Q,D), where P is an input
program, Q is the output program produced after dead store elimination, and
D is a list of store instructions, known to be dead (i.e., useless) through a stan-
dard, imprecise liveness analysis on P . The question is to determine whether
Q is at most as leaky as P . To begin with, we establish that correctness can
be checked in polynomial time. We then establish that checking security is
undecidable in general. It is also hard for programs with finite-state domains:
PSPACE-complete for general finite-state programs, and co-NP-complete for
loop-free, finite-state programs (proofs in the Appendix).
Theorem 1. The correctness of a dead store elimination instance (P,Q,D)
can be checked in PTIME.
Proof: The check proceeds as follows. First, check that every store in D is
dead in P , by re-doing the liveness analysis on P . Then check that P and Q are
identical programs, except at the location of stores in D, which are replaced
with skip. These checks are in polynomial time in the size of the programs.
EndProof.
Theorem 2. Checking the security of a dead store elimination given as a
triple (P,Q,D) is undecidable for general programs.
Proof: We use a simple reduction from the Halting problem. Consider a pro-
gram Y with no input and no output. Let h be a fresh High security input
variable, and let l be a fresh Low security state variable. Define program P (h)
as Y ; l := h; l := 0, program Q(h) as Y ; l := h, and let D = {“l := 0”}.

If Y terminates, then P has no leaks, while Q leaks the value of h. If Y
does not terminate, then by the definition of leakage, neither P nor Q have
an information leak. Thus, the transformation is insecure if, and only if, Y
terminates. EndProof.
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4 A Taint Proof System

Taint analysis is a static program analysis method aimed at tracking the influ-
ence of input variables on program state. The taint proof system introduced
here records the results of such an analysis. It is similar to the proof systems
of [9,20] but explicitly considers per-variable, per-location taints. It is inspired
by the taint proof system of [5], which is the basis of the STAC taint analysis
plugin of the Frama-C compiler. There are small differences in the treatment
of IF-statements with a tainted condition: in that system, every variable as-
signed in the scope of the condition must be tainted; in ours, the taint may be
delayed to a point immediately after the statement.

The Appendix includes a proof of soundness for this system. Although the
focus here is on structured programs, the properties of the taint system and
the overall results carry over to arbitrary CFGs.

4.1 Preliminaries

A taint environment is a function E : V ariables → Bool which maps each
program variable to a Boolean value. For a taint environment E , we say that
x is tainted if E(x) is true, and untainted otherwise. The taint environment E
can be formally extended to apply to terms as follows:
Ẽ(c) is false, if c is a constant
Ẽ(x) is E(x), if x is a variable
Ẽ(f(t1, . . . , tN )) is true if, and only if, Ẽ(ti) is true for some i
To simplify notation, in the rest of the paper, we silently extend E to terms

without using the formally correct notation Ẽ . A pair of states (s = (m, p), t =
(n, q)) satisfies a taint environment E , denoted by (s, t) |= E , if m = n and for
every variable x, if E(x) is false, then s(x) = t(x). I.e., (s, t) satisfy E if s and
t are at the same program location, and s and t have identical values for every
variable x that is not tainted in E .

Taint environments are ordered by component-wise implication: E v F
(read as “E better than F”) is defined as (∀x : E(x) ⇒ F(x)). If E is better
than F , then F taints all variables tainted by E and maybe more. These
definitions induce some basic properties, shown below.
Proposition 1. (Monotonicity) If (s, t) |= E and E v F , then (s, t) |= F .

For a statement S and states s = (m, p) and s′ = (n, q), we write s S−→ s′

(read as s′ is the successor of s after S) to mean that there is an execution
trace from s to s′ such that m denotes the program location immediately
before S and n denotes the program location immediately after S.

In addition, for taint environments E and F , we write {E}S {F} to mean
that for any pair of states satisfying E , their successors after S satisfy F .
Formally, {E}S {F} holds if for all s, t such that (s, t) |= E , s S−→ s′, and
t

S−→ t′, it is the case that (s′, t′) |= F .
Proposition 2. If {E}S {F}, E ′ v E and F v F ′, then {E ′}S {F ′}.
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4.2 Proof System

We present a taint proof system for inferring {E}S {F} for a structured pro-
gram S. The soundness proof, given in the Appendix, is by induction on pro-
gram structure, following the pattern of the proof in [20].

S is skip: {E} skip {E}

S is out(e): {E} out(e) {E}

S is x := e:
F(x) = E(e) ∀y 6= x : F(y) = E(y)

{E}x := e {F}

Sequence:
{E}S1 {G} {G}S2 {F}

{E}S1;S2 {F}

Conditional: For a statement S, we use Assign(S) to represent a set of vari-
ables which over-approximates those variables assigned to in S. There are two
cases, based on whether the condition is tainted in E :

Case A:
E(c) = false {E}S1 {F} {E}S2 {F}

{E} if c then S1 else S2 fi {F}

Case B:

E(c) = true {E}S1 {F} {E}S2 {F}
∀x ∈ Assign(S1) ∪Assign(S2) : F(x)
{E} if c then S1 else S2 fi {F}

While Loop:
E v I {I} if c then S else skip fi {I} I v F

{E} while c do S od {F}

Theorem 3. (Soundness) Consider a structured program P with a proof
of {E}P {F}. For all initial states (s, t) such that (s, t) |= E: if s P−→ s′ and
t

P−→ t′, then (s′, t′) |= F .

The proof system can be turned into an algorithm for calculating taints.
The proof rule for each statement other than the while loop can be read
as a monotone forward environment transformer. For while loops, the proof
rule requires the construction of an inductive environment, I. This can be
done through a straightforward least fixpoint calculation for I based on the
transformer for the body of the loop. Let Ik denote the value at the k-th
stage. The fixpoint step from In to In+1 must change the taint status of least
one variable from untainted in In to tainted in In+1, while leaving all tainted
variables in In tainted in In+1. Thus, the fixpoint is reached in a number of
stages that is bounded by the number of variables. The entire process is thus
in polynomial time.
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5 A Secure Dead Store Elimination Transformation

The results of Section 3 show that translation validation for security is com-
putationally difficult. The alternative is to build security into each program
transformation. In this section, we describe a dead store elimination procedure
built around taint analysis, and prove that it is secure.

1. Compute the control flow graph G for the source program S
2. Set each internal variable at the initial location as Untainted, each L-input as

Untainted, and each H-input as Tainted
3. Do a taint analysis on G
4. Do a liveness analysis on G and obtain the set of dead assignments, DEAD
5. while DEAD is not empty do

Remove an assignment, A, from DEAD, suppose it is “x := e”
Let CURRENT be the set of all assignments to x in G except A
if A is post-dominated by CURRENT then [Case 1]

Replace A with skip
Update the taint analysis for G

else if x is Untainted at the location immediately before A
and x is Untainted at the final location of G then [Case 2]

Replace A with skip
else if x is Untainted at the location immediately before A
and there is no path from A to CURRENT
and A post-dominates the entry node then [Case 3]

Replace A with skip
else

(* Do nothing *)
end

end
6. Output the result as program T

Fig. 2 Secure Dead Store Elimination Algorithm

The algorithm is shown in Figure 2. It obtains the set of dead assign-
ments and processes them using taint and control-flow information to deter-
mine which ones are secure to remove. The program is in structured form, with
taint information represented as in the proof system of the previous section.
The control-flow graph is assumed to be in a normalized form where each edge
either has a guarded command with a skip action, or a trivial guard with an
assignment or output. I.e., g → skip, true → x := e, or true → out(e). The
“removal” of dead stores is done by replacing the store with a skip, so the CFG
structure is unchanged.

Removal of dead stores can cause previously live stores to become dead,
so the algorithm should be repeated until no dead store can be removed. In
Case 1 of the algorithm, removal could cause the taint proof to change, so the
taint analysis is repeated. For cases 2 and 3, we establish and use the fact that
removal does not alter the taint proof.

As the algorithm removes a subset of the known dead stores, the transfor-
mation is correct. In the following, we prove that it is also secure. We separately
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discuss each of the (independent) cases in the algorithm. For each case, we give
an illustrative example followed by a proof that the store removal is secure.

5.1 Post-domination (Case 1)

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // Dead Store
x = 5; // Dead Store
return ;

}

void foo ()
{

int x;

x = read_password ();
use(x);

x = 5; // Dead Store
return ;

}

Fig. 3 C programs illustrating Case 1 of the algorithm

The example in Figure 3 illustrates this case. In the program on the left, the
two dead assignments to x are redundant from the viewpoint of correctness.
Every path to the exit from the first assignment, x = 0, passes through the
second assignment to x. This is a simple example of the situation to which
Case 1 applies. The algorithm will remove the first dead assignment, resulting
in the program to the right. The result is secure as the remaining assignment
blocks the password from being leaked outside the function. The correctness
of this approach in general is proved in the following lemmas.

Lemma 1. (Trace Correspondence) Suppose that T is obtained from S by
eliminating a dead store, x := e. For any starting state s = (H = a, L = c),
there is a trace in T from s if, and only if, there is a trace in S from s. The
corresponding traces have identical control flow and, at corresponding points,
have identical values for all variables other than x, and identical values for x
if the last assignment to x is not removed.

Proof: (Sketch) This follows from the correctness of dead store elimination,
which can be established by showing that the following relation is a bisimula-
tion. To set up the relation, it is easier to suppose that dead store x := e is
removed by replacing it with x := ⊥, where ⊥ is an “undefined” value, rather
than by replacement with skip. The ⊥ value serves to record that the value
of x is not important. Note that the CFG is unaltered in the transformation.
The relation connects states (m, s) of the source and (n, t) of the target if (1)
m = n (i.e., same CFG nodes); (2) s(y) = t(y) for all y other than x; and
(3) s(x) = t(x) if t(x) 6= ⊥. This is a bisimulation (cf. [14], where a slightly
weaker relation is shown to be a bisimulation). The fact that corresponding
traces have identical control-flow follows immediately, and the data relations
follow from conditions (2) and (3) of the bisimulation. EndProof.
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Lemma 2. If α is a dead assignment to variable x in program S that is
post-dominated by other assignments to x, it is secure to remove it from S.

Proof: Let T be the program obtained from S by removing α. We show that
any leaky triple for the transformed program T is already present in the source
program S. Let (a, b, c) be a leaky triple for T . Let τa (resp. σa) be the trace in
T (resp. S) from the initial state (H = a, L = c). Similarly, let τb (resp. σb) be
the trace in T (resp. S) from (H = b, L = c). By trace correspondence (Lemma
1), σa and σb must also reach the exit point and are therefore terminating.

By the hypothesis, the last assignment to x before the exit point in σa and
σb is not removed. By Lemma 1, τa and σa agree on the value of all variables
at the exit point; thus, they agree on the value of x. Similarly, τb and σb agree
on the values of all variables at the exit point. As (a, b, c) is a leaky triple for
T , the L-values are different at the final states of τa and τb. It follows that the
L-values are different at the final states for σa and σb, hence (a, b, c) is a leaky
triple for S. EndProof.

5.2 Stable Untainted Assignment (Case 2)

int foo ()
{

int x, y;

x = 0; // Dead Store
y = read_user_id ();
if( is_valid (y)){

x = read_password ();
log_in (x, y);
x = 1; // Dead Store

} else {
printf (" Invalid ID");

}
return y;

}

int foo ()
{

int x, y;

y = read_user_id ();
if( is_valid (y)){

x = read_password ();
log_in (x, y);
x = 1; // Dead Store

} else {
printf (" Invalid ID");

}
return y;

}

Fig. 4 C programs illustrating Case 2 of the algorithm

An example of this case is given by the programs in Figure 4. Assume that
the user identity is public and the password is private, hence read_password
returns an H-input value while read_user_id returns an L-input value. There
are two dead assignments to x in the program on the left, and the algorithm will
remove the first one, as x is untainted before that assignment and untainted
at the final location as well. This is secure as in the program on the right x
remains untainted at the final location; hence, it does not leak information
about the password. The general correctness proof is given below.
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Lemma 3. Let x := e be a dead store in program S. Suppose that there is a
taint proof for S where x is untainted at the location immediately before the
dead store. The taint assertions form a valid taint proof for the program T
obtained by replacing the store with skip.

Proof:
The proof outline for S is also valid for the program T obtained by replacing

the dead store “x := e with “skip”. Let {E}x := e {F} be the annotation for
the dead store in the proof outline. By the inference rule of assignment, we
know that F(x) = E(e) and that, for all other variables y, F(y) = E(y).

Now we show that E v F is true. Consider any variable z. If z differs
from x, then E(z) ⇒ F(z), as E(z) = F(z). If z is x then, by hypothesis (2),
E(z)⇒ F(z) is trivially true, as E(z) = E(x) is false.

The annotation {E} skip {E} is valid by definition, therefore {E} skip {F}
is also valid by E v F and Proposition 2. Hence, the replacement of an as-
signment by skip does not invalidate the local proof assertions. The only other
aspect of the proof which may depend on the eliminated assignment is the proof
rule for a conditional statement: Case B depends on the set of assigned vari-
ables within the scope of the condition, and the elimination of the assignment
to x may remove it from that set. However, the proof assertions will remain
valid, as the considered set of assigned variables can be an over-approximation
of the actual set of assigned variables. EndProof.

Lemma 4. Let x := e be a dead store in program S. Suppose that there is
a taint proof for S where (1) x is untainted at the final location and (2) x is
untainted at the location immediately before the dead store. It is then secure
to eliminate the dead store.

Proof: By Lemma 3, the taint proof for S remains valid for T . By hypothesis
(1), as x is untainted at the final location in S, it is also untainted at the final
location in T . By the soundness of taint analysis, there is no leak in T from
variable x. Hence, any leak in T must come from variable y different from x.
By trace correspondence (Lemma 1), the values of variables other than x are
preserved by corresponding traces; therefore, so is any leak. EndProof.

5.3 Final Assignment (Case 3)

The example in Figure 5 illustrates this case. Assume the credit card number to
be private, so that credit_card_no returns an H-input value. In the program
on the left, there are two dead assignments to x. The first one is post-dominated
by the second one, while the second one is always the final assignment to
x in every terminating computation, and x is untainted before it. By Case
1, the algorithm would remove the first one and keep the second one. Such
a transformation is secure, as the source program and result program leaks
same private information. But Case 3 of the algorithm would do a better job:
it will remove the second dead assignment instead, resulting in the program
on the right. We show that the result program is at least as secure as the
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void foo ()
{

int x, y;

y = credit_card_no ();
x = y;
use(x);
x = 0; // Dead Store
x = last_4_digits (y); // Dead Store
y = 0; // Dead Store
return ;

}

void foo ()
{

int x, y;

y = credit_card_no ();
x = y;
use(x);
x = 0; // Dead Store

y = 0; // Dead Store
return ;

}

Fig. 5 C programs illustrating Case 3 of the algorithm

source program (in this very example, it is actually more secure than the
source program), as x becomes untainted at the final location and no private
information can be leaked outside the function via x. The following lemma
proves the correctness of this approach.

Lemma 5. Let x := e be a dead store in program S. Suppose that there is a
taint proof for S where (1) x is untainted at the location immediately before a
dead store, (2) no other assignment to x is reachable from the dead store, and
(3) the store post-dominates the entry node. It is then secure to eliminate the
dead store.

Proof: By Lemma 3, the taint proof for S is also valid for T . By hypothesis
(1), x is still untainted at the same location in T .

By hypothesis (3), the dead store “x := e” is a top-level statement; thus,
the dead store (resp. the corresponding skip) occurs only once in every ter-
minating computation of S (resp. T ). Let ta, . . . , t′a, . . . , t′′a be the terminating
trace in T from the initial state (H = a, L = c), and tb, . . . , t

′
b, . . . , t

′′
b be the

terminating trace in T from the initial state (H = b, L = c) where t′a and
t′b are at the location immediately before the eliminated assignment. By the
soundness of taint analysis, x must have identical values in t′a and t′b.

By hypothesis (2), the value of x is not modified in the trace between t′a
and t′′a (or between t′b and t′′b ). Thus, the values of x in t′′a and t′′b are identical,
and there is no leak in T from x. Hence, any leak in T must come from a
variable y different from x. By trace correspondence (Lemma 1), the values of
variables other than x are preserved in corresponding traces; therefore, so is
any leak. EndProof.

Theorem 4. The algorithm for dead store elimination is secure.

Proof: The claim follows immediately from the secure transformation prop-
erties shown in Lemmas 2, 4 and 5. EndProof.

Although the dead store elimination algorithm is secure, it is sub-optimal
in that it may retain more dead stores than necessary. Consider the program

x = read_password(); use(x); x = read_password(); return;
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The second store to x is dead and could be securely removed, but it will be
retained by our heuristic procedure.

The case discussed at the end of Section 2, in which the transformed pro-
gram reveals the entire credit card number, cannot happen with dead store
elimination. More generally, we conjecture that this algorithm preserves the
amount of leaked information. Although there is not a single accepted defi-
nition of quantitative leakage, it appears natural to suppose that if two pro-
grams have identical computations with identical leaked values (if any) then
the leakage amount should also be identical. This is the case in our procedure.
By Lemma 1, all variables other than x have identical values at the final lo-
cation in the corresponding traces of S and T . From the proofs of Theorem 4,
we know that at the final location of T , variable x has either the same value as
in S (Case 1) or an untainted value (Cases 2 and 3) that leaks no information,
thus T cannot leak more information than S.

6 Discussion

In this section, we discuss variations on the program and security model and
consider the security of other compiler transformations.

Unstructured While Programs. If the while program model is extended with
goto statements, programs are no longer block-structured and the control-
flow graph may be arbitrary. The secure algorithm works with CFGs and
is therefore unchanged. An algorithm for taint analysis of arbitrary CFGs
appears in [8,9]. This propagates taint from tainted conditionals to blocks
that are solely under the influence of that conditional; such blocks can be
determined using a graph dominator-based analysis. The Appendix contains
a taint proof system for CFGs that is based on these ideas. It retains the key
properties of the simpler system given here; hence, the algorithms and their
correctness proofs apply unchanged to arbitrary CFGs.

Procedural Programs. An orthogonal direction is to enhance the programming
model with procedures. This requires an extension of the taint proof system to
procedures, but that is relatively straightforward: the effect of a procedure is
summarized on a generic taint environment for the formal parameters and the
summary is applied at each call site. A taint analysis algorithm which provides
such a proof must perform a whole-program analysis.

Other Attack Models. The attack model in this paper is one where the attacker
knows the program code, can observe outputs, and inspect the values of local
variables at termination.

An extension is to consider an attacker that can observe the local variables
at intermediate program points, such as calls to procedures. This would model
situations such as those shown in Figure 1, where a leak may occur inside
an untrusted procedure. The location of an untrusted procedure call can be
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considered as a leakage point, in addition to the leakage point at the end
of the current procedure (foo in the example). One may also insert other
leakage points as desired. The analysis and algorithms developed here are
easily adapted to handle multiple leakage points.

As discussed previously, the security guarantee is only with respect to
information flow. It does not guarantee that side-channel attacks, such as
those based on timing, will not be successful; ensuring that requires different
forms of analysis, cf. [2].

7 The Security of Other Compiler Transformations

A natural question that arises is that of the security of other compiler opti-
mizations. In the following, we present a general proof technique to show that
an optimization is secure. The technique is a strengthening of the standard
refinement notion used to establish correctness. Using this technique, we show
that some common optimizations are secure. On the other hand, we show that
the important SSA optimization is insecure.

The correctness of a transformation from program S to program T is shown
using a refinement relation, R. For the discussion below, the exact form of the
refinement relation (i.e., whether it relates single steps, or allows stuttering) is
not important. We only require the property that if T is related by refinement
to S, then any computation of T has a corresponding computation in S with
identical output.

However, to fix a particular notion, we present the definition of a single
step refinement R from T to S. This is a relation from the state-space of T to
the state-space of S, such that

– For every initial state t of T , there is an initial state s of S such that R(t, s),
and

– If R(t, s) holds and t′ is a T -successor of t, there is an S-successor s′ of s
such that R(t′, s′) and the output (if any) is identical on the transitions
(t, t′) and (s, s′)

An easy induction shows the desired property that every computation of T
has an R-related computation in S, with identical outputs.

For states u, v of a program P , define u ≡P v (u and v are “low-equivalent
in P”) to mean that u and v agree on the values of all Low-variables in program
P .

We say that R is a secure refinement if R is a refinement relation from T
to S and satisfies the additional conditions below. (This was referred to as a
‘strict’ refinement in [6].)

(a) A final state of T is related by R only to a final state of S, and
(b1) If R(t0, s0) and R(t1, s1) hold, t0 and t1 are initial states of T , and t0 ≡T t1

holds, then s0 ≡S s1 holds as well, and
(b2) If R(t0, s0) and R(t1, s1) hold, t0 and t1 are final states, and t0 ≡T t1 does

not hold, then s0 ≡S s1 does not hold.
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Theorem 5. Consider a transformation from program S to program T which
does not change the set of high variables and has an associated secure refine-
ment relation R. Such a transformation is both correct and secure.

Proof: Correctness follows from R being a refinement relation. We now es-
tablish security.

Consider a leaky triple (a, b, c) for T . As the transformation is correct,
one needs to consider only the case of a leak through the low variables at
the final states of the computations τa (from (H = a, LT = c)) and τb (from
(H = b, LT = c)). Let ta, tb be the final states of τa, τb, respectively. As the
triple is leaky, ta ≡T tb is false. We show that there is a corresponding leak in
S.

Let σa be the computation of S which corresponds to τa through R, such
a computation exists as R is a refinement relation. Similarly let σb correspond
to τb through R. By condition (a) of secure refinement, the state of σa (σb)
that is related to the final state of τa (τb) must be final for S, hence, σa and σb

are terminating computations. Apply condition (b1) to the initial states of the
corresponding computations (τa, σa) and (τb, σb). As the initial τ -states are
low-equivalent in T , condition (b1) implies that the initial σ-states are low-
equivalent in S. Apply condition (b2) to the final states of the corresponding
computations. As ta ≡T tb does not hold, the final σ-states are also not low-
equivalent. Hence, (a, b, c) is a leaky triple for S, witnessed by the computations
σa and σb. EndProof.

For several transformations, the refinement relation associated with the
transformation has a simple functional nature. We show that any such relation
has properties (b1) and (b2). Precisely, we say that a refinement relation R is
functional if:

(a) Every low state variable x of S has an associated 1-1 function fx(Yx),
where Yx = (y1, . . . , yk) is a vector of low state variables of T . We say that
each yi in Yx influences x.

(b) Every low state variable of T influences some low-state variable of S
(c) For every pair of states (t, s) related by R, s(x) equals fx(t(y1), . . . , t(yk))

Lemma 6. A functional refinement relation satisfies conditions (b1) and (b2)
of secure refinement.

Proof: Suppose that R(t0, s0) and R(t1, s1) hold. By conditions (a) and (c) of
the functionality assumption, for every low state variable x of S, s0(x) equals
fx(t0(Yx)) and s1(x) equals fx(t1(Yx)).

First, suppose that t0 ≡T t1. As t0 and t1 agree on the values of all low
variables in Yx, s0(x) and s1(x) are equal. This holds for all x, so that s0 ≡S s1.
Next, suppose that t0 ≡T t1 does not hold. Hence, t0(y) 6= t1(y) for some low
state variable y of T . By condition (b) of the assumption, y influences some
low-state variable of S, say x. I.e., y is a component of the vector Yx in the
function fx(Yx). Hence, t0(Yx) and t1(Yx) are unequal vectors. Since fx is 1-
1, it follows that s0(x) = fx(t0(Yx)) and s1(x) = fx(t1(Yx)) differ, so that
s0 ≡S s1 does not hold.
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This establishes that t0 ≡T t1 if, and only if, s0 ≡S s1 at all related states,
regardless of whether the states are initial or final, ensuring (b1) and (b2).
EndProof.

The standard constant propagation and folding transformation does not
alter the set of program variables. The refinement relation used to show cor-
rectness equates the values of each variable x in corresponding states of S and
T . Hence, the relation meets the conditions of Lemma 6 and, therefore, condi-
tions (b1-b2) of secure refinement. These relations also satisfy condition (a),
as the transformations do not change the termination behavior of the source
program. Certain control-flow simplifications, such as the merge of successive
basic blocks into one, or the removal of an unsatisfiable branch of a conditional
statement, can be similarly shown to be secure. The refinement relations for
loop peeling and loop unrolling are also secure, as the relations imply that the
value of each variable is identical in states related by the refinement relation.

7.1 Insecurity of SSA

An important transformation whose refinement relation is not secure is the
static single assignment (SSA) transformation. Indeed, the transformation
leaks information, as shown by the example in Figure 6. In the program on
the right-hand side, the assignments to x have been replaced with single as-
signments to x1 and to x2. The value of the password is leaked via x2.

void foo ()
{

int x;

x = read_password ();
use(x);
x = 0; // clear password
return ;

}

void foo ()
{

int x1 ,x2;

x1 = read_password ();
use(x1 );
x2 = 0;
return ;

}

Fig. 6 C programs illustrating the insecurity of SSA transformation

Modern compilers make extensive use of the SSA format, relying on it to
simplify the implementation of optimizations. Thus, the possibility of leakage
via conversion to SSA form is particularly troubling. The question of securing
SSA was left open in the initial version of this paper [6]. Recent work [7] designs
a mechanism to track and block the leaks introduced by a SSA transformation.

8 Related Work and Conclusions

The fact that correctness preservation is not the same as security preserva-
tion has long been known. Formally, the issue is that refinement in the stan-
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dard sense, as applied for correctness, does not preserve security properties.
Specifically, a low-level machine model may break security guarantees that are
proved on a higher-level language model. Full abstraction has been proposed as
a mechanism for preserving security guarantees across machine models in [1].
A transformation τ is fully abstract if programs P and Q are observationally
indistinguishable (to an attacker context) if and only if the transformed pro-
grams P ′ = τ(P ) and Q′ = τ(Q) are indistinguishable. Recent work on this
topic [11,3,17] considers various mechanisms for ensuring full abstraction. In
our context, the observables are the values of variables at the exit point – an
attacker can observe the values of local variables on termination. For this at-
tack model, the standard DSE transformation is not fully abstract. For exam-
ple, the original program in Figure 1 is observationally equivalent to program
Q given by int x=0; where x is initialized to 0, while the transformed pro-
grams P ′ = DSE(P ) (the right-hand program in Figure 1) and Q′ = DSE(Q),
which equals Q, are observationally distinguishable. The proofs of the new
secure transform, which we may denote SDSE, establish that programs P and
SDSE(P ) are observationally equivalent, for all P ; it follows immediately that
the transformation SDSE is fully abstract.

The earliest explicit reference to the insecurity of dead store elimination
that we are aware of is [13]; however, the issue has possibly been known for
a longer period of time. Nevertheless, we are not aware of other constructions
of a secure dead store elimination transformation. The complexity results in
this paper on the difficulty of translation validation for security, in particular
for the apparently simple case of dead store elimination are also new, to the
best of our knowledge.

Theorem 5 in Section 6 on secure refinement relations is related to The-
orem 10.5 in [3] which has a similar conclusion, in a different formal setting.
The application of Theorem 5 to establish the security of common compiler
transformations appears to be new.

A recent paper [10] has an extensive study of possible ways in which com-
piler transformations can create information leaks. The authors point out that
the “correctness-security gap” (their term) can be understood in terms of ob-
servables: establishing security requires more information about internal pro-
gram state than that needed to establish correctness. (This is related to the
full abstraction property discussed above.) They describe several potential ap-
proaches to detecting security violations. The inherent difficulty of security
checking has implications for translation validation and testing, two of the
approaches considered in [10]. Our secure dead code elimination algorithm re-
moves an important source of insecurity, while Theorem 5 is used to establish
the security of several other transformations. The insecurity of SSA is tackled
in our follow-on paper [7], which presents a method that restores the security
level of a program to its original level, after the program has been converted
to SSA form and transformed by SSA-dependent optimizations.

There is a considerable literature on type systems, static analyses and
other methods for establishing (or testing) the security of a single program,
which we will not attempt to survey here. In contrast, this paper treats the
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relative security question: is the program resulting from a transformation at
least as secure as the original? This has been less studied, and it has proved
to be an unexpectedly challenging question. Several new directions arise from
these results. An important question is to fully understand the security of
other compiler optimizations and register allocation methods. A witnessing
structure for security, analogous to the one for correctness in [14], might be a
practical way to formally prove the security of compiler implementations. A
different direction is to consider transformations that enhance security, rather
than just preserve it; one such transformation is described in [12]. The ultimate
goal is a compilation process that is both correct and secure.
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A Appendix

A.1 Hardness of Security Checking for Finite-State Programs

Theorem 6. Checking the security of a dead store elimination given as a triple (P,Q,D)
is PSPACE-complete for finite-state programs.

Proof: Consider the complement problem of checking whether a transformation from P to
Q is insecure. By definition, this is so if there exists a triple (a, b, c) which is leaky for Q but
not for P . Determining whether (a, b, c) is leaky can be done in deterministic polynomial
space, by simulating the program on the input pairs (a, c) and (b, c). Non-termination is
detected in a standard way by adding an n-bit counter, where 2n is an upper bound on
the size of the search space: the number n is linear in the number of program variables. A
non-deterministic machine can guess the triple (a, b, c), then check that the triple is leaky
for Q but not leaky for P . Thus, checking insecurity is in non-deterministic PSPACE, which
is in PSPACE by Savitch’s theorem.

To show hardness, consider the problem of deciding whether a finite-state program with
no inputs or outputs terminates, which is PSPACE-complete by a simple reduction from
the IN-PLACE-ACCEPTANCE problem [16]. Given such a program R, let h be a fresh
high security input variable and l a fresh low-security state variable, both Boolean, with
l initialized to false. Define program P as: “R; l := h; l := false”, and program Q as:
“R; l := h”. As the final assignment to l in P is dead, Q is a correct result of dead store
elimination on P . Consider the triple (h = true, h = false, ). If R terminates, then Q
has distinct final values for l for the two executions arising from inputs (h = true, ) and
(h = false, ), while P does not, so the transformation is insecure. If R does not terminate,
there are no terminating executions for Q, so Q has no leaky triples and the transformation
is trivially secure. Hence, R is non-terminating if, and only if, the transformation from P to
Q is secure. EndProof.

A.2 Hardness of Security for Transformations on Loop-Free Finite-State
Programs

We consider the triple (P,Q,D) which defines a dead store elimination, and ask whether Q
is at least as secure as P . We show this is hard, even for the very simple program structure
where all variables are Boolean, and assignments are limited to the basic forms x := y or
x := c, where x, y are variables and c is a Boolean constant. Some of the variables will be
designated as high-security, depending on context.

To simplify exposition, we will use a general assignment of the form x := e where e
is a Boolean formula. This can be turned into a simple loop-free program of size O(|e|) by
introducing fresh variables for each sub-tree of e and turning Boolean operators into if-then-
else constructs. (E.g., x := ((y ∨ w) ∧ z) is first turned into t1 := y ∨ w; t2 := z; x :=
t1 ∧ t2, then the Boolean operators are expanded out, e.g., the first assignment becomes
if y then t1 := true else t1 := w fi .)

Theorem 7. Checking the security of a dead store elimination given as a triple (P,Q,D)
is co-NP-complete for loop-free programs.

Proof:
Consider the complement problem of checking whether a transformation from P to Q

is insecure. Note that P and Q have the same set of low-security variables.
We first show that this problem is in NP. By definition, an insecurity exists if and

only if there is a leaky triple (a, b, c) for Q which is not leaky for P . Given a triple (a, b, c)
and a program, say P , a machine can deterministically test whether the triple is leaky for
P by simulating the pair of executions from (a, c) and (b, c), keeping track of the current
low-security state and the last output value for each execution. This simulation takes time
polynomial in the program length, as the program is loop-free. A non-deterministic machine
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can guess a triple (a, b, c) in polynomial time (these are assignments of values to variables),
then use the simulation to check first that the triple is not leaky for P and then that it is
leaky for Q, and accept if both statements are true. Thus, checking insecurity is in NP.

To show NP-hardness, let φ be a propositional formula over N variables x1, . . . , xN . Let
y be a fresh Boolean variable. Let the x-variables be the low-security inputs, and let y be
a high security input. Let z be a low-security variable, which starts at false. Define Q(x, y)
as the program z := (φ ∧ y), and let P (x, y) be the program Q; z := false. As the final
assignment in P is dead, Q is a correct outcome of dead store elimination applied to P .
(Note: the programs P and Q may be turned into the simpler form by expanding out the
assignment to y as illustrated above, marking all freshly introduced variables as low-security.

Suppose φ is satisfiable. Let m be a satisfying assignment for x. Define the inputs
(x = m, y = true) and (x = m, y = false). In Q, the final value of z from those inputs is
true or false depending on value of y, so the triple t = (y = true, y = false, x = m) is leaky
for Q. However, in P , the final value of z is always false, regardless of y, and t is not leaky
for P . Hence, the elimination of dead store from P is insecure. If φ is unsatisfiable then,
in Q, the final value of z is always false regardless of y, so the transformation is secure.
I.e., the transformation is insecure if, and only if, φ is satisfiable, which shows NP-hardness.
EndProof.

A.3 Soundness of the Taint Proof System

Proposition 2. If {E}S {F} and E ′ v E and F v F ′, then {E ′}S {F ′}.

Proof: Consider s, t such that (s, t) |= E ′ and s
S−→ s′ and t

S−→ t′.

(s, t) |= E ′

⇒(s, t) |= E By E ′ v E and Proposition 1
⇒(s′, t′) |= F By definition of {E}S {F}
⇒(s′, t′) |= F ′ By F v F ′and Proposition 1

EndProof.

Lemma 7. If {E}S {F}, variable x is tainted in E and S does not modify x, then x is
tainted in F .

Proof: (Sketch) Here we prove that E(x) implies F(x) by induction on the structure of S.
If S is an assignment, this is clearly true by the assignment rule. For a sequence S1;S2 such
that {E}S1 {G} and {G}S2 {F}, this is true by the induction hypothesis: E(x) implies G(x)
which implies F(x). For a loop, by the inference rule, the loop invariant environment I must
be such that E v I, so I(x) holds. As I v F , F(x) holds. For a conditional, as E(x) holds by
assumption and {E}S1 {F} and {E}S2 {F} hold, by the induction hypothesis, F(x) holds.
EndProof.

Theorem 3. Consider a structured program P with a proof of {E}P {F}. For all initial
states (s, t) such that (s, t) |= E: if s P−→ s′ and t P−→ t′, then (s′, t′) |= F .

Proof:
0) S is skip or out(e):

{E} skip {E} and {E} out(e) {E}

Consider states s = (m, p), t = (n, q), s′ = (m′, p′) and t′ = (n′, q′) such that s S−→ s′

and t
S−→ t′ hold. By the semantics of skip and out(e), s′ = s and t′ = t. Thus, if (s, t) |= E,

then (s′, t′) |= E.
1) S is an assignment x := e:

F(x) = E(e) ∀y 6= x : F(y) = E(y)
{E}x := e {F}
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Consider states s = (m, p), t = (n, q), s′ = (m′, p′) and t′ = (n′, q′) such that s S−→ s′

and t S−→ t′ hold. By the semantics of assignment, it is clear that p′ = p[x← p(e)], q′ = q[x←
q(e)], and m′ = n′ denotes the program location immediately after the assignment. Assume
(s, t) |= E, we want to prove (s′, t′) |= F , or more precisely, ∀v : ¬F(v)⇒ p′(v) = q′(v).

Consider variable y different from x. If F(y) is false, so is E(y), hence p(y) = q(y) since
(s, t) |= E. As p′(y) = p(y) and q′(y) = q(y), we get p′(y) = q′(y) as desired.

Consider variable x. If F(x) is false, so is E(e), hence only untainted variables in E appear
in e. As (s, t) |= E, those variables must have equal values in s and t, thus p(e) = q(e). Since
p′ = p[x← p(e)], q′ = q[x← q(e)], we know p′(x) = q′(x).
2) Sequence:

{E}S1 {G} {G}S2 {F}
{E}S1;S2 {F}

Consider states s and t such that s S1;S2−−−−→ s′ and t S1;S2−−−−→ t′. There must exist interme-
diate states s′′ and t′′ such that s S1−−→ s′′, t S1−−→ t′′, s′′ S2−−→ s′ and t′′

S2−−→ t′. Now suppose
(s, t) |= E, we have:

(s, t) |= E
⇒(s′′, t′′) |= G By definition of {E}S1 {G}
⇒(s′, t′) |= F By definition of {G}S2 {F}

3) Conditional: For a statement S, we use Assign(S) to represent the set of variables
assigned in S. The following two cases are used to infer {E}S {F} for a conditional:

Case A:
E(c) = false {E}S1 {F} {E}S2 {F}

{E} if c then S1 else S2 fi {F}

Case B:

E(c) = true {E}S1 {F} {E}S2 {F}
F v F ′ ∀x ∈ Assign(S1) ∪Assign(S2) : F ′(x) = true

{E} if c then S1 else S2 fi {F ′}

Let S = if c then S1 else S2 fi , states s = (m, p), t = (n, q), s′ = (m′, p′), t′ = (n′, q′).
Suppose (s, t) |= E, s S−→ s′, t S−→ t′.

Case A: E(c) = false, hence by definition of (s, t) |= E, we know p(c) = q(c). Thus, both
successors s′ and t′ result from the same branch, say S1. By the hypothesis that {E}S1 {F}
and (s, t) |= E, we have (s′, t′) |= F .

Case B: E(c) = true, hence s′ and t′ may result from different branches of S. To show
that (s′, t′) |= F ′, let x be a variable untainted in F ′. By the definition of F ′, there must
be no assignment to x in either S1 or S2. Hence, p′(x) = p(x) and q′(x) = q(x).

If p(x) = q(x), then p′(x) = q′(x). Otherwise, consider p(x) 6= q(x), and we show that
this cannot be the case. As (s, t) |= E, x must be tainted in E. As x is not modified in S1
and {E}S1 {F} holds, by Lemma 7 (below), x is tainted in F . Since F v F ′, x is tainted in
F ′, which is a contradiction. Hence, we show that p′(x) = q′(x) for any variable x untainted
in F ′. Clearly, m′ = n′, thus (s′, t′) |= F ′.
4) While Loop:

E v I {I} if c then S else skip fi {I} I v F
{E} while c do S od {F}

Let states s, t be such that (s, t) |= E, and s′, t′ be the states reached from s, t at the
end of the while loop. By E v I, (s, t) |= I. We want to prove that (s′, t′) |= I, so that by
I v F , we can have (s′, t′) |= F .

Let the trace from s to s′ be s = s0, s1, . . . , sn = s′ where si are states at the start
of successive loop iterations. Similarly, let the trace from t to t′ be t = t0, t1, . . . , tm = t′.
Without loss of generality, assume that n > m, then we can pad the t-trace with sufficiently
many skip actions (i.e., the same as “ if c then S else skip fi ” where the evaluation of c is
false) to make the two traces of the same length. The final state of padded t-trace is still t′.
For the rest of proof, we assume that n = m and prove by induction on n that (si, ti) |= I.
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The induction basis (s0 = s, t0 = t) |= I holds. Then, assume the claim that for k ≥ 0,
(sk, tk) |= I. From the hypothesis “{I} if c then S else skip fi {I}” of the inference rule, we
get (sk+1, tk+1) |= I as well. Hence, (s′ = sn, t′ = tm) |= I holds. EndProof.

B Taint Analysis for Control-Flow Graphs

In this section, we describe how to adjust the taint proof system to apply to control-flow
graphs (CFGs). We assume that a control-flow graph has a single entry node and a single
exit node. A program is defined by its control flow graph, which is a graph where each node
is a basic block and edges represent control flow. A basic block is a sequence of assignments
to program variables.

The entry and exit nodes are special. All other nodes fall into one of three classes. The
partitioning makes it easier to account for taint values and propagation.

– A merge node has multiple incoming edges and a φ function x← φ((x1, e1), . . . , (xn, en))
for every variable x, which (simultaneously over all variables) assigns x the value of x1
if control is transferred through edge e1, the value of x2 if control is transferred through
edge e2 and so forth,

– A basic node, which is a single assignment statement, and
– A branch node, which is either an unconditional branch to the following node, or a

conditional branch on condition c, through edge et if c is true, and through edge ef if
c is false.

The edge relations are special. The entry node has a single merge node as a successor
and no incoming edge. The exit node has itself as the single successor, and behaves like a
skip. Every merge node has a single successor, which is a basic node. Every basic node has a
single successor, which is either a basic or a branch node. Every successor of a branch node
is either a merge node or the exit node.

A taint annotation for a control-flow graph is an assignment of environments to every
CFG edge. An annotation is valid if the following conditions hold:

– The assignment to the outgoing edge from the entry node has high-security input vari-
ables set to H (true) and all other variables set to L (false),

– For a merge node with assignments x ← φ((x1, e1), . . . , (xn, en)), incoming edges an-
notated with E1, . . . , En and outgoing edge annotated with F , for all i: {Ei}x← xi{F}
holds. (Note that here all φ assignments are gathered into one to keep the notation
simple.),

– For a basic node with assignment statement S, incoming edge annotated with E and
outgoing edge annotated with F , the assertion {E}S{F} holds,

– For an unconditional branch node with incoming edge annotated with E and outgoing
edge annotated with F , {E}skip{F} holds, and

– For an conditional branch node if c then et else ef fi , with incoming edge annotated
with E and outgoing edges annotated with Ft and Ff , respectively:

– {E}skip{Ft} and {E}skip{Ff} hold, and
– If E(c) is true (i.e., c is tainted in E), then let d be the the immediate post-dominator

for this branch node. Node d must be a merge node, say with incoming edges
f1, . . . , fk. Let F1, . . . ,Fk be the environments assigned, respectively, to those edges.
Let Assign(n, d) be an over-approximation of the set of variables assigned to on all
paths from the current branch node n to d. Then, for all x ∈ Assign(n, d), and for
all i: it must be the case that Fi(x) = true.

A structured program turns into a control flow graph with a special (reducible) structure.
It is straightforward to check that a valid structured proof annotation turns into a valid CFG
annotation for the graph obtained from the structured program.
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B.1 Soundness

We have the following soundness theorem. Informally, the theorem states that if (the node
from) edge f post-dominates (the node from) edge e, then computations starting from
states consistent with e’s annotation to f result in states which are consistent with f ’s
annotation. It follows that terminating computations starting from states consistent with
the entry edge annotation result in states consistent with the exit edge annotation. We write
(s, e) p−→ (s′, f) to indicate that there is a path (a sequence of edges e0 = e, e1, . . . , ek = f
such that the target of ei is the source of ei+1, for all i) from e to f , and that s′ at edge f
is obtained from state s at edge e by the actions along that path.

Theorem 8. For a given CFG: let e be an edge incident on node n, and let f be an
outgoing edge from node m which post-dominates n. Let E,F be the annotations for edges
e and f , respectively. For states s, t such that (s, t) |= E and states u, v and paths p, q such
that (s, e) p−→ (u, f) and (t, e) q−→ (v, f), it is the case that (u, v) |= F .

Proof: The proof is by induction on the sum of the lengths of paths p and q, where the
length is the number of edges on the path.

The base case is when the sum is 2. Then m = n, and f is an outgoing edge of node
n. The validity conditions ensure that {E}S{F} hold, where S is the statement associated
with n. It follows that (u, v) |= F .

Assume inductively that the claim holds when the sum is at most k, for k ≥ 0. Now
suppose the sum is k + 1. The argument goes by cases on the type of node n.

(1) n is a merge node, a basic node, or an unconditional branch node. Then it has a single
successor node, say n′, via some edge e′. Let E ′ be the annotation on e′. By the conditions
on a valid annotation, {E}S{E ′} holds, where S is the statement associated with n. Thus,
for the immediate successors s′, t′ of s, t along the paths p, q (respectively), (s′, t′) |= E ′. As
n′ is the immediate post-dominator of n and all post-dominators of n are linearly ordered,
m is a post-dominator of n′. The suffixes p′, q′ of the paths p, q starting at e′ have smaller
total length. By the induction hypothesis, as (s′, t′) |= E ′, it follows that (u, v) |= F .

(2) n is a conditional branch node with condition c and successor edges et, ef leading
to successor nodes nt, nf . There are two cases to consider.

(2a) The branch condition is tainted, i.e., E(c) = true. Let n′ be the immediate post-
dominator of n. This must be a merge node by the canonical structure of the CFG, with a
single outgoing edge, say g′. By the constraints on valid annotation, if G is the annotation on
g′, then G(x) = true if variable x is assigned to on a path from n to n′. Hence, if G(x) = false,
then x has no assignment on such a path, in particular, it has no assignment on the segments
p′ of p and q′ of q from n to the first occurrence of n′. Let s′, t′ be the states after execution
of p′ and q′ (resp.). Then, s′(x) = s(x) and t′(x) = t(x). By the contrapositive of Lemma
7, E(x) = false. As (s, t) |= E, it follows that s(x) = t(x) and, therefore, s′(x) = t′(x). This
shows that (s′, t′) |= G. As the suffixes p′′, q′′ of the paths p, q after n′ have smaller total
length, and m is a post-dominator of n′ (recall that all post-dominators of n are linearly
ordered and n′ is the first), from the induction hypothesis, it follows that (u, v) |= F .

(2b) The branch condition is untainted, i.e., E(c) = false. Thus, s(c) = t(c), so the
paths p, q have a common successor, say nt, through edge et. The validity conditions imply
that {E}skip{Et} hold, where Et is the annotation for edge et. Hence, (s, t) |= Et. As m is
a post-dominator of n, it is also a post-dominator of nt. The suffixes p′, q′ of p, q from nt

have smaller total length; hence, by the induction hypothesis, (u, v) |= F . EndProof.
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