
Automata as Abstractions

Dennis Dams and Kedar S. Namjoshi

Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.
{dennis,kedar}@research.bell-labs.com

Abstract. We propose the use of tree automata as abstractions in the
verification of branching time properties, and show several benefits. In
this setting, soundness and completeness are trivial. It unifies the abun-
dance of frameworks in the literature, and clarifies the role of concepts
therein in terms of the well-studied field of automata theory. Moreover,
using automata as models simplifies and generalizes results on maximal
model theorems.

1 Introduction

Program verification, and in particular the model checking [3, 27] approach that
we consider here, usually takes the form of property checking: Given a program
model M and a property ϕ, does M satisfy ϕ (M |= ϕ)? The answer obtained
should be true or false; otherwise verification has failed. Program analysis [26],
on the other hand, serves a somewhat different purpose, namely to collect infor-
mation about a program. Thus, program analysis produces a set of properties
that M satisfies. The more properties there are, the better: this enables more
compiler optimizations, better diagnostic messages, etc.

Abstraction is fundamental to both verification and analysis. It extends model
checking to programs with large state spaces, and program analyses can be
described in a unified way in terms of Abstract Interpretation [5]. An abstraction
framework includes the following components. The set C of concrete objects
contains the structures whose properties we are principally interested in, such
as programs. A is the set of abstract objects (or abstractions), which simplify
concrete objects by ignoring aspects that are irrelevant to the properties to be
checked (in verification) or collected (in analysis), thus rendering them amenable
to automated techniques. An abstraction relation ρ ⊆ C ×A specifies how each
concrete object can be abstracted. Properties are expressed in a logic L and
interpreted over concrete objects with |= ⊆ C × L and over abstract objects1

with |=α ⊆ A × L. A principal requirement for any abstraction framework is
that it is sound : if ρ(c, a) and a |=α ϕ, then c |= ϕ. This ensures that we can
establish properties of concrete objects by inspecting suitable abstractions.

1 One could choose different logics on the concrete and abstract sides, but this would
unnecessarily complicate the discussion here.

Abstraction for analysis and verification In program analysis, depending on the
kind of information that needs to be collected, a particular abstract data domain
is chosen that provides descriptions of concrete data values. The abstract object
is then, e.g., a non-standard collecting semantics, computed by “lifting” all pro-
gram operations to the abstract domain. Soundness is ensured by showing that
each lifted operation correctly mimics the effect of the corresponding concrete
operation. Ideally, lifted operations are optimal, which means that the largest
possible set of properties is computed relative to the chosen abstract domain.
As this is not always possible, the precision of a lifted operation is of interest.

In Model Checking, the properties of interest go beyond the universal safety
properties that are commonly the target of program analyses; they include live-
ness aspects and existential quantification over computations, as formalized by
branching-time temporal logics. Under these circumstances, the usual recipe for
lifting program transitions to abstract domains falls short: the abstract programs
thus constructed are sound only for universal, but not for existential properties.
This can be fixed by lifting a transition relation in two different ways, interpret-
ing universal properties over one relation (called may), and existential ones over
the other relation (called must) [22].

Given an abstract domain, optimal may and must relations can be defined [4,
7, 28]. But one may argue that for program verification, the notion of precision is
overshadowed by the issue of choosing a suitable abstract domain. In verification,
unlike in analysis, a partial answer is not acceptable: one wants to either prove
or disprove a property. Hence, even an optimal abstraction on a given domain
is useless if it does not help settle the verification question. In other words,
the focus shifts from precision of operators to precision of domains. Tools for
verification via abstraction will need to be able to construct modal transition
systems over domains of varying precision, depending on the given program and
property.

Is it, then, enough to consider a may-must transition system structure over
arbitrarily precise abstract domains? No, suggest a number of research results
[23, 25, 30, 6, 10]: modifying must transitions so as to allow multiple target states
— a must hyper-transition — enables one to devise even more precise abstract
objects, which satisfy more existential properties. Are there other missing ingre-
dients? When have we added enough? To answer these questions, we first need
to formulate a reasonable notion of “enough”.

From precision to completeness As we have argued earlier, precision is not really
the key abstraction issue in the context of verification. Even within the limited
setting where abstract objects are finite transition systems with only may tran-
sitions, it is always possible to render more universal properties true, by making
a domain refinement. The implicit question in the above-mentioned papers is a
different one, namely: is it always possible to find a finite abstract object that is
precise enough to prove a property true of the concrete object? (The emphasis
on finiteness is because the end goal is to apply model checking to the abstract
object.) This is the issue of (in)completeness: An abstraction framework is com-

plete2 if for every concrete object c ∈ C and every property ϕ ∈ L such that
c |= ϕ, there exists a finite abstract object a ∈ A such that ρ(c, a) and a |= ϕ.
For the case of linear-time properties, completeness was first addressed in [32,
20].

The quest for completeness for branching time, undertaken in [25, 6], has
shown that without the addition ofmust hyper-transitions (obtained by so-called
focus moves in [6]), modal transition systems are incomplete for existential safety
properties. Furthermore, as already predicted by [32, 20], fairness conditions are
needed to achieve completeness for liveness properties.

Contribution of this paper Over the years, research in refinement and abstraction
techniques for branching time properties on transition systems has produced a
large and rather bewildering variety of structures: Modal Transition Systems,
with may and must relations [22]; Abstract Kripke structures [9] and partial
and multi-valued Kripke structures [1, 2], with 3-valued components; Disjunctive
Modal Transition Systems [23], Abstract transition structures [10], and Gener-
alized Kripke Modal Transition Systems [30], with must hyper-transitions; and
Focused Transition Systems, with focus and defocus moves and acceptance con-
ditions [6]. Having achieved completeness for full branching time logic with Fo-
cused Transition Systems, which put all essential features together, it may be
time to step back to try and see the bigger picture in this abundance of concepts.
Is there an encompassing notion in terms of which the key features of all of these
can be understood?

In this paper we answer this question affirmatively: indeed, behind the vari-
ous disguises lives the familiar face of tree automata. We start by showing how
automata themselves can be employed as abstract objects, giving rise to remark-
ably simple soundness and completeness arguments. The technical development
rests upon known results from automata theory. We view this as a strong posi-
tive: it shows that establishing the connection enables one to apply results from
the well-developed field of automata theory in a theory of abstraction. Then, we
connect automata to previously proposed notions of abstract objects, by show-
ing how one of the existing frameworks can be embedded into the automaton
framework.

A tree automaton, indeed, can be seen as just an ordinary (fair) transition
system extended with an OR-choice (or “focus”) capability. Remarkably, this
simple extension turns out to be enough to guarantee completeness. Automata
thus identify a minimal basis for a complete framework, showing that some of
the concepts developed in modal/mixed/focused structures are not strictly nec-
essary3. As a further illustration of the clean-up job achieved by our observation,

2 A different notion of completeness is studied by Giacobazzi et. al. in [14]. Their notion
of completeness requires that for every concrete object, there exists an abstraction of
it that satisfies precisely all the properties as the concrete object, relative to a given
logic. For example, in the context of CTL, this requires the concrete and abstract
transition systems to be bisimilar, and thus there is not always a finite abstraction.

3 This conclusion applies only to the issue of completeness: in terms of size, for in-
stance, focused transition systems may be exponentially more compact than ordinary

we illustrate how the use of automata generalizes and simplifies known maximal
model theorems [15, 21].

An appetizer To demonstrate how the use of automata as abstractions simplifies
matters, we consider the notions of soundness and completeness in an abstraction
framework that uses automata (details follow in subsequent sections). For an
automaton A considered as an abstract object, the set of concrete objects that
it abstracts (its concretization) is taken to be its (tree4) language £(A).

The question is how to define the evaluation of temporal properties over
tree automata such that soundness is ensured. Adopting the automata-theoretic
view, we express also a property ϕ by an automaton, whose language consists
of all models of ϕ. Clearly, the answer then is to define, for any automaton A
and property B, A |= B as £(A) ⊆ £(B). Soundness then holds trivially: if
M ∈ £(A) and A |= B, then M ∈ £(B). Furthermore, also completeness follows
immediately: Given any, possibly infinite, M such that M |= B, there exists a
finite abstraction of M through which B can be demonstrated, namely B itself:
clearly, M ∈ £(B) and B |= B. All this is trivial, and that is precisely the point:
using automata, constructions that are otherwise rather involved now become
straightforward.

In practice, the above set-up is less appealing, since checking a property over
an abstraction requires deciding tree-language inclusion, which is EXPTIME-
hard. In Section 3, we define a notion of simulation between tree automata.
Deciding the existence of such a simulation has a lower complexity (in NP,
and polynomial in the common case), yet it is a sufficient condition for language
inclusion. We show that the approach remains sound and complete for this choice.

2 Background

In the introduction, we make an informal case that tree automata are more ap-
propriate than transition systems as the objects of abstraction. Tree automata
are usually defined (cf. [12]) over complete trees with binary, ordered branching
(i.e., each node has a 0-successor and a 1-successor). This does not quite match
with branching time logics: for example, the basic EX operator of the µ-calculus
cannot distinguish between the order of successors, or between bisimilar nodes
with different numbers of successors. In [18, 19], Janin and Walukiewicz intro-
duced a tree automaton type appropriately matched to the µ-calculus, calling it
a µ-automaton. We use this automaton type in the paper.

Definition 1 (Transition System, Kripke Structure). A transition system
with state labels from Lab is a tuple S = (S, Ŝ, R, L) where S is a nonempty,

automata, since they can exploit both 3-valuedness (in propositional labelings and
in transitions) and alternation.

4 We focus on verification of branching-time properties, and consequently use tree
automata as abstractions. But our suggestion to use automata as abstractions spe-
cializes to the case of linear-time properties and word automata, and indeed was
inspired by it — see [20].

countable set of states, Ŝ ⊆ S is a set of initial states, R ⊆ S×S is a transition
relation, and L : S → Lab is a labeling function.

Fix Prop to be a finite set of propositions. A Kripke Structure is a transition
system with state labels from 2Prop. ut

From each initial state, a transition system can be “unfolded” into its compu-
tation tree. Formally, a tree is a transition system with state space isomorphic
to a subset of strings over the naturals such that if x.c is a state, so is x, and
there is a transition from x to x.c. The state corresponding to the empty string
is called the root. We refer to a state in a tree as a node.

Definition 2 (µ-Automaton [18]). A µ-automaton5 is a tuple A = (Q,B, Q̂,
or,br, L,Ω) where:

– Q is a non-empty, countable set of states, called or states,
– B is a countable set of states, disjoint from Q, called branch states,
– Q̂ ⊆ Q is a non-empty set of initial states,
– or ⊆ Q×B is a choice relation, from or states to branch states,
– br ⊆ B ×Q is a transition relation, from branch states to or states,
– L : B → 2Prop is a labeling function, mapping each branch state to a
subset of propositions,

– Ω : Q→ N is an indexing function, used to define the acceptance condition.
ut

We sometimes Curry relations: for instance, or(q) is the set {b | (q, b) ∈ or}. The
automaton is finite iff Q∪B is a finite set. Only finite automata are formulated
in [18]; we allow automata to be infinite so that an infinite transition system
can be viewed as a simple tree automaton. (Indeed, µ-automata generalize fair
transition systems only in allowing non-trivial or choice relations. This is made
precise in Definition 5 of the next section.) In the rest of the paper, we use
“automaton” to stand for “µ-automaton”, unless mentioned otherwise.

Informal Semantics: Given an infinite tree, a run of an automaton on it pro-
ceeds as follows. The root of the tree is tagged with an initial automaton state;
a pair consisting of a tree node and an automaton state is called a configura-
tion. At a configuration (n, q), the automaton has several choices as given by
or(q); it chooses (non-deterministically) a branch state b in or(q) whose la-
beling matches that of n. The automaton tags the children of n with or states
in br(b), such that every or-state tags some child, and every child is tagged
with some or state. This results in a number of successor configurations, which
are explored in turn, ad infinitum. Notice that there can be many runs of an
automaton on a tree, based on the non-determinism in choosing branch states
in the automaton, and in the way children are tagged in the tree. An input tree
is accepted if there is some run where every sequence of configurations produced

5 We have made some minor syntactic changes over the definition in [18]: making the
role of the branch states explicit, allowing multiple initial states, and eliminating
transition labels.

on that run meets the automaton acceptance condition. To illustrate this pro-
cess, Figure 1 shows a tree, an automaton for the CTL formula EFp (“a state
labeled p is reachable”), and an accepting run of the automaton on the tree.

Ω = 0¬p

¬p

¬p

¬p

p

p

00

0

ε

b0 b1 b2

q

p p ¬p

p ¬p p ¬p

(ε, q)

(ε, b2)

(0,>) (1, q)

(1, b2)

(10,>) (10, q)

(10, b1)

(100,>)

>

1

10

100

Ω = 1

Fig. 1. Left: an input tree. Middle: µ-automaton for EFp, taking Prop = {p}. The
state > accepts any subtree. Right: an accepting run.

Definition 3 (Automaton Acceptance [18]). Let S = (S, {ε}, R, LS) be a
tree with labels from 2Prop, and let A = (Q,B, Q̂,or,br, LA, Ω) be an automa-
ton. For q̂ ∈ Q̂, a q̂-run of A on S is a tree T where each node is labeled with a
configuration from S × (Q ∪B), satisfying the following conditions.

1. (Initial) The root of T is labeled with (ε, q̂).

2. (or) Every node of T that is labeled with (n, q), where q ∈ Q, has a child
labeled (n, b) for some b ∈ or(q).

3. (branch) For every node x ∈ T that is labeled with (n, b) where b ∈ B:

(a) LS(n) = LA(b).

(b) For every n′ ∈ R(n), there is a child of x labeled with (n′, q′), for some
q′ ∈ br(b).

(c) For every q′ ∈ br(b), there is a child of x labeled with (n′, q′), for some
n′ ∈ R(n).

A q̂-run T of A on S is accepting (by the so-called “parity condition”) iff on
every infinite path π in T , the least value of Ω(q), for or-states q that appear
infinitely often on π, is even. The tree S is accepted by A iff for some q̂ ∈ Q̂,
there is a q̂-run of A on S that is accepting. A Kripke Structure is accepted by
A iff all trees in its unfolding are accepted by A. The language £(A) of A is the
set of all Kripke Structures that are accepted by A. ut

3 Abstraction with Automata

3.1 Abstraction with Language Inclusion

We now define the abstraction framework based on automaton language inclusion
that was discussed at the end of the introduction. The concrete objects are
Kripke Structures. The abstract objects are finite automata. The abstraction
relation is language membership: i.e., a Kripke Structure S is abstracted by
automaton A iff S ∈ £(A). Finally, branching time temporal properties are
given as finite automata, where a property B holds of a Kripke Structure S (i.e.,
a concrete object) iff S ∈ £(B), and B holds of an automaton A (i.e., an abstract
object) iff £(A) ⊆ £(B). In the introduction we showed the following.

Theorem 1. The abstraction framework based on automaton language inclusion
is sound and complete.

3.2 Abstraction with Simulation

The simplicity of the framework presented above makes it attractive from a
conceptual point of view. However, checking a temporal property amounts to
deciding language inclusion between tree automata, which is quite expensive
(EXPTIME-hard even for the finite tree case [29]). Hence, we consider below a
framework based on a sufficient condition for language inclusion, namely the ex-
istence of a simulation between automata, which can be checked more efficiently.

For automata on finite trees, simulation has been defined previously, see e.g.
[8], and our definition here is a straightforward generalization of that. Roughly
speaking, simulation between automata A1 and A2 ensures that at correspond-
ing or states, any or choice in A1 can be simulated by an or choice in A2. As
such, it follows the structure of the standard definition of simulation between
transition systems [24]. At corresponding branch states, however, the require-
ment is more reminiscent of the notion of bisimulation: any branch transition
from one automaton has a matching branch transition from the other. In order
to deal with the infinitary acceptance conditions, it is convenient to describe
simulation checking as an infinite, two-player, game, as is done in [16] for fair
simulation on Kripke Structures.

Definition 4 (Automaton Simulation). Let A1 and A2 be automata. For
initial states q̂1 ∈ Q̂1 and q̂2 ∈ Q̂2, we define the (q̂1, q̂2)-game as follows.
Every play is a sequence of configurations as specified by the following rules.
Each configuration consists of a pair of states of the same type (i.e., both are or

states or both are branch states).

1. (Initial) The initial configuration is (q̂1, q̂2).
2. (or) In an “or” configuration (q1, q2) (where q1 ∈ Q1 and q2 ∈ Q2), Player

II chooses b1 in or(q1); Player I has to respond with some b2 in or(q2), and
the play continues from configuration (b1, b2).

3. (branch) In a “branch” configuration (b1, b2) (where b1 ∈ B1 and b2 ∈
B2), each of the following are continuations of the play:

(a) (Prop) In this continuation, the play ends and is a win for Player I if
L1(b1) = L2(b2), and it is a win for Player II otherwise.

(b) (Bisim) Player II chooses a ‘side’ i in {1, 2}, and an or-state qi in
bri(bi); Player I must respond with an or-state qj in brj(bj), from
the other side j (i.e., j ∈ {1, 2}; j 6= i) and the play continues from
configuration (q1, q2).

If a finite play ends by rule 3a, the winner is as specified in that rule. For an
infinite play π, and i ∈ {1, 2}, let proji(π) be the infinite sequence from Qω

i

obtained by projecting the or configurations of π onto component i. Then π is a
win for Player I iff either proj1(π) does not satisfy the acceptance condition for
A1, or proj2(π) satisfies the acceptance condition for A2.

We say that A1 is simulated by A2, written A1 v A2, if for every q̂1 ∈ Q̂1,
there exists q̂2 ∈ Q̂2 such that player I has a winning strategy for the (q̂1, q̂2)-
game. ut

Theorem 2. If A1 v A2 then £(A1) ⊆ £(A2).

Theorem 3. Deciding the existence of a simulation relation between finite au-
tomata is in NP, and can be done by a deterministic algorithm that is polynomial
in the size of the automata and exponential in the number of parity classes.

Proof. (sketch) A winning strategy for Player I in the simulation game cor-
responds to a tree labeled with configurations where every path satisfies the
winning condition. It is easy to construct a finite automaton that accepts such
trees. The automaton remembers the current configuration and which player’s
turn it is, while the transitions of the automaton ensure that the successors in
the tree are labeled with configurations that respect the constraints of the game
(e.g., a node where player II takes a turn must have all possible successor con-
figurations for a move by player II). This automaton is of size proportional to
the product of the original automaton sizes. Its acceptance condition is that of
the game. A parity condition can be written as either a Rabin or a Streett (com-
plemented Rabin) condition, so the winning condition for the game, which has
the shape (¬(parity) ∨ parity), is a Rabin condition. Thus, the existence of a
winning strategy reduces to the non-emptiness of a non-deterministic Rabin tree
automaton. The complexity results then follow from the bounds given in [11] for
this question. If the acceptance conditions are Büchi, the simulation check is in
polynomial time.

The simulation-based framework is defined like the one based on language
inclusion, except that a branching-time temporal property B is defined to hold of
an automaton A (i.e., an abstract object) iff A v B. Soundness and completeness
are again easy to show.

Theorem 4. The simulation based framework is sound and complete.

Proof. (Soundness) Let S be a Kripke structure, and B an automaton property.
Suppose that A is an abstraction of S (S ∈ £(A)) which satisfies property

B (A v B). By Theorem 2, it follows that £(A) ⊆ £(B). So it follows that
S ∈ £(B), i.e. S satisfies property B.

(Completeness) Let S be a Kripke Structure that satisfies an automaton
property A (S ∈ £(A)). So A itself is an abstraction of S. Since it satisfies A
(A v A), completeness follows.

The abstraction relation in the framework based on simulation is still lan-
guage membership: a Kripke Structure S is abstracted by automaton A iff
S ∈ £(A). However, this can be replaced by an equivalent definition in terms
of simulation. For this, we need to be able to “lift” a Kripke Structure to an
automaton. The structure states become branch states of the automaton, and
trivial or states are inserted that each have only a single or choice.

Definition 5. Let S = (S, Ŝ, R, L) be a Kripke Structure. The automaton asso-
ciated with S, Aut(S), is as follows. Aut(S) has or states {qs | s ∈ S}, branch

states {bs | s ∈ S}, and initial states {qŝ | ŝ ∈ Ŝ}. Each or state qs has bs as its
only or choice. Each branch state bs has a br transition to qt for every t such
that R(s, t) in the Kripke Structure. The labeling of a branch state bs is the
labeling of s in the Kripke Structure. The indexing function assigns 0 to every
or state. ut

It can be shown that Aut(S) accepts precisely the bisimulation class of S. We
now have:

Lemma 1. S ∈ £(A) iff Aut(S) v A.

Proof. (sketch) The simulation game for Aut(S) v A is identical to an automa-
ton run in this special case where the automaton on the left hand side is obtained
from a Kripke Structure.

4 Translations: KMTS’s to Automata

In the previous section, we gave a simple translation from Kripke Structures to
automata. In this section we present a more elaborate translation from Kripke
Modal Transition Systems (KMTS’s) [17] to automata. This provides insight into
their relation, and can be adapted to obtain translations from similar notions,
such as the Disjunctive Modal Transition Systems [23]. KMTS’s are based on
3-valued logic. Let 3 = {true,maybe, false}, and define the information ordering
≤ by: maybe ≤ x, x ≤ x for every x ∈ 3, and x 6≤ y otherwise. ≤ is lifted in the
standard way to functions into 3, and ≥ denotes the inverse of ≤. A proposition
p in a state of a KMTS takes on values in 3. We formalize this by letting p be a
3-valued predicate that maps states to 3. The following definitions are adapted
from [13].

Definition 6 ([13]). A Kripke Modal Transition System is a tuple M = (S, Ŝ,
−→, 99K, P), where S is a nonempty countable set of states, Ŝ ⊆ S is a subset of
initial states, −→, 99K ⊆ S×S are the must and may transition relations resp.,
such that −→ ⊆ 99K, and P = {predp | p ∈ Prop}, where for every p ∈ Prop,
predp : S → 3. ut

With −→ = 99K and P the 2-valued predicates predp : S → {true, false} we
recover the Kripke Structures from Definition 1.

We usually just write p for predp. Finite state KMTS’s have been suggested
as abstract objects in a framework where the concrete objects of interest are
Kripke Structures and the properties are phrased in branching-time temporal
logic. The concretization of a KMTS M (the set of Kripke Structures that are
abstracted by M) is called its completion, defined as follows.

Definition 7 ([13]). The completeness preorder º between states of KMTS’s
M1 = (S1, Ŝ1,−→1, 99K1, P1) and M2 = (S2, Ŝ2,−→2, 99K2, P2) is the greatest
relation B ⊆ S1 × S2 such that (s1, s2) ∈ B implies: (1) for every p ∈ Prop,
p(s1) ≥ p(s2); (2) −→1 simulates −→2; and (3) 99K1 is simulated by 99K2. M1

is more complete than M2, denoted M1 ºM2, iff for every ŝ1 ∈ Ŝ1 there exists
ŝ2 ∈ Ŝ2 with ŝ1 º ŝ2. The completion C(M) of M is the set of all Kripke
Structures S such that S ºM . ut

The final component we need for a KMTS-based abstraction framework is an
interpretation of branching-time properties over a KMTS. Also in this case, the
setting is 3-valued. We consider here the so-called thorough semantics since it
has a more direct connection to automata.

Definition 8 ([13]). The thorough semantics assigns a truth value from 3 to
a KMTS and a temporal formula, as follows: [M |= ϕ] = true (false) if S |= ϕ

is true (resp. false) for all S ∈ C(M), and [M |= ϕ] = maybe otherwise6. ut

Note that the relations −→ and 99K can together be seen as a 2-bit encoding
of a single “3-valued transition relation”, i.e. a predicate that maps every pair
s, t of states into 3: when s −→ t and s 99K t, this transition relation has
value true; when neither s −→ t nor s 99K t, it has value false; and when
only s 99K t, it is maybe; note that the fourth combination is excluded by the
requirement that −→ ⊆ 99K. In terms of this 3-valued transition relation, the
intuition behind a KMTS’s transition structure can be explained as follows. View
a state s of a KMTS as the set of all Kripke Structure states that it abstracts
(i.e., {n | n º s}). Consider the value of the transition between KMTS states s
and t. If it is true, then all states in s have a transition to some state in t. If it
is false, then no state in s has a transition to any state in t. If it is maybe, then
some states in s do, and others do not, have a transition to some state in t.

We can “massage” a KMTS into an automaton by splitting its states so that
all propositions and transitions become definite (true or false). What makes this
possible7 is the presence of or states: Initially, trivial or states (with single

6 Compared to the definitions in [17] and [13], we have added initial states to KMTS’s.
In this case, a temporal property is defined to be true (false) for a KMTS if it is
true (resp. false) in all initial states, and maybe otherwise.

7 This is not possible in general if we stay within the framework of KMTS’s, which
can be seen by considering the KMTS that has a single state where the (single)
proposition p is maybe, and which has must and may transitions back to itself.
There exists no finite 2-valued KMTS that has the same completion — the set of
all total trees labeled with subsets of {p}.

successors) are inserted into the KMTS — one or state preceding every KMTS
state — similar to the definition of the transformation Aut of Definition 5. Con-
sider a state s and a proposition p that evaluates to maybe in s, see Figure 2(a).
If we view s as its concretization some of its concrete states will evaluate p to

(b)(a)

tt

s s′ s′′

p=maybe p= true p= false
s s′ s′′

Fig. 2. Removing 3-valuedness from propositions (a) and transitions (b) by splitting
states. Must and may transitions are depicted as solid and dashed arrows resp.

true, and others to false. We split s so as to separate these states from one an-
other, creating new abstract states s′ and s′′ in place of s, one where p is true,
and another where it is false. All transitions from s are copied to both s′ and
s′′. Similarly, a state s with an outgoing maybe transition (to or state t, say)
is replaced by two states, one with a true transition to t, the other with a false
transition to t; see Figure 2(b).

This is done for every state s, every proposition that is maybe in s, and every
outgoing maybe transition from s. This translation, called τ , will be defined more
formally below. While it turns the completion of a KMTS into the language of the
resulting automaton, i.e. C(M) = £(τ(M)), it does not follow thatM and τ(M)
make the same properties true. For this, we need to generalize the semantics |=α

of branching-time properties, interpreted over automata, to be 3-valued as well.

Definition 9. The 3-valued semantics |=α maps an automaton and a branching-
time property ϕ (expressed by an automaton Aϕ) to 3, as follows. [A |=

α Aϕ] =

true (false) if £(A) ⊆ £(Aϕ) (resp. £(A) ⊆ £(Aϕ)) and maybe otherwise. ut

Theorem 5. For every KMTS M and branching-time temporal property ϕ,
[M |= ϕ] = [τ(M) |=α Aϕ].

4.1 Modal Automata

The description of τ above can be seen as a two-step process. First, by inserting
or states, the KMTS is lifted into a special kind of automaton, namely one that
allows 3-valued propositions and transitions. Then, this 3-valuedness is compiled
away by splitting branch states.

Definition 10. A modal automaton A is a tuple (Q,B, Q̂,or,−→, 99K, P,Ω)
where Q, B, Q̂, or, Ω are as in Definition 2, and:

– −→, 99K ⊆ B×Q are must and may transition relations, resp., from branch

states to or states, and
– P = {predp | p ∈ Prop}, where for every p ∈ Prop, predp : B → 3. ut

The notion of automaton simulation from Definition 4, v, is extended to these
modal automata.

Definition 11. The simulation relation v on modal automata is defined as in
Definition 4 where A1 and A2 are now modal automata, and rule 3 is replaced
by the following:

3. (branch) In a “branch” configuration (b1, b2) (where b1 ∈ B1 and b2 ∈
B2), each of the following are continuations of the play:

(a) (Prop) In this continuation, the play ends and is a win for Player I if for
all p ∈ Prop, p(b1) ≥ p(b2), and it is a win for for Player II otherwise.

(b) (may) Player II chooses an or state q1 such that b1 99K1 q1; Player I
must respond with an or state q2 such that b2 99K2 q2, and the play
continues from configuration (q1, q2).

(c) (must) Player II chooses an or state q2 such that b2 −→2 q2; Player I
must respond with an or state q1 such that b1 −→1 q1, and the play
continues from configuration (q1, q2).

The language £(A) of a modal automaton A is the set of all Kripke Structures
S such that Aut(S) v A. ut

τ is now defined as the composition of translations τ1 and τ2:

τ : KMTS
τ1−→ modal (i.e., 3-valued) automaton

τ2−→ (2-valued) automaton

The definition of τ1 is a generalization of the embedding Aut of Def. 5.

Definition 12. Let M = (S, Ŝ,−→, 99K, P) be a KMTS. The modal automa-
ton associated with M , τ1(M), is as follows: τ1(M) has or states {qs|s ∈ S},
branch states {bs | s ∈ S}, and initial states {qŝ | ŝ ∈ Ŝ}. Each or state qs has
bs as its only or choice. Each branch state bs has a −→ (99K) transition to qt
for every t such that −→ (s, t) (resp. 99K (s, t)) in the KMTS. The predicates of
τ1(M) are the same as in the KMTS. The indexing function assigns 0 to every
or state. ut

Lemma 2. Let M be a KMTS. Then C(M) = £(τ1(M)).

Proof. Similar to the proof of Lemma 1.

The translation τ2, that compiles away 3-valued propositions and transitions
from a modal automaton while preserving its language, is itself defined in two
steps. The first step, τ2A, removes 3-valuedness from the propositional labeling,
yielding modal automata that have must and may transitions, but whose state
predicates assign definite values to states.

Definition 13. Let A = (Q,B, Q̂,or,−→, 99K, P,Ω) be a modal automaton.
For b ∈ B, define its associated valuation val(b) : Prop → 3 to be λ p ∈
Prop . predp(b). For a valuation v : Prop→ 3, define its completion Compl(v)
as {w : Prop → 2 | w ≥ v}. With every state b ∈ B we associate a fresh set
C(b) = {bw | w ∈ Compl(val(b))} of states. The modal automaton τ2A(A) is
defined as follows.

– its set of or states is Q,

– its set of branch states is
⋃
b∈B C(b),

– its set of initial states is Q̂,

– its choice relation is {(q, bw) | (q, b) ∈ or, bw ∈ C(b)},

– its must transition relation is {(bw, q) | b −→ q, bw ∈ C(b)},

– its may transition relation is {(bw, q) | b 99K q, bw ∈ C(b)},

– for every p ∈ Prop and bw ∈ branch, predp(bw) = w(p), and

– its indexing function is λ q . 0. ut

Lemma 3. Let A be a modal automaton. Then £(A) = £(τ2A(A)).

The kind of automata targeted by τ2A have actually been defined in [19], where
it is also shown that they can be translated back to (non-modal) automata.
We reuse their result here, to emphasize the close relationship between the use
of 3-valuedness for abstraction in verification, and developments in the field
of automata theory. In [19], the branch transitions from a state t which has
OR successors q1, . . . , qk are given as a first-order logic formula of the form
∃n1, . . . , nk. q1(n1) ∧ · · · ∧ qk(nk) ∧ ∀z. β(z) which specifies when a tree node
x is accepted from the automaton state t. The variables ni and z range over the
child nodes of x. The notation q(n) means that (the tree rooted at) child n is
accepted from state q, and β(z) is a conjunction of disjunctions of formulas of
the form q(n). Thus, the formula says that for every 1 ≤ i ≤ k, there exists a
child ni of x that is accepted from qi, and in addition the constraint β must hold
for all children of x. Note that the automata from Def. 2 are a special case where
the β is of the form ∃1 ≤ i ≤ k. qi(z). Furthermore, must and may transitions
can be recovered as well. Let Qmust = {q′1, . . . , q

′
l} be a subset of {q1, . . . , qk}.

The formula ∃n1, . . . , nl. q
′
1(n1)∧· · ·∧q

′
l(nl) ∧ ∀z ∃1 ≤ i ≤ k. qi(z) then specifies

that the states in Qmust act as must successors, while all qi are may successors
of t. Hence this special form of automaton is the same as a modal automaton
with must and may transitions, but in which all propositional valuations are
definite. In [19] it is shown that such automata can be translated back into
the restricted form of Def. 2, i.e., calling the translation τ2B , it is shown that
£(A) = £(τ2B(A)). Together with Lemma 3, this implies the correctness of τ2
which is defined as τ2A followed by τ2B .

Lemma 4. Let A be a modal automaton. Then £(A) = £(τ2(A)).

Finally, Theorem 5 follows easily from Lemma 2 and Lemma 4.

5 Maximal Model Theorems

In the previous sections we have proposed to use automata as the abstract ob-
jects in an abstraction framework for checking branching-time properties over
transition systems. In the resulting framework, the concrete and abstract ob-
jects do not live in strictly separated worlds: through the embedding Aut from
Definition 5, transition systems themselves are promoted to automata — be it
possibly infinite ones. It follows from Lemma 1 that the transition system and
its embedding satisfy the same branching time properties, regardless of whether
these are evaluated using the language inclusion or the simulation based defini-
tion. Furthermore, Lemma 1 and Theorem 2 together show that the abstraction
relation between the concrete and abstract domains can be embedded into the
abstraction order v over the abstract domain.

Another area that can benefit from this view is the study of maximal models.
There, we also consider objects ordered by an abstraction order which is such
that more-abstract objects satisfy fewer properties, relative to a given logic of
interest. A maximal model for a property is then a model for the property that is
maximally abstract. In abstraction frameworks such as the ones above, where the
concrete domain is embedded in the abstract domain, there is a close connection
between maximal models and completeness, made explicit below.

Theorem 6. If every property has a finite maximal model, then the abstraction
framework is complete.

Proof. LetM be a model of property φ, and let maxφ be a finite maximal model
for φ. By definition of maximality, maxφ abstractsM . Thus, one can always pick
maxφ as a finite abstraction for M , ensuring completeness.

The converse is not necessarily true.Grumberg and Long showed [15] how
to construct finite, fair Kripke Structures that are maximal models for ACTL
(the universal fragment of CTL) through tableaux constructions; this was ex-
tended to ACTL∗ by Kupferman and Vardi [21], using a combination of tableaux
and automata-theoretic constructions. By the theorem above, it follows imme-
diately that fair simulation abstraction yields a complete framework for ACTL,
ACTL∗, and linear-time temporal logic (which can be considered to be a sub-
logic of ACTL∗). For the richer branching time logics that include existential
path quantification, however, there cannot be such maximal models.

Theorem 7. In abstraction frameworks for branching time logics that are based
on Kripke Structures or Kripke Modal Transition Systems, not every property
has a finite maximal model.

Proof. This follows immediately from Theorem 6 and the result of [6] showing
that these frameworks are incomplete for existential properties.

One can recover the guarantee of finite maximal models, however, by enlarging
the class of structures to include automata8. A Kripke StructureM is now viewed
as the automaton Aut(M).

Theorem 8. In the automaton abstraction frameworks based either on language
inclusion or on simulation, every property has a finite maximal model.

Proof. Consider a property given as a finite automaton B. Viewed as a structure,
B satisfies the property B in either framework. For any other model M of B,
letting the satisfaction and simulation relations coincide for automata models,
B is maximal in the abstraction order. Hence, B is a finite maximal model for
property B in either framework.

We can use the connection made in Theorem 8 to re-derive the maximal
model results for ACTL and ACTL∗; in fact, we can extend these easily to
the universal fragment of the mu-calculus, Aµ. It should be noted that Aµ is
more expressive than even ACTL∗ (e.g., “every even-depth successor satisfies
P” (νZ : p ∧ AX(AX(Z))) is expressible in Aµ but not in ACTL∗). The idea is
to (i) construct an equivalent finite automaton for a formula in this logic — this
is using known techniques from automata theory —, (ii) view this automaton
as a maximal model, following the theorem above, and then (iii) show that, due
to its special structure, it can be transformed back to a Kripke Structure. The
result is the following theorem. Its proof is omitted due to space constraints.

Theorem 9. The fair simulation abstraction framework on Kripke Structures
is complete for Aµ.

6 Discussion

We have proposed to use tree automata as abstractions of countable transition
systems, in the verification of branching time properties. A tree automaton serves
as an abstraction for any transition system in its language. Expressing also
branching time properties as tree automata, the definition of when a property
holds on an abstraction can be defined as language inclusion, or alternatively as
simulation between automata. Both frameworks are trivially sound. The notion
of simulation between automata on infinite trees is novel to the best of our
knowledge. Like in the word case, it is easier to decide than language inclusion,
and is a sufficient condition for it.

Also completeness follows directly in both frameworks. The completeness
argument shows that, for a transition system S and a property Aϕ that is true
of it, the finite abstraction of S that can be used to demonstrate Aϕ is Aϕ

itself. This highlights the essence of the more elaborate completeness arguments
presented in [32, 20, 25, 6]. The use of Janin and Walukiewicz’ µ-automata, whose

8 This solution is similar to the introduction of complex numbers: enlarging the solu-
tion space from real to complex numbers ensures that every non-constant polynomial
has a “zero”.

languages are closed under bisimulation and therefore correspond naturally to
the µ-calculus, further simplifies the technical presentation.

Section 4 demonstrated how Kripke Modal Transition Systems can be trans-
formed into automata. Similar constructions can be carried out for the other
transition notions, such as disjunctive modal transition systems. The insight
gained from these transformations is that one can view the various proposals in
the literature as being but variations on automaton syntax, some more compact
than others. This point is implicit in our earlier paper [6], which demonstrates
that alternating tree automata — the most compact automaton notation —
correspond to Focused Transition Systems.

A key issue in the practice of verification via abstractions is how to auto-
matically obtain suitable abstractions. By the embedding results of Section 4,
any approach to the construction of abstractions (e.g. [30]) can be used in the
automaton-based framework. While the problem is undecidable in general, the
completeness result guarantees that a suitable automaton-as-abstraction always
exists.

Going beyond the technical benefits of automata, we feel that viewing au-
tomata as abstract objects, and realizing that known notions are but automata
in disguise, is a simple but profound shift of perspective that should enable many
fruitful connections between abstraction and automata theory.

Acknowledgements We thank Nils Klarlund for his contributions to several dis-
cussion on the topic of this paper, and for his comments on an earlier draft. This
work is supported in part by NSF grant CCR-0341658.

References

1. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In CAV, volume 1633 of LNCS. Springer, 1999.

2. M. Chechik, S. Easterbrook, and V. Petrovykh. Model-Checking over Multi-valued
Logics. In FME, volume 2021 of LNCS. Springer, 2001.

3. E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of LNCS. Springer-Verlag, 1981.

4. R. Cleaveland, P. Iyer, and D. Yankelevich. Optimality in abstractions of model
checking. In SAS, volume 983 of LNCS. Springer, 1995.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

6. D. Dams and K.S. Namjoshi. The existence of finite abstractions for branching
time model checking. In LICS, 2004.

7. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM TOPLAS, 19(2):253–291, 1997.

8. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In J. of Logic and

Algebraic Programming, 52–53:109–127. Elsevier, 2002.

9. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, July 1996.

10. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In LICS, 2004.

11. E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of
programs (extended abstract). In FOCS, 1988. Full version in SIAM Journal of

Computing, 29(1):132–158, 1999.
12. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy (ex-

tended abstract). In FOCS, 1991.
13. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In

VMCAI, volume 2575 of LNCS. Springer, 2003.
14. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-

plete. Journal of the ACM, 47(2):361–416, 2000.
15. O. Grumberg and D.E. Long. Model checking and modular verification. In ACM

TOPLAS, 1994.
16. T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In CONCUR,

volume 1243 of LNCS. Springer, 1997.
17. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation

for three-valued program analysis. In ESOP, volume 2028 of LNCS. Springer, 2001.
18. D. Janin and I. Walukiewicz. Automata for the modal mu-calulus and related

results. In MFCS, volume 969 of LNCS. Springer, 1995.
19. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional

mu-calculus with respect to monadic second order logic. In CONCUR, volume
1119 of LNCS. Springer, 1996.

20. Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Infor-

mation and Computation, 163(1):203-243. Elsevier, 2000.
21. O. Kupferman and M.Y. Vardi. Modular model checking. In COMPOS, volume

1536 of LNCS. Springer, 1997.
22. K.G. Larsen and B. Thomsen. A modal process logic. In LICS, 1988.
23. K.G. Larsen and L. Xinxin. Equation solving using modal transition systems. In

LICS, 1990.
24. R. Milner. An algebraic definition of simulation between programs. In 2nd IJCAI.

William Kaufmann, 1971.
25. K.S. Namjoshi. Abstraction for branching time properties. In CAV, volume 2725

of LNCS. Springer, 2003.
26. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,

1999.
27. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Proc. of the 5th Intl. Symp. on Programming, volume 137 of LNCS.
Springer-Verlag, 1982.

28. D. A. Schmidt. Closed and logical relations for over- and under-approximation of
powersets. In SAS, volume 3148 of LNCS. Springer, 2004.

29. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal of Computing,
19:424–437, 1990.

30. S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In
TACAS, volume 2988 of LNCS. Springer, 2004.

31. R.S. Streett and E.A. Emerson. The propositional mu-calculus is elementary. In
ICALP, volume 172 of LNCS, 1984. Full version in Information and Computation

81(3): 249-264, 1989.
32. T.E. Uribe. Abstraction-Based Deductive-Algorithmic Verification of Reactive Sys-

tems. PhD thesis, Stanford University, 1999.

