
Shape Analysis through Predicate Abstraction
and Model Checking

Dennis Dams and Kedar S. Namjoshi

Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.
{dennis,kedar}@research.bell-labs.com

Abstract. We propose a new framework, based on predicate abstrac-
tion and model checking, for shape analysis of programs. Shape analysis
is used to statically collect information — such as possible reachabil-
ity and sharing — about program stores. Rather than use a specialized
abstract interpretation based on shape graphs, we instantiate a generic
and automated abstraction procedure with shape predicates from a cor-
rectness property. This results in a predicate-discovery procedure that
identifies predicates relevant for correctness, using an analysis based on
weakest preconditions, and creates a finite state abstract program. The
correctness property is then checked on the abstraction with a model
checking tool. To enable this process, we calculate weakest preconditions
for common shape properties, and present heuristics for accelerating con-
vergence.
Exploring abstract state spaces with model checkers enables one to tap
into a wealth of techniques and highly optimized implementations for
state space exploration, and to analyze properties that go beyond invari-
ances. We illustrate this simple and flexible framework with the analysis
of some “classical” list manipulation programs, using our implementa-
tion of the abstraction algorithm, and the SPIN and COSPAN model
checkers for state space exploration.

1 Introduction

Shape analysis is used to statically determine global properties of the program
heap. Examples of such properties are “points-to” reachability between objects,
the existence of cycles, or sharing within the heap. Typically, such analyses
are based on abstract interpretations [7] of heaps with various kinds of shape
graphs. This paper presents a new framework for shape analysis, which is based
on Schmidt and Steffen’s observation that static analysis is model checking of
an abstract interpretation [30]. The exploitation of this paradigm renders our
framework different in several key ways.

A major difference is the way in which abstract interpretation is performed.
We use a generic abstraction algorithm to calculate an abstraction of the pro-
gram, relative to a given shape property. Starting with the shape predicates in
the property, the algorithm iteratively, and in a goal-directed manner, discovers
other predicates that are relevant to the property, by computing weakest pre-
conditions (wp) [12]. It also constructs an abstraction where these predicates



are represented with boolean variables: the process is an instance of predicate
abstraction [14]. The correctness of the abstract interpretation is guaranteed by
the algorithm. An advantage is that non-shape predicates (such as arithmetic in-
equalities), which improve the precision of abstraction, are included in a straight-
forward manner. One of the main contributions of this paper is the calculation
of weakest preconditions for second-order shape predicates like reachability, the
identification of other predicates that arise in this process, and the calculation
of their wp’s. We have implemented a weakest precondition calculator for shape
predicates relative to C-like program constructs, including heuristics to acceler-
ate convergence.

The abstract program computed by this algorithm is analyzed with a generic
model checker. This enables one to tap into a wealth of techniques and highly
optimized implementations for state space exploration. Furthermore, one can
check for temporal properties that go beyond invariances. Our calculator gener-
ates the abstracted program in formats that are accepted by the explicit state
model checker SPIN [18] and the BDD-based model checker COSPAN [16]. We
demonstrate our approach on a “classical” list reversal program. A detailed de-
scription of the experiments, including input and result files, can be found at [32].

typedef struct node

{struct node *n; int data;} Node;

typedef Node *List;

List insert(List x, int a)

{

List t;

n1: t=(List) malloc(sizeof(Node));

n2: t->data=a;

n3: t->n=x;

n4: x=t;

ne: return x;

}

n1: {reach[;n](x,k), false}

t=(List) malloc (sizeof(Node));

n2: {reach[&(t->n);n](x,k), (t==k)}

t->data=a;

n3: {reach[&(t->n);n](x,k)\/(t==k)}

t->n=x;

n4: {reach[;n](t,k)}

x=t;

ne: {reach[;n](x,k)}

return x;

Fig. 1. List insertion procedure (left) and wp calculations (right)

Overview We introduce our framework through the analysis of a C program
for inserting an element at the head of a list, shown in Figure 1. We are inter-
ested in checking the property that the insertion process does not, inadvertently,
make one of the existing list members unreachable from x. Define the predicate
reach[A;F ](i, j)@l to be true of those program states where control is at location
l and, in the heap, it is possible to reach address j from address i, following only
those fields in F and avoiding all addresses in set A. We write reach[;F ](i, j) if A
is empty, and when F = {n} it is written as n. The above property can then be
expressed formally by the linear temporal logic formula (∀k : G(reach[;n](x, k)
@n1 ⇒ G(true@ne ⇒ reach[;n](x, k)@ne))).



The predicate reach[;n](x, k) holds at ne iff its weakest precondition (wp)
[12] holds at n4. While weakest preconditions for simple constructs can be com-
puted by syntactic substitution, this is not true for second order predicates like
reachability. We show in Section 3 how to compute wp for reachability: for the
present discussion, it suffices to know that the wp for this predicate simplifies to
the expected value: reach[;n](t, k). The abstraction algorithm (Section 2) com-
putes wp’s for individual predicates in this goal-directed, “backward” manner
until the initial location n1 is reached. The results are shown enclosed in {. . .}
in Figure 1 (right) with wp’s for predicates at n3 separated by a comma at n2.
The key point to note is how the wp calculations identify further predicates that
are relevant to the correctness property.

b0 <-> reach[;n](x,k)

b1 <-> reach[;n](t,k)

b2 <-> reach[&(t->n);n](x,k)

b3 <-> (t==k)

n1: b2 := b0, b3 := false;

n2: b2 := b2, b3 := b3;

n3: b1 := b2 \/ b3;

n4: b0 := b1;

ne:

Fig. 2. Predicate-boolean correspondence (left) and abstract program (right)

The abstract program, and the predicate-boolean correspondence, is shown
in Figure 2. The abstract actions are calculated by substituting boolean variables
for predicates in the results of the wp calculations. For instance, the update for
b1 on edge n3 to n4 is given by b2 ∨ b3, which is the result of substitution
on the wp for its corresponding predicate reach[;n](t, k). Note that booleans are
only guaranteed to have correct values where it matters — e.g. b1 may have the
(clearly wrong) value true at n2, but it is set to its correct value at location
n3, just before it is used to calculate b0. The abstraction algorithm ensures this
property which, in turn, ensures the correctness of the abstraction.

The adjusted correctness property for the abstract program, G(b0@n1 ⇒
G(true@ne ⇒ b0@ne)) can be established using a model checker. For this ex-
ample, the property can be established directly from the wp calculations; how-
ever, this is difficult to do for the analysis of programs with loops. In general, the
wp calculations serve to transform the program locally, while the model checking
determines global properties. As the abstraction is always conservative in nature,
a property that holds of the abstraction also holds of the source program. Hence,
the source program is also correct.

The various components of the framework are described in detail in subse-
quent sections.

2 Abstraction by Iterated Weakest Preconditions

In Predicate Abstraction [14], the abstract program is defined over a set of
boolean variables which represent source program predicates. Determining a set
of predicates relevant to showing a correctness property is undecidable in general



[17]; however, several (semi-) algorithms exist [26, 6, 3, 22]. We use a modified
form of the algorithm from [26]. This algorithm simultaneously derives a set
of relevant predicates and computes the abstract actions, through an iterated
weakest precondition calculation.

The original algorithm operates on programs modeled by a set of actions
defined as guarded commands. A sequential procedure body can be easily trans-
lated to this notation by using a variable, say “pc”, to represent the control
location. With this encoding, however, the scheme in [26] examines every action
at each iteration, resulting in several unnecessary calculations. Thus, we encode
the control transition in the action name itself, and tailor the algorithm to only
inspect relevant actions. A control flow edge from location m to n labeled with
guard g and update a is turned into the action sm,n : g → a (note that a is
deterministic). For an update s : g → a, wp(s, p) ≡ g ∧ wp(a, p)1. The other
major difference is that we allow for user guidance of the abstraction in the form
of abstraction hints.

Our modified algorithm is presented in Figure 3. The algorithm iteratively
computes a set of pairs (p, n), where p is a predicate and n is a control location.
The pair (p, n) asserts that predicate p holds at location n. The data structures
used are a set of pairs, S, and a set of newly generated pairs, N . The parameters
to the algorithm are: (a) a correctness property, written in a universal tempo-
ral logic such as LTL or ACTL∗, (b) an iteration bound k, and (c) a set of
approximation hints.

In the main loop (step 2), the algorithm processes unmarked pairs in a
breadth-first manner. For each unmarked pair (p, n), and every action sm,n, the
algorithm computes wp(sm,n, p). By the semantics of wp, the truth of predicate
p at node n after executing statement sm,n is given by the value of wp(sm,n, p) at
node m. This, in turn, is determined by the values of its constituent predicates
at node m. These predicates are extracted, and processed in the next iteration.
From the undecidability result, there can be no termination guarantee in general,
so a user-supplied bound k is used to limit the number of iterations. The ap-
proximation hints are used to introduce new predicates that may accelerate the
termination of the loop – an example is provided in Section 5. Every predicate p
generated during the algorithm has a corresponding boolean variable, called bp.
The substitution of predicates in a formula f with their corresponding booleans
results in a formula f – as a general rule, we represent the abstract version of
a concrete object o by o. Simplification is used in step 2 to reduce the number
of newly generated pairs for faster termination: correctness does not depend on
the power, but only on the soundness of the simplifier.

We now examine some other issues that arise in applying this algorithm. An
initial condition, init , can be encoded by introducing a new transition sn0,n1 :
init → skip, between a new initial location (n0) and the old one (n1). An abstrac-
tion computed without hints can be used only to prove properties that depend
solely on predicates generated by the iterated wp calculations. While this may

1 This reflects the semantics that an action is executed at a state only if its guard
holds at that state.



1. Initially, S contains all pairs from the correctness property, together with (q, m),
for each predicate q that occurs in the guard of some action sm,n : g → a. Initially,
the abstract actions are defined as sm,n : g → skip. All pairs in S are unmarked,
and N is empty.

2. At each iteration, as long as there is an unmarked pair in S, and the iteration
bound k is not reached, do the following.
(a) For each unmarked pair (p, n), mark it as examined, and:

i. if there is an approximation hint mapping (p, n) to an expression h, then
add the equivalence bp ≡ h at node n and insert {(q, n) | q ∈ pred(h)}
into N .

ii. else, consider action sm,n : g → a, for each m, and:
A. compute wp(sm,n, p), and simplify it to obtain a formula f .
B. for each q in pred(f), add (q, m) to the set N .
C. add bp := f to the update of abstract action sm,n.

(b) Add all pairs in N to S.
3. After step 2 has terminated, over-approximate the booleans corresponding to any

unmarked predicates, using either an approximation hint, or non-determinism
({false, true}), or >.

Fig. 3. The predicate abstraction algorithm

be sufficient in some cases (e.g., list insertion) it is necessary, in general, to use
hints. The approximation hint for p@n can be any expression h that is “more
abstract” than p. This is formalized as p �3 h, where �3 is the “abstraction
order” relation of 3-valued logic2. For instance, (x > 3) may be approximated
by if (x ≤ 0) then false else >.

The algorithm always computes a conservative approximation to the source
program, where a program state (s, n) is related to an abstract state (s′, n′) if,
and only if, the control locations n, n′ are identical, and for every predicate p
such that the pair (p, n) is considered during abstraction, p(s) �3 bp(s′). This
algorithm is also complete in the sense shown in [26, 2].

As stated, this algorithm is intra-procedural. It can be extended to handle
procedure calls by the process described in [1]. For example, wp(x := F (y), p(x))
can be calculated by determining wp(body(F ), p(r))(y), where r is the return
value of the body of F . This introduces additional predicates within the body
of F . The call to F is then replaced by a call to the abstract version of F , i.e.,
bp := F ({bq | q ∈ pred(wp(body(F ), p(r)))}).

3 Weakest Preconditions for Shape Analysis

To utilize the above abstraction algorithm for shape analysis, we need to cal-
culate weakest preconditions for common shape properties such as reachability,
cyclicity, and sharing. The definitions of these properties, and their weakest
precondition calculations, are both based on a memory model.
2 x �3 x for all x, and x �3 >, for all x. > and {false, true} are identified for this

purpose.



3.1 Memory Model

Heap and stack contents are modeled by an unbounded array M , indexed by the
integers, together with a finite subset of the integers, called alloc, which records
the allocated addresses. A structure field name, such as n, is represented with a
function, called n̂, which maps the address of the structure to the address where
field n is ‘stored’ – we assume field names are globally distinct. An expression
e has two attributes relative to M : its address, denoted by addrM (e), and its
value, denoted by valM (e). The rules for calculating these attributes, and the
interpretations of basic program statements, are given in Figure 4. In these
rules, attributes are written as a pair (address,value), ⊥ represents an undefined
result, and we have simplified matters by having malloc allocate a single memory
location.

Program variable x: (α(x), M [α(x)]), where α maps program variables to addresses
Structure access e.n: (n̂(addrM (e)), M [n̂(addrM (e))])
Address expression &e: (⊥, addrM (e))
Dereference ∗e: (valM (e), M [valM (e)]), if valM (e) ∈ alloc, else error
Numeric constant c: (⊥, c)
Arithmetic operation op(e1, . . . , en): (⊥, op(valM (e1), . . . , valM (en)))
Pointer addition e + i: (⊥, valM (e) + i)

Guard g: valM (g)
Ordinary assignment e1 := e2 : M [addrM (e1)] := valM (e2)
Memory allocation e := malloc : M [addrM (e)] := a; alloc := alloc ∪ {a},

for some a 6∈ alloc
Memory de-allocation free(e) : alloc := alloc \ {valM (e)}

Fig. 4. The memory model

The wp of a predicate p relative to a statement s is computed by translating
both p and s in terms of M , calculating wp in the standard way for array updates3

[15], and translating the result back to the syntax of program expressions (see e.g.
[5]). For example, consider the predicate p ≡ (x = 0), for a program variable x,
and statement s : ∗u := 10. The assignment is interpreted as a memory update
resulting in M ′ ≡ M [valM (u) ← 10], and wp(s, p) is given by (valM (x′) = 0).
Distributing M ′ into val results in (if (valM (u) = α(x)) then 10 else valM (x)) =
0, which simplifies to (valM (u) 6= α(x)) ∧ (valM (x) = 0). Translating back to
program syntax gives (u 6= &x) ∧ (x = 0) as the weakest precondition. This
process of translating back and forth from M thus correctly takes into account
aliasing effects. It is tedious to carry out such calculations by hand, but they
are easily automated, as described in the following section.

3 wp(M [a] := v, p(M)) is given by p(M ′), where M ′[i] = M [i] for i 6= a, and M ′[a] = v,
denoted by M ′ = M [a← v]. Distributing M ′ into p results in an expression in terms
of M .



3.2 Weakest Preconditions for Shape Predicates

We have, so far, considered wp calculations for simple kinds of predicates, albeit
taking into account complex aliasing effects. We are primarily interested in more
global, second-order shape properties. The key property is reach[A;F ](i, j, M).
Informally, this says that there is a sequence of steps in M from address i to
address j, which avoids all addresses in A, and uses only the fields in F . We define
this precisely below as a least fixpoint. A step refers to a memory dereference.
For example, if z is a variable of type Node (see Figure 1), the location where
the address of the next node is stored is n̂(α(z)) (the value of &((∗z).n)). But
the address of the next element itself is given by M [n̂(α(z))], which results from
a memory dereference.

For a set F of field names, let F ∗(w, y, A) hold iff y is reachable from w using
only field accesses from F (e.g. x.a.b.c), while avoiding addresses in A. This is
defined as follows:

F ∗(w, y, A) ≡ alloc(y) ∧
(µZ, x : alloc(x) ∧ (x = y ∨ (¬A(x) ∧ (∃a : a ∈ F : Z(â(x))))))(w)

We can then define reach by

reach[A;F ](w, b, M) ≡
(µZ, x : alloc(x) ∧ (∃k : F ∗(x, k,A) : (k = b ∨ (¬A(k) ∧ Z(M [k])))))(w)

Note the explicit dereferencing step M [k] in this definition.
The wp for reach is calculated for an update M ′ = M [i← c] by substituting

M ′ for M in this fixpoint expression, and simplifying the result. For the other
predicates, which are defined in terms of reach, their wp’s are calculated using
the wp for reach. The definitions of these predicates and their wp’s are shown in
Figure 5; their derivations are available at [32]. Informally, the wp for reachability
says that it is possible to reach b from x after an update M ′ = M [i← c] provided
that, in the previous state, either: (i) it is possible to reach b from x avoiding
addresses in A ∪ {i}, or (ii) i is not in A, and there are paths from x to i, and
from c to b that avoid A. In the first case, the memory update does not invalidate
the path and, in the second case, the memory update serves to link two paths
into the desired path from x to b. The other wp expressions have similar informal
readings.

A remarkable feature one may observe is a kind of closure property, in that
the wp for a shape predicate is expressible in terms of other shape predicates—
of course, with differences in the arguments. Closure ensures that only these
types of shape predicates arise during the iterations of the abstraction algorithm,
making it possible to spot patterns that indicate where approximation is needed.
An example of such a pattern is given in the analysis of a list reversal program
in Section 5.

We use predicates with the same names to state program properties: e.g.,
reach[A;F ](e1, e2), where A is a set of program expressions, and e1, e2 are pro-
gram expressions. The translation of the predicate into the memory model as



• reach[A; F ](x, b, M): it is possible to reach address b from address x in 0 or more
steps. The wp is given by

reach[Ai; F ](x, b, M) ∨ (¬A(i) ∧ reach[Ai; F ](x, i, M) ∧ reach[Ai; F ](c, b, M))

• reachp[A; F ](x, b, M): it is possible to reach address b from address x in 1
or more steps. This is defined by alloc(x) ∧ (∃k : F ∗(x, k, A) : ¬A(k) ∧
reach[A; F ](M(k), b, M)), with wp:

reachp[Ai; F ](x, b, M) ∨ (reach[Ai; F ](c, b, M) ∧ ¬A(i) ∧ reach[Ai, F ](x, i, M))

• dshared [A; F ](x, y, M): there exists a non-null node reachable from both x and y.
This is defined by (∃v : v 6= NULL : reach[A; F ](x, v, M) ∧ reach[A; F ](y, v, M)), with
wp:

dshared [Ai; F ](x, y, M) ∨
(¬A(i) ∧ reach[Ai; F ](x, i, M) ∧ dshared [Ai; F ](y, c, M)) ∨
(¬A(i) ∧ reach[Ai; F ](y, i, M) ∧ dshared [Ai; F ](x, c, M)) ∨
(¬A(i) ∧ (c 6= NULL) ∧ reach[Ai; F ](x, i, M) ∧ reach[Ai; F ](y, i, M))

• cyclic[A; F ](x, M): x reaches a node that is involved in a cycle. This is defined by
(∃v : reach[A; F ](x, v, M) ∧ reachp[A; F ](v, v, M)), with wp:

cyclic[Ai; F ](x, M) ∨
(¬A(i) ∧ reach[Ai; F ](x, i, M) ∧ cyclic[Ai; F ](c, M)) ∨
(¬A(i) ∧ reach[Ai; F ](x, i, M) ∧ reach[Ai; F ](c, i, M))

Fig. 5. Weakest preconditions for shape predicates for M ′ = M [i ← c]. In these for-
mulas, we use Ai to represent A ∪ {i}

a prelude to computing wp is given by reach[valM (A);F ](valM (e1), valM (e2),
M).

As an example, in the program from Section 1, consider the predicate
reach[;n](x, k), and the assignment x := t, where t and x are of type List.
The translated predicate is given by reach[;n](valM (x), valM (k),M), while the
assignment results in the memory update M ′ = M [α(x) ← valM (t)]. Sub-
stituting M ′ for M gives reach[;n](valM ′(x), valM ′(k),M ′)). This simplifies,
using the wp for reach, to reach[α(x);n](valM (t), valM (k),M) ∨ (true ∧
reach[;n](valM (t), α(x),M) ∧ reach[;n](valM (t), valM (k), M)). From the def-
inition of type List, it is clear that t can never reach the address of x. Thus,
the underlined term simplifies to false, and the result is: reach[α(x);n](valM (t),
valM (k),M). The avoiding address α(x) is superfluous for the same reason, so
it can be removed, giving the result (in program syntax) as reach[;n](t, k).



4 A Predicate Calculator for Shape Analysis

We have implemented a prototype predicate abstractor for shape analysis, based
on the set of predicates discussed above, in OCaml. The input to this tool consists
of a flow-chart program with C-style instructions and variable types including
all basic types as well as struct and pointer types. Nested structs, unions, and
array types are not currently accepted by the tool but their inclusion poses no
technical difficulties. The tool does not yet handle procedure calls. Along with
the program, a set of predicate-location pairs is given, as e.g. extracted from the
property to be checked. These serve as the starting point for the wp calculations.
Finally, an iteration bound and a (possibly empty) collection of approximation
hints are given as input.

The tool’s main challenge is in simplifying the “raw” formulas that are ob-
tained as wp’s. These may be large due to case distinctions for aliasing. By
rewriting newly generated predicates to simpler ones, semantical equivalence
with already-computed predicates can often be detected. This reduces the over-
all number of generated predicates, which is essential in a practical application
of the algorithm. Also, it renders the predicates more readable, which facili-
tates the identification of good approximations. We have implemented a variety
of rules that aim to simplify individual predicates like reach and their argu-
ments, and pointer (in)equalities. For example, reach[A;F ](null, e) rewrites to
false regardless of A, F , and e; in reach[A;F ](e1, e2), e2 can be removed from
the avoid set A; and &(x → n) 6= &y is true when y is a variable. Another
essential class of rewrite rules is formed by type reasoning, further discussed be-
low. Furthermore, we apply several standard rules, including the Davis-Putnam-
Logemann-Loveland procedure [11], to simplify boolean expressions. The tool
includes automatic conversion of abstract programs to S/R or Promela format,
the resp. input formalisms for the model checkers COSPAN and SPIN. The cor-
rectness property to be verified can be added to the abstract program by using
assertions or temporal logic.

4.1 Type Reasoning

Suppose that x and y are program variables of the List type from our exam-
ples. A typical predicate that may occur during the manipulation of wp’s is
reach[A;n](x, &y). Regardless of the avoid set, this predicate is false, as can be
seen by reasoning about types, as follows. Variable x itself is of type List . By
dereferencing x, we get an object of struct-type Node, in which selection of the n
field yields a List again. So the only types that are reachable from List are List
and Node. The type of &y however is pointer to List . So &y cannot be reachable
from x.

Reachability between types is formalized by a predicate typreach. For a set
F of field names, typreach[F ](t1, t2) expresses that from an object of address
type t1 it is possible to reach an object of address type t2 if only selection of
fields from F is allowed. It is possible to prove the key correctness property
that if reach[A;F ](e1, e2), then typreach[F ](t1, t2) for any address expressions e1



and e2 with types t1 and t2 resp. This property allows the simplifier to replace
a predicate of the form reach[A;F ](e1, e2)by false if typreach[F ](t1, t2) fails to
hold. (Otherwise, nothing is replaced.) Type reasoning is also used to simplify
equalities; e.g. (x == y) is false if the types of x and y differ.

5 An Example

We illustrate our approach on a program for in-place reversal of singly-linked
lists, also considered in e.g. [4, 24, 33, 28, 29]. The core of the program is given in
Figure 6.

List x, y, t; /* x is an acyclic list */

n1: y = NULL;

n2: while (x != NULL) {

n3: t = y;

n4: y = x;

n5: x = x->n;

n6: y->n = NULL;

n7: y->n = t; };

n8:

Fig. 6. The list reversal program

Initially, x is the list to be reversed. It is traversed head to tail, reversing
the next-pointers (n) one by one. At the start of every iteration of the while
loop, x is the rest of the list to be reversed and y is the initial segment that has
been reversed so far. Variable t is auxiliary; at any point during the reversal,
it points to one of the first two nodes of the already-reversed segment. Using
shape analysis, we want to verify that y is an acyclic list after the reversal (using
the negation of predicate p1 = cyclic[;n]y@n8), given the precondition that x is
acyclic (p2 = cyclic[;n]x@n1).

We run our tool on (the flow-chart description of) the program together with
predicates p1 and p2, but without any approximation. By choosing a relatively
large iteration bound, predicates are generated that occur in wp’s obtained by
propagating p1 backwards through the sequence of statements of the while loop
for a several iterations (p2, being at n1, does not generate any new predicates).
By manually inspecting these predicates, we can get an idea of the appropriate
approximations to be applied. Setting the iteration bound to 30, 185 predi-
cate/location pairs are calculated corresponding to about 3 backward iterations
through the while loop. All predicates are of type cyclic, reach, or equality; they
differ in their arguments. The following is an excerpt from the tool’s output,
showing some predicates relevant at location n5.



n5: reach[(&(y->n),&(*(x).n->n));n](t,*(x).n)

n5: reach[(&(y->n),&(*(x).n->n),&(*(*(x).n).n->n));n](t,*(x).n)

n5: reach[(&(y->n),&(*(x).n->n),&(*(*(x).n).n->n));n](t,*(*(x).n).n)

The difference between these instantiations of the reach predicate is in the num-
ber of “→n dereferences” of x. Clearly, the predicates will keep growing along
this pattern for every next iteration of wp’s around the while loop, due to
the assignment x = x → n after n5. An approximation that weeds out this
growth is found by observing that the union of all these predicates implies that
from t, an address can be reached that can also be reached by following k n-
fields starting from ∗(x).n, for some k. A similar property can be expressed
by a single dshared predicate — hence we use that as an approximation. If
dshared [;n](t, x) is false, then so is every of the predicates above. So we will
try to cut off the growth pattern by approximating the first of those predicates,
reach[(&(y → n),&(∗(x).n → n));n](t, ∗(x).n) at n5, by “if ¬dshared [;n](t, x)
then false else >”.

This is the only pattern that occurs in the list of predicates, and indeed
several other predicates at n5 can be approximated in terms of dshared [;n](t, x)
as well. The pattern also occurs in a sequence of equality predicates. At n5
these equations are in terms of y and x, and it is not immediately clear how to
approximate them. But if we consider the same pattern at n4, where the y’s get
replaced by x’s due to the wp over the assignment y = x, it shows up as follows.

n4: (x==*(x).n)

n4: (x==*(*(x).n).n)

n4: (x==*(*(*(x).n).n).n)

It is clear that none of the predicates can be true under the given precondition
that x is not cyclic. So here we bring in the predicate cyclic[;n]x by approxi-
mating x = (∗(x).n) by “if ¬cyclic[;n]x then false else >”.

Having added 5 approximations, introducing the two new predicates men-
tioned above, we rerun the tool. We choose a larger iteration bound (40) so that
not only all points will be reached where the approximations apply, but also the
two new predicates introduced by them are propagated backwards far enough
so that any patterns that they themselves may generate become apparent. This
time, the pattern (the same as before: growing→n-dereferences) occurs in 3 new
predicates. One of them is a dshared predicate and can be approximated, at n5,
in terms of the predicate dshared [;n](t, x) from above. The other 2 stem from
the predicate cyclic[;n]x and can be approximated by that same predicate, at
n4.

The third run of the tool, although started with iteration bound 40 again,
converges after 29 iterations with the message that no predicates remain to be
examined. A total number of 33 relevant predicates have been found at that
point, 3 of which are suggested by the approximations, of which there are 8
altogether. Each run of the tool takes about 1 second.

Another way to identify suitable predicates for approximation is through the
analysis of counter-examples that are produced by the model checkers in case
the current abstraction is too coarse. Error-trace analysis boils down to solving



satisfiability questions over predicate formulae, and thus we might benefit here
from work on decidable logics to reason about heaps or arrays [4, 19, 21, 31].

Model checking Next, we instruct the tool to produce the corresponding ab-
stracted list reversal program in both S/R and Promela formats, and use the
COSPAN and SPIN model checkers to independently verify the original cyclic-
ity property. In both cases, the checking is done in the order of hundredths of
a second, within minimal amounts of memory (0.1MB with SPIN and less with
COSPAN4). The Promela version has 34 reachable states, each 48 bytes in size.
For the S/R version, 32 states are reached5 and the constructed BDD’s have
2454 nodes. Both verifications confirm that the property holds. Removing the
precondition that x is acyclic results in failure, showing that it is necessary.

In case of the list-insertion example from the Introduction, the tool converges
after 4 iterations without the need for any approximations. So in this case the
abstraction is fully automatic. The resulting S/R and Promela models have 12
and 7 reachable states resp., and verification is again done in a fraction of a
second with minimal amounts of memory in both cases.

6 Related Work and Conclusions

A synthesis and generalization of several existing algorithms for shape analysis is
presented in [29]. Their algorithm constructs a shape graph invariant, expressed
in 3-valued logic, by an abstract interpretation of program actions. The invariant
is based on two core predicates: x(v) (the node for variable x) and n(v1, v2) (a
link from v1 to v2 via field n). To improve precision, user-supplied instrumenta-
tion predicates have to be used, including shape predicates and also non-shape
predicates such as ≤. Precision can also be improved by a focus operation that
turns undefined values into non-determinism, or by materializing new elements
(e.g., to distinguish between reachability in 0, 1, or more steps). A coerce opera-
tion eliminates inconsistent parts of an invariant. The implementation (TVLA)
[24] includes a blur operation, which weakens an invariant.

Although the exact relationship between our algorithms is—as yet—unclear,
some general comments can be made. First, the abstraction computed by our al-
gorithm can be used to construct shape graph invariants—this is done implicitly
by the model checking procedure—but also to check non-invariance properties.
Secondly, operations similar to focus, coerce, and blur, all of which have to do
with the precision of the reachability computation, are implemented in model
checkers. Determining how well these generic techniques work for the particular
problem of shape analysis is an intriguing question for future work but, in the
examples we have considered, the model checking was not an issue.

One of the chief differences is the backward, goal-directed nature of our ab-
straction method, and the corresponding lack of distinction between core and
instrumentation predicates. In fact, the iterated wp calculations, starting with
4 SPIN always seems to take at least 0.1MB due to overhead or a built-in lower bound.
5 The difference in the number of reachable states is due to different ways of modeling.



predicates from the property, naturally identify other relevant predicates, includ-
ing all of the needed instrumentation predicates. On the other hand, the TVLA
tool analyzes the list reversal example fully automatically, in contrast to our
use of user-supplied approximation hints. However, we believe that it is possible
to automate the heuristics we have used for identifying approximations, so that
programs such as this are handled fully automatically.

In [25, 27], wp for reachability is calculated, but no other shape predicates are
considered. Predicate abstraction, combined with model checking, has been used
in analyses of some heap properties: points-to analysis [1], correctness of concur-
rent garbage collectors [10, 9], and loop invariants [13]. These papers, however,
do not handle shape properties.

In conclusion, we believe that the separation of concerns between abstraction
and state space exploration that is proposed in the new framework opens up sev-
eral possibilities. The abstraction method serves to discover the predicates that
are relevant for proving a given property. The wp calculations perform abstrac-
tion locally, leaving the global state space exploration to a model checker. One
can thus take advantage of highly optimized model checking implementations,
and the wide variety of logics and system models to which they apply. Our initial
experience has, we hope, demonstrated the promise of this method, while rais-
ing several interesting questions for theoretical investigations and experimental
improvements.

Our ongoing efforts are focused on mechanizing the heuristics for approx-
imations. As the verification problem for shape properties is undecidable, we
cannot hope for a fully automated procedure that works on all instances. How-
ever, there have been successful attempts [23] to automate similar approximation
heuristics using recognition of pattern growth in (regular) expressions, based on
the framework of widening [7, 8]. Also, we can potentially benefit from the de-
sign of theorem proving tools, such as ACL2 [20], which successfully recognize
induction patterns in many cases.
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