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Abstract

Abstraction is often essential to verify a program with
model checking. Typically, a concrete source program with
an infinite (or finite, but large) state space is reduced to a
small, finite state, abstract program on which a correctness
property can be checked. The fundamental question we in-
vestigate in this paper is whether such a reduction to finite
state programs is always possible, for arbitrary branching
time temporal properties.

We begin by showing that existing abstraction frame-
works are inherently incomplete for verifying purely exis-
tential or mixed universal-existential properties. We then
propose a new, complete abstraction framework which is
based on a class of focused transition systems (FTS’s). The
key new feature in FTS’s is a way of “focusing” an ab-
stract state to a set of more precise abstract states. While
focus operators have been defined for specific contexts,
this result shows their fundamental usefulness for proving
non-universal properties. The constructive completeness
proof provides linear size maximal models for properties
expressed in logics such as CTL and the mu-calculus. This
substantially improves upon known (worst-case) exponen-
tial size constructions for their universal fragments.

1. Introduction

In this paper, we explore the role played by program ab-
straction in enabling verification through model checking.
Model checking [6, 39] has the advantage of being able
to decide complex temporal properties fully automatically
for finite systems. There has been significant progress in
the past two decades on enhancing the scalability of model
checking for finite state programs, and on developing algo-
rithms for classes of infinite state programs (such as timed
and hybrid automata, parameterized processes, and push-
down systems); however, abstraction is still an essential part
of the verification process. An abstraction framework is
given by: a class of programs, an abstraction relation be-

tween programs, a class of properties, and a satisfaction re-
lation defining which properties hold of a program. Such a
framework is required to be sound, i.e., a property that holds
of an abstract program should hold of more concrete ones.

A fundamental question in the context of model check-
ing is whether a framework is complete: i.e., is it always
possible to find a small, finite-state abstract program that is
precise enough to prove a correctness property? For infinite
concrete programs, the key question is whether a finite ab-
stract program can be constructed at all; for finite programs,
the key question is how small the abstract program can be,
while yet being precise enough. We explore this question
for the class of branching time properties, expressible in
logics such as CTL and the propositional mu-calculus, and
by finite-state automata on infinite trees.

In the first part of this paper we show, with simple ex-
amples, that several well-known abstraction frameworks are
incomplete for proving branching time properties. These
include frameworks that use simulation [34], bisimulation
[37, 21], modal (may-must) [28], partial (3-valued) abstrac-
tion [4], or mixed notions [7, 9, 23]. The negative result
holds for purely existential and mixed universal-existential
formulas, for both safety and liveness properties, and even
with the addition of fairness restrictions or stuttering insen-
sitivity. For purely universal properties, it is known that
fair simulation suffices for completeness, as is described in
more detail in the related work section.

To achieve completeness, therefore, we propose an ab-
straction framework that is based on a new class of focused
transition systems (FTS’s, for short). As in a mixed transi-
tion system, an FTS has two transition relations, one repre-
senting an over-approximation of the concrete relation, the
other an under-approximation; these are used to interpret
universal and existential path quantifiers, respectively. The
key new feature is a “focus” map, which relates an abstract
state to a set of more precise abstract states, and a dual “de-
focus” capability. Focus steps can be seen as splitting an
abstract state into sub-cases, breaking up a proof obligation
into simpler parts. De-focus steps may be seen as general-
ization (and thus strengthening) of an obligation, which can



also simplify the proof. These new capabilities require ex-
tensions of the known refinement and property satisfaction
relations for mixed transition systems.

The focus and de-focus operations are not “rabbits” (as
Edsger W. Dijkstra was fond of calling concepts that seem
to be pulled out of a hat ...!) — they are the transition sys-
tem analogues of the OR and AND operators in alternating
tree automata. One may indeed (almost) identify property
automata with abstract transition systems: an automaton ac-
cepts a set of transition systems, whereas an abstract transi-
tion system abstracts a set of transition systems.

The completeness proof relies on this connection. It
shows how to turn an alternating tree-automaton property�

that holds of a transition system � , into a finite FTS�
which abstracts � and satisfies

�
. As

�
is independent

of � , this construction produces, in fact, an FTS that is a
maximal model of the property:

�
is maximal in the sense

that it abstracts all other models of the property, and it is
a model because it satisfies the property. This construc-
tion produces, through translations to alternating tree au-
tomata [15], maximal models that are of size linear in the
formula size for formulas in CTL and the mu-calculus, and
exponential in formula size for CTL � formulas. The maxi-
mal model constructions for the universal fragments of CTL
[20] and CTL � [26] generate models through translations
to non-deterministic tree automata. This results in maxi-
mal models that are ordinary transition systems and these
are (worst-case) exponentially larger than our FTS maximal
models.

These exponential size improvements suggest advan-
tages to using FTS’s over ordinary transition systems, even
for abstracting universal properties. Indeed, focus opera-
tions have been defined for specific contexts, such as the
static analysis of heap shapes [40]. For instance, an abstract
state denoting a linked list shape about which nothing is
known may be focused into a pair of abstract states, spec-
ifying whether the list is empty or not. The formulations
in this paper provide a general basis for reasoning about
such focus operators, and the structure of the completeness
proofs may help suggest mechanizable heuristics for defin-
ing focus operators.

1.1. Related Work

We describe closely related work, including other com-
pleteness results, and the study of precision of abstrac-
tions. As mentioned earlier, existing maximal model the-
orems yield completeness for some universal branching-
time logics. In [20], a maximal model theorem, yielding
a worst-case exponential size model, is shown for the uni-
versal sublogic of CTL. This is extended in [26] through
automata-theoretic constructions to a maximal model con-
struction for the universal fragment of CTL � (which in-

cludes linear-time temporal logic, LTL [38]). As noted
in [30], these constructions may be viewed as turning an
edge-labeled, non-deterministic tree automaton for a prop-
erty into a state-labeled transition system model simply by
splitting each automaton state into several copies, one for
each transition label, and by appropriately redirecting tran-
sitions. Our completeness proof follows a similar construc-
tion; however, the end result is a focused transition system,
rather than an ordinary one — the incompleteness results
rule out the existence of an ordinary, finite maximal model.

The formulation of abstraction-aided model checking
given here may be called model abstraction, since it seeks
to abstract a concrete model of a formula. It is not, how-
ever, the only possible way of combining the two concepts.
Another approach, which may be called game abstraction,
abstracts the AND-OR game graph that is obtained by the
game formulation of model checking [17]. The abstraction
relation needs to preserve the existence of a winning strat-
egy, rather than all formulas of a logic. An important case
is that of linear-time logic. Given a property

�
and transi-

tion system � , the usual model checking strategy is to first
form the product of � with the word automaton ����� for
the negation of

�
, and check if this product has no accept-

ing computations. The product can be viewed as a AND-
only game graph (i.e., without OR moves), where a win-
ning strategy shows that there are no accepting computa-
tions. In [24, 25, 43], it is shown how to construct a finite-
state abstract program, with fairness constraints, which fair-
simulates the product of a concrete program with a negated
property automaton. The abstraction relation is such that, if
the abstract program has no fair computations (i.e., a win-
ning strategy), so does the original one.

This abstraction approach is generalized by the sec-
ond author in [36] to parity games defined by the game-
theoretic formulation of mu-calculus model checking. The
approach is to over-approximate the AND moves and under-
approximate the OR moves, thus preserving the existence of
a winning strategy. A subtlety uncovered in this work is that
the standard under-approximation definition1 does not work
in general. It is necessary to split abstract OR moves into
cases, and consider each case when formulating a winning
strategy. The focus operations in FTS’s can be thought of
as the model-based analogue of this OR splitting.

Completeness is closely related to the problem of deter-
mining the precision of abstractions. Informally stated, the
problem is to define a precision pre-order on abstract sys-
tems, such that more precise systems satisfy more proper-
ties. Precision of modal and mixed transition systems is
studied in [7, 9]. The connection is that, in studying com-
pleteness, one is trying to show that a precise enough finite
abstract system always exists. The papers above show that

1I.e., for an abstract OR transition from state � to �
	 , every concrete
state � related to � has a concrete OR transition to a state � 	 related to � 	 .



precision may be improved either by adding more precise
abstract states or by restricting transitions, but they do not
resolve the completeness question. Indeed, our results show
that completeness cannot be achieved for these abstraction
frameworks, and the introduction of new features such as
focus operators is necessary. In [29, 11, 41], operators sim-
ilar to focus are added to abstract systems in order to im-
prove precision, but also there completeness is not pursued;
indeed, since these proposals for abstract systems do not
feature a notion of fairness, they are not complete for live-
ness properties.

Readers aware of small-model theorems for tree au-
tomata [22, 12] may wonder why completeness does not
follow trivially from these theorems, which show that a
small finite model exists for any satisfiable property. The
missing ingredient is abstraction: there may be no clear ab-
straction relationship between the small model, ��� , whose
existence is guaranteed by these theorems, and the given
concrete transition system � . For instance, a 1-state sys-
tem satisfying proposition

�
is a small model for the CTL

property ����� �	�
(“there is a reachable

�
-state”), but by no

known abstraction notion is it related to all concrete models
where

�
-states are reachable only after one or more steps.

2. Incompleteness Results

In this section we consider a general notion of abstrac-
tion to demonstrate that many commonly used abstraction
frameworks are incomplete for branching-time logics. The
concrete semantics of a program is expressed by a (possi-
bly infinite) transition system ��
���
������������ �

where �
labels each state ����
 by the set of atomic propositions
(from a given finite set ��� ) that hold in � . � is the non-
empty set of initial states. On the abstract side, we consider

mixed transition systems ��
�� 
"!#�$�%!&��')(+*-,. �/� '&021. �����43! ���65! �
,

whose states, in 
7! , are called abstract states. � is called fi-
nite iff 
 ! is finite. A mixed simulation relation from a con-
crete system � to a mixed transition system � , as above,
is any relation 8:9/
�;<
 ! for which each of the follow-
ing requirements holds: (i) every concrete initial state (in � )
is 8 -related to some abstract initial state (in � ! ); (ii) when-
ever 8=� >?��@ �

then � 3! �A@ � 9B�C�A> � 9D� 5! — intuitively, the
propositions in ��3! � @ �

are those known to be true and those
in �C��EF� 5! � @ �

are known to be false; (iii) if 8=� >?��@ �
and

@G')(+*-,. �H@I� , there exists >J� s.t. >4�K>J� and 8��A>J����@I� � , so the must
relation under-approximates the concrete transition relation;
and (iv) if 8��A>L��@ �

and >G�M>J� , there exists @N� s.t. @ 'O021. �M@I�
and 8=� >%� ��@I� � , so the may relation is an over-approximation.
A relation 8 is a simulation if (i), (ii), and (iv) hold, and a
reverse simulation if (i), (ii), and (iii) hold. These relations
between states are lifted to the following three abstraction
relations between concrete and mixed transition systems �

and � as above. � mix-simulates � if there exists a mixed
simulation relation from 
 to 
 ! . If there exists a simula-
tion from 
 to 
 ! and ')(J*P,. � is empty, then � simulates � .
If there exists a reverse simulation from 
 to 
 ! and '&021. � is
empty, then � reverse-simulates � .

We consider branching-time temporal logics such as
CTL, CTL � , and their existential and universal fragments
(denoted ECTL, ACTL, etc.), which are interpreted over
concrete transition systems as usual (cf. [13]); in particu-
lar, a formula is true of a system iff it holds in all of its
initial states. To interpret a formula Q over a mixed tran-
sition system � as above, Q is first converted to positive
normal form by the usual rewrite rules. The rules for sat-
isfaction of atomic propositions and their negations, and of
the temporal path quantifications differ from the usual def-
inition. For @R�:
7! and �S����� , @UT 
�� iff �S��� 3! �A@ �

,
and @VT 
XW�� iff �SY�Z�65! �A@ �

. Existential quantifications are
interpreted over must paths, and universal quantifications
over may paths. Note that this results in a 3-valued notion
of truth where �/YT 
�Q is not equivalent to ��T 
XW�Q .

Let TL be a temporal logic, or a class of temporal formu-
las. An abstraction relation is complete for TL if for every
concrete transition system � and every Q[� TL such that
��T
/Q , there exists a finite � that abstracts � according
to the relation, such that ��T 
�Q .

Starting with [28], transition systems with dual transi-
tion relations have been used in the definition of various be-
havioral refinement relations that are sensitive to branching.
Examples are (and this list is not intended to be complete):
[7, 10, 19, 23]. There are some elements of these defini-
tions that are not covered by our mixed transition system
formulation. For example, [28, 19] consider edge-labeled
systems; and many of the mentioned papers define the be-
havioral refinement relation between two mixed transition
systems. However, these differences are either irrelevant
to the incompleteness results, or the incompleteness results
can be easily extended to those cases. Thus, we claim that
the results presented below imply incompleteness of each
of the varieties of mixed transition systems and the corre-
sponding refinement notions. We do not consider here ab-
straction notions and logics for alternating transition sys-
tems [2, 1], which have a different flavor, in that they de-
scribe properties of the interaction of an open program with
its environment.

For definitions of the notions of safety and liveness in the
branching-time setting, see e.g. [33].

Theorem 1 Abstraction through reverse simulation is in-
complete for ECTL safety properties.

Proof Consider a transition system � with the follow-
ing structure. There are infinitely many initial states, num-
bered �A\]��\ � �+� \^�+_ � �+`J`+` . For every a , there is a single path:
�A\]�2a � �b�2_c�2a � �b`J`J`I�d�eagf�_c�2a �

of ahfji states, which



ends in a self-loop on �eagf�_c�2a �
. The last state, �eagf _ �2a �

,
satisfies only proposition

�
; all others satisfy only propo-

sition � . Then � satisfies the ECTL safety property
�

:
� �A� � �	�

, which asserts that from every initial state there is
a path along which � holds so long as

�
does not (

�
is the

weak Until).

Assume that there is a finite-state mixed transition sys-
tem � such that � reverse-simulates � and � T 
 �

; we
will derive a contradiction from this. Let 8 denote the un-
derlying mixed simulation relation from � ’s to � ’s states.
Since � is finite and � has infinitely many states, there ex-
ists (by requirement (i) in the definition of reverse simula-
tion) an initial state @�� of � which is 8 -related to infinitely
many of � ’s initial states; denote the set of these states by
� � @�� � . By the assumption that � T 
 �

, there exists a must-
path @��c��@��?�J`J`+` which is either infinite and @
	4T 
�� for ev-
ery �
� \ (case A), or there exist a number ��� \ such that
@�� T 
 �

(case B). Because � reverse-simulates � , from
every state > � in � � @ � � there must be a path > � ��> � �J`+`J` such
that 8=�A> 	 �$@ 	 � for every � . By requirement (ii), propositional
labelings are more precise in � , so in case A there must
be an infinite path from every > � � � �A@ � � on which every
state satisfies � , which contradicts the definition of � ; and
in case B a

�
state is reached in at most � steps from every

>�� � � �A@�� � , which is also a contradiction. �
The system � used in this proof has an infinite number

of initial states, but this is not essential. By slightly extend-
ing it and choosing a more complicated formula, a proof can
be given in which the system has a single initial state (and
no infinite branching). Namely, transform � into ��� by
adding the proposition � to only the initial states, chaining
together the initial states: �A\]��\ � � �A\]�J_ � `J`+` , and making
�A\^�$\ �

the unique initial state of �[� . Let
� � be the ECTL

safety property ���#����������� ���A���6W�� � � � � �6W�� �2���
, which

says that there is a path where � holds globally ( � ), and
from each point on the path, there is an offshoot satisfying
� unless (“weak-until”)

�
. Then � � T 
 � � , and it can be

shown in a similar way as in the proof above that there ex-
ists no finite mixed transition system that reverse-simulates
� � and satisfies

� � .
Also stuttering simulations [32, 3, 18], which allow a

transition on one side to be matched by a sequence of tran-
sitions on the other, cannot be used to establish a complete
abstraction framework. A technical problem is that these
simulations do not preserve the Next operator of temporal
logic. Moreover, we can alter the transition system and
property from the proof of Theorem 1 to demonstrate in-
completeness, as follows (without getting into the details of
defining stuttering-insensitive abstractions). The path from
each initial state of � is altered so that there is an alter-
nation between � and � states before the final

�
state is

reached, and these alternations grow without bound for suc-
cessive initial states. A property that holds for this system,

which can be expressed in CTL � , is “there exists a path
along which segments of � states alternate with segments
of � states, either forever, or until a

�
state is reached”.

Suppose that this holds for some finite “stuttering” abstrac-
tion of � . If the witness path reaches a

�
state, it must

have a bounded number of alternations of � and � ; thus,
each concrete path must have the same bound, a contradic-
tion. If the segments alternate forever on the witness path,
by finiteness, there must be a loop in the abstract system,
which implies the existence of an infinite path in the con-
crete system, a contradiction as well.

2.1. Fair Abstraction Relations

Note that incompleteness for the sub-logic ECTL implies
incompleteness for full CTL. Theorem 1 pinpoints existen-
tial safety formulas as one source. We show that another
source of incompleteness are the liveness formulas in CTL,
even when a notion of fairness is added. Intuitively, an
abstraction reduces a system by “collapsing” multiple con-
crete states into a single abstract state. This may introduce
spurious loops that prevent the demonstration of liveness
properties. These loops can be excluded from considera-
tion by fairness constraints. Adding fairness gives rise to
complete frameworks for universal properties, as shown for
linear time logics in [24, 25], and for ACTL and ACTL � in
[20, 26], respectively.

We adapt the notion of mixed simulation to systems with
fairness conditions. Call an infinite path in a concrete or
mixed transition system fair if it satisfies the correspond-
ing fairness condition. Fair mixed simulation is obtained
by replacing the conditions (iii) and (iv) in the definition of
mixed simulation by the following: (iii’) if 8=� >?��@ �

and there
exists a fair must-path @ � �$@ � �J`+`J` with @ � 
S@ , then there
exists a fair path > � �$> � �+`J`+` with > � 
�> such that 8��A> 	 �$@ 	 �
for every ���D\ ; and (iv’) if 8��A>?�$@ �

and there exists a fair
path >�� �$>�� �+`J`+` with >��C
�> , then there exists a fair may-path
@��c��@��?�J`J`+` with @�� 
[@ such that 8��A>�	���@�	 � for every � �X\ .
Fair versions of simulation and reverse simulation are de-
rived from this as before. If systems are machine closed,
meaning that every finite path can be extended to a fair path,
then fair mixed simulation implies mixed simulation. The
interpretation of temporal logic is adapted to systems with
fairness conditions by relativizing the path quantifiers to the
fair paths, as usual [16]. Since fairness constraints usually
do not restrict finite computations (technically, this requires
machine-closure), the previous incompleteness result con-
tinues to hold under fairness.

Theorem 2 Abstraction through fair reverse simulation is
incomplete for ECTL safety properties.

Although fairness ensures completeness for universal
properties, it does not help for existential ones.



Theorem 3 Abstraction through fair reverse simulation is
incomplete for ECTL liveness properties.

Proof Consider the transition system � generated by the
following program, with a single integer variable � : ini-
tially, � has an arbitrary value; in an infinite loop, the two
nondeterministic actions of the program either increment or
decrement � (by 1). All computationss are fair. The ECTL
liveness property

��� ������� � \ �
(“there is a fair path to

a state where � � \ ”) is clearly true at every initial state
of � . Let � be any fair, finite-state abstract program that
fair reverse-simulates � . We claim that � cannot satisfy�

, interpreted relative to fair paths. If it does, there is a fair
path from some initial state of � that includes a state sat-
isfying ��� � \ �

. But then this state must be reachable in
a number of steps bounded by the size of � . By reverse-
simulation, the same bound applies to each initial state of
� ; a contradiction. �

Since the interpretation of existential properties does
not depend on may-transitions, the more general notion of
mixed simulation also falls short for both safety and live-
ness properties, even with the addition of fairness.

Theorem 4 Abstraction through (fair) mixed simulation is
incomplete for ECTL safety and liveness properties.

So, the conclusion is that these incompleteness results
are rather robust: Mixed simulation, in various forms, is
not enough to provide a finite abstraction for every possible
concrete system and existential property.

3. Completeness

In this section, we motivate and introduce the abstraction
framework defined by the new class of focused transition
systems, and show completeness for this framework.

The negative results in the previous section indicate that
some new ingredient is needed for completeness. This in-
gredient comes from the observation that abstractions can
(nearly) be identified with (tree) automata: an automaton
accepts a set of transition systems, whereas an abstract sys-
tem abstracts a set of transition systems. We define a class
of “focused” transition systems that correspond closely to
alternating tree automata. The crucial point to note is that
for every mu-calculus property, there is a finite-state (in
fact, linear-size) alternating tree automaton. Thus, a class
of transition systems that closely corresponds to such au-
tomata is likely to satisfy the desired completeness prop-
erty. (It is tempting to speculate that the converse is true as
well: any abstraction framework that is complete is likely
to correspond closely to the automaton framework – we do
not formalize and prove this conjecture.)

To motivate and explain the formal constructions that
follow, we show how to treat the incompleteness example

must

���

	�


	
�
������

���

���

� ���

� � �

Figure 1. Example FTS

from Theorem 1. Let
��� � �A� � �	�

and � be the prop-
erty and transition system defined in the proof of that the-
orem. This property can be expressed in the mu-calculus
as ����� � ��� �A���D������� �2���

, where ����� � � �!� ���
repre-

sents the greatest fixpoint of the function "#�O` � ��� �
. Follow-

ing the construction in [14], the derived alternating automa-
ton has one state for each subformula, and a trivial accep-
tance condition. The initial state is $&% , and the transition
relation ' maps each state (i.e., subformula) to its defin-
ing expression (re-written in terms of automaton states):
'N��$ % � 
($*) � $*+ , 'N��$*) � 
 �

, 'N��$*+ � 
,$*- ��$*. ,
'N��$/- � 
�� , and 'N��$/. � 
����R��$ % �

.

The justification for why � satisfies the automaton fol-
lows ' : a state satisfies $ % if it either satisfies $0) or $/+ , and
so forth; this can be formalized as an infinite game, as is
done in the following section. Notice that the automaton
state $ % represents all program states that satisfy the prop-
erty; these are not stratified according to their distance to a�

-state, because the automaton can dynamically “choose”
at a state whether to classify it as one that immediately sat-
isfies the property, placing it in the set of states correspond-
ing to $ ) , or as one that can satisfy the property after at
least one step (the states that correspond to $ + ). This case-
splitting flexibility results in a finite automaton description.
The existing types of transition systems lack precisely this
flexibility, forcing any abstraction to encode the stratifica-
tion according to distance to

�
, and thus be infinite. In fo-

cused transition systems, this flexibility is encoded by a fo-
cus step. The dual property, enjoyed by the � move in the
automaton at $/+ , is that of generalization. This represents
alternation, which enables the linear-size (vs. exponential-
size) representation of mu-calculus formulas. The general-
ization ability is represented in focused transition systems
by de-focus steps, and should be similarly helpful in reduc-
ing the size of abstract systems. The other key property of
automata, the presence of a global acceptance condition to
check satisfaction of eventualities, corresponds nicely to a
fairness constraint on focused transition systems. The other
automaton operators correspond to the ordinary transitions
in a focused transition system: an ��� step in the automaton
is similar to a must transition, while an 1�� step is similar to
a may transition. (Note that, with this correspondence, not



every must-transition need coincide with a may-transition,
as is required in modal transition systems.) From the au-
tomaton for

�
, one can then create the similar-looking FTS

shown in Figure 1 with initial state @ % . Here, an abstract
state @ 	 corresponds to automaton state $ 	 , the focus and de-
focus steps are labeled with

� 3 � � 5 respectively, and the
propositions known to be true at an abstract state are writ-
ten next to that state.

This discussion showing the correspondence of automata
and abstract FTS’s gives a sketch of how the completeness
and maximal model results are obtained. The following sec-
tions describe this process, as well as the soundness guar-
antees, in more detail.

3.1. Preliminaries

As discussed previously, it is easier to make the connec-
tion from properties to abstract systems if the properties are
expressed as alternating tree automata. The satisfaction re-
lation for automaton properties, T 
 , is conveniently defined
in terms of infinite games. For uniformity, we formulate
the abstraction relation, � , also in terms of games. This en-
ables us to prove the soundness of abstraction by combining
winning strategies for the games showing that ����� and
��T
�� into a winning strategy for the � T 
 � game.

Infinite Games. We fix some terminology regarding infi-
nite, two-player games. The players are called I and II. A
game is played with a set of configurations. This set is parti-
tioned into two subsets, one for each player. Some configu-
rations are initial. An initialized sequence of configurations
is one where the first element is initial. The acceptance con-
dition of a game is a set of initialized sequences of config-
urations where, if a finite sequence is accepted, so is every
infinite extension of this sequence. A strategy for player K
(K � �

I � II � ) is a partial function mapping a finite, initial-
ized sequence of configurations that ends in a configuration
for player K, into a new configuration. Only some strategies
are allowed for a game; the restrictions are usually specified
through a set of rules. Given strategies for both players, a
play, � , of the game is an initialized sequence of configu-
rations where for each � � \ , � 	 5 � is obtained by applying
the appropriate players’ strategy to the sequence � � `J`+`�� 	 .
A play is a win for player I if it satisfies the acceptance
condition, and a win for player II otherwise. A strategy is
winning for player K if every play of the game generated
by following this strategy for player K (regardless of the
strategy of the other player) is a win for player K.

Properties as Alternating Tree Automata. We represent
branching time properties by alternating tree automata over
the set �C� of atomic propositions. An automaton, � , is
given by a tuple � � �	�$I� '?��
 �

, where
�

is a finite set of

states, �$ � �
is the initial state, ' is a transition relation,

and 
 is an acceptance condition, which is a set of infi-
nite sequences over

�
that is closed under the addition and

removal of finite prefixes, and under finite stuttering (state
repetition). We use a simple normal form for the transi-
tion function ' , which maps an automaton state $ to one of
the following forms — here, � is a proposition in �C� , �
is an automaton state, and � is a non-empty subset of

�
:

�/TcW��/T � �/T � ��TN���
�hT 1��
� . In the case of ��� or� � , the states in � are the successors of $ , and in the case
of ����� or 1��
� , � is. This successor relation should have
no cycles which go only through the � and

�
operators.

Automata of this type can encode logics commonly used
to state correctness properties of programs, such as lin-
ear temporal logic, CTL, CTL � , and the propositional mu-
calculus. A mu-calculus formula in positive normal form
with no free variables and distinctly named bound variables
corresponds directly to such an automaton [14]: each sub-
formula is an automaton state, and the transition at that state
is given by the subformula structure, which is one of the
forms considered above. The acceptance condition is ob-
tained by analyzing the fixpoint alternation in the formula.
By changing ��� to � @	� and 1�� to � @�� , where @ is an edge
label, we obtain automata that can encode the modal mu-
calculus. We use the simpler form for clarity.

3.2. Focused Transition Systems

A focused transition system (FTS for short) is a simple
extension of the mixed transition systems defined in Section
2. It is a tuple ��
�������� 3 ��� 5 ��� 3 ��� 5 � � 3 � � 5 ��� �

where

 is a set of states, � is a non-empty subset of initial states,
� 3 ��� 5 9[
 ;U
 are under- and over-approximate transi-
tion relations, respectively (the must and may relations of
mixed transition systems), � 3 ��� 5 � 
 � i ! - are func-
tions giving, for each state � , lower and upper bounds on
the propositions known to hold at � (so that � 3 � � � 9j� 5 � � �
holds for all � ),

� 3 � � 5 9�
 ;Ui�� are focus and de-focus
relations, respectively, such that for every � ,

� � � belongs to� 3 � � � and to
� 5 � � � , and � is a fairness constraint, a set

of infinite sequences over 
 that is invariant under the addi-
tion and removal of finite prefixes, and under finite stutter-
ing. We sometimes use curried forms of the relations: for
instance,

� 3 � � � 
 ��� T � 3 ���c� � � �
.

An ordinary transition system (TS for short) is obtained
by setting � 5 
�� 3 , � 5 
�� 3 ,

� 5 and
� 3 so that they

relate each state � to only
� � � , and � to the set of all infinite

sequences over 
 (i.e., every sequence is fair).

3.3. The Model Checking Game for FTS’s

The acceptance of an FTS � 
[��
�������� 3 ��� 5 �$� 3 �$� 5 �� 3 � � 5 ��� �
by an automaton �/
D� � �	�$I� 'L��
 �

, both spec-



At a configuration ���c� $ � , based on the form of 'N��$ � :
� � : player I wins if, and only if, ���Z� 3 � � � .
� W�� : player I wins if, and only if, �DY�Z� 5 ��� � .
� � � : Player I picks a focus set,

�
, from

� 3 ��� � ;
Player II picks a state � in

�
; then Player I picks �

from � . The next configuration is ��� � � � .
� ��� : Player I picks a defocus set,

�
, from

� 5 ��� � ;
Player II picks � from � ; Player I picks � from

�
.

The next configuration is ��� � � � .
� ����� : Player I picks

�
such that � 3 � � � � � holds, the

next configuration is � � ��� � .
� 1���� : Player II picks

�
such that � 5 ���c� � � holds, the

next configuration is � � ��� � .

Figure 2. The FTS Model Checking Game

ified over atomic proposition set ��� , is determined by a
game. The configurations are pairs of the form � � � $ � , where
� is a state of � and $ is an automaton state. Roughly
speaking, at such a configuration, player I tries to show that
the property represented by state $ holds at � , while player II
tries to refute this claim. Other intermediate configurations
are also generated as part of the moves. Note that although
there are no draws possible in the game, if player � does
not succeed to show that $ holds at � , this does not imply
that player ��� has now demonstrated that W $ holds at � . In
this sense, the setting is 3-valued. The moves of the game,
which are based on the automaton transition relation ' , are
specified in Figure 2.

A short explanation of the rules follows. The � ( W�� )
rule ensures that a proposition � (resp. W�� ) holds iff � is
in the lower (resp. outside the upper) bound of the proposi-
tional labeling. The

�
and the � rules strictly generalize

the normal interpretation of these operators. In the normal
interpretation, a state � satisfies

� � if, and only if, � sat-
isfies some � in � . This is modeled by player I picking� 
 � � � in its move. However, the rule allows another
way of satisfying the disjunction: by splitting � into cases
(focusing), and showing that each case satisfies some � in
� . This is modeled by player I picking some other

�
in

its move, after which player II checks that every case (its
choice of � ) satisfies some � (player I’s choice). In the �
rule, the extension is similar. In the normal interpretation,
a state � satisfies ��� if, and only if, � satisfies all � in � .
This is modeled by player I picking

� 
 � � � in its move.
However, the rule allows another way of satisfying the con-
junction: by generalizing � into a set of more abstract states
(defocusing), and showing that each � in � holds for some

state in this set. This is modeled by player I picking some
other

�
from

� 5 � � � in its move, after which player II picks
an arbitrary � in � , and player I chooses an appropriate ab-
stract state � from

�
. For ordinary transition systems, only

the normal interpretation applies, as expected, since
� 3 � � �

and
� 5 ��� � do not contain a choice other than

� � � . The ���
�
rule is interpreted relative to the under-approximate ( � 3 )
relation, while in the 1���� rule, player II picks an over-
approximate successor of � in trying to refute the claim that
all successors of � satisfy � . We refer to a move specified
by the rule for the ��� ( 1�� ) operator as an EX (AX) move.

The initial configurations of this game are pairs from �O;� �$ � . A finite play of the game is a win for player I (II) as
stated in the first two rules. An infinite play � is a win for
player I if it either fails to satisfy the fairness requirement
for � , or it satisfies the acceptance condition of � ; i.e.,
letting ���U����! be � ’s projections on the states of � and �
respectively, if � � ��� �	� 
G� �=! �

holds of the play. We
say that FTS � satisfies the automaton property � (written
as � T 
�� ), iff player I has a winning strategy in this game
from all initial configurations.

3.4. Abstraction between FTS’s

We now define a notion of abstraction between FTS’s �
and � through a game. Normally, an abstraction relation
(e.g., simulation) is specified by a co-inductive definition.
It is easier to state the winning condition with the game-
theoretic form, because a play of the game induces a joint
computation of the two processes, and it is then possible to
relate the individual fairness constraints on this joint com-
putation. The approaches are equivalent for trivial fairness
conditions (cf. [42]).

The configurations of the game are elements of 
 � ;

�
 . The initial configurations are elements of � � ; ��
 .
Informally speaking, at a configuration � � � � � , player I tries
to show that

�
abstracts � , while player II tries to refute this

claim. The game moves are shown in Figure 3. Intermediate
configurations of a different form may be created in these
moves.

This game is quite similar in its zig-zag nature to the
bisimulation game (cf. [42]) with – of course – special rules
for the focus operations. Informally speaking, the first two
rules ensure that the propositional labeling is more precise
for � than

�
: propositions definitely true (false) at

�
are defi-

nitely true (false) at � . The last two rules ensure that the �G3

( � 5
 ) transition relation under(over)-approximates the � 3�
( �C5� ) relation.

To gain further intuition for the focus rules, think of the
game as defining an abstraction relation 8[9 

� ; 
 
 ,
where 8�� � � � � iff player I has a winning strategy from con-
figuration � � � � � . Let the concretization of

�
, � � � � , be

� �V�

 � T78�� � � � � � for any

� ��
�
 . Consider the case that �



At a configuration � � � � � , where � � 
 � , and
� ��
�
 ,

each of the following rules, when applicable, defines the
possible moves:

� � 3 labeling: Player II chooses � from � 3
 � � � ;
Player I wins iff � is in ��3� ��� � .

� � 5 labeling: Player II chooses � that is not in
� 5
 � � � ; Player I wins iff � is not in �&5 � ��� � .

� � 3 transitions: Player II picks a set � from
� 3
 � � � ;

Player I responds with a set
�

from
� 3� ��� � ; Player

II picks an element � from
�

; Player I responds
with an element � from � ; the next configuration is
���"��� � .

� � 5 transitions: Player II picks a set � from
� 5
 � � � ;

Player I responds with a set
�

from
� 5� ��� � ; Player

II picks an element � from � ; Player I responds
with an element � from

�
; the next configuration is

���"��� � .
� � 3 transitions: Player II chooses a state � such that
� 3
 � � ��� � holds; Player I responds with � such that
� 3� � � � � �

holds; the next configuration is � � ��� � .
� � 5 transitions: Player II chooses a state � such that
��5� � � � � �

holds; Player I responds with � such that
� 5
 � � ��� � holds; the next configuration is � � ��� � .

Figure 3. The FTS Abstraction Game Moves

is an ordinary TS. Suppose
�

is such that
� 3 � � � contains a

set � other than
� � �

; the states in � define a case-split of
�

in the following sense. In the focus rule, as � is ordinary,
the only possible choice for player I in response to player
II’s choice of � is to take

� 
 � � � . So the only choice for
� is � , after which player II chooses � from � . As � � ��� �
must be a winning configuration, we have �R� � ��� � . Let-
ting � ��� � 
 ���	� � �X�
� � � ��� �2� , we obtain that � is
in � ��� �

. As this is true for every � in � � � � , it follows that
� � � � 9 � ��� �

, and this is the case for each focus set � of
�
.

Thus, loosely speaking, � � � � is split up (i.e., focused) into
the concretizations of the states in � , which together cover
� � � � . Reasoning in a similar manner for the

� 5 rule, one
obtains that � � � � 9[���
� � �V��� � � ��� ��� , for each defocus
choice � of

�
. Therefore, the concretization of each abstract

state in � generalizes (de-focuses) the concretization of
�
.

A finite play of the game is a win for player I only as
stated in the first two rules. Any infinite play with only� 3 � � 5 moves from some point on is a win for player I.
Let � be any other type of infinite play, and let � � � � 
 be
its projections on the states of � and � , respectively. The

� �
� ������ ���

Figure 4. An Inconsistent FTS

play � is a win if � � � � � � � � 
 � � 
 �
holds for it. We

say that � abstracts � (or � refines � , both written as
� � � ) iff player I has a winning strategy in this game,
played from the initial configurations, which are pairs from
� � ;R� 
 . The following theorem is a simple consequence
of the definitions.

Theorem 5 The abstraction relation is a pre-order.

Note that it is quite possible to define FTS’s that are in-
consistent, in the sense that the defined FTS does not ab-
stract any ordinary transition system (in this regard, FTS’s
are like automata). Perhaps the simplest example is the FTS
shown in Figure 4; any TS that refines it must satisfy both
� and W�� in its initial state, which is impossible.

3.5. Soundness Theorem

In this section we state the main soundness theorem that
relates � and T 
 . The theorem has an implicit 3-valued na-
ture: if � � � and ��T
 � , then � T 
 � ; however,
if � does not satisfy � , whether � satisfies � cannot be
resolved. To do so requires a distinct check of whether
� T 
�W�� . I.e., for abstract models, � T 
 � being false
is not equivalent to � T 
XW�� being true — there is a “gap”.
Bruns and Godefroid define in [5] a single, 3-valued model
checking game that takes the place of these two checks; our
satisfaction game can be extended in a similar manner. We
do not do so here in order to concentrate attention on the
role played by the focusing operations.

Theorem 6 [Soundness] For all FTS’s �Z� � , and every
automaton property � , if � � � and � T 
 � , then � T 

� .

The proof of this theorem proceeds as follows. As � �
� and �bT
�� , there are winning strategies for player I in
both games. A winning strategy for player I in the � T 
X�
game can be crafted by combining the given winning strate-
gies. The new strategy is defined through induction on the
length of plays. The inductive hypothesis associates each
partial play obtained through the new strategy with partial
plays obtained with the given winning strategies; the asso-
ciated plays are extended further in the induction step.



3.6. The Completeness Theorem

Theorem 7 [Completeness] For every FTS � and au-
tomaton property � such that � T 
X� , there is a finite FTS
� such that � � � and �KT
�� .

The abstract transition system � is essentially the au-
tomaton � itself, suitably re-structured to form an FTS as
indicated by the worked-out example in this section; we
denote this FTS by � . It is constructed as follows. Let
� be the FTS from the statement of the theorem, � 

� � � �$ � '?��
 �

, and � be the game showing that � T 
�� . We
represent an abstract state derived from an automaton state
$ by $ . Then, � 
b��
�������� 3 � � 5 ��� 3 ��� 5 � � 3 � � 5 ��� �

,
where the components are specified as follows.

For a subset of automaton states � , let � 
 � $&T $ � � � .
The set of states of the FTS, 
 , is

�
together with a distinct

state � . The � state is the most abstract state possible; it is
used as a target for � 5 transitions. The single initial state
is �$ . For an abstract state $ where 'N��$ � 
 � ( �/� �C� ), let
� 3 � $ � 
 � � � and � 5 � $ � 
��C� ; i.e., only � is definitely
true at $ , the truth value of other propositions is unknown. If
'N��$ � 
XW�� , let � 3 � $ � 
�� and � 5 � $ � 
 ��� E � � � ; i.e., �
is definitely false at $ , the truth value of other propositions is
unknown. At all other states � , let � 3 � � � 
�� , and � 5 � � � 

��� ; i.e., the truth value of all propositions is unknown.

An abstract state $ where 'N��$ � 
 ����� has a � 3 tran-
sition to � ; there are no other � 3 transitions. An abstract
state $ where 'N��$ � 
 1���� has a � 5 transition to � ; all
other states (including � ) have a � 5 transition to � .

The
� 3 and

� 5 relations for a state � include
� � � ,

as required. Furthermore, for an abstract state $ where
'N��$ � 
 � � , there is an additional focus choice: the set
� , and for an abstract state $ where 'N��$ � 
 ��� , there is
an additional defocus choice: the set � . Let 
 be the set of
infinite sequences over 
 obtained by replacing each state $
in a sequence in 
 with its counterpart $ . The fairness con-
dition � is the union of 
 with all infinite sequences that
from some point on have only the � state.

To prove the theorem, we show that � � � (abstrac-
tion), and that �ST 
�� (model checking). We use the win-
ning strategy in � as a guide for formulating winning strate-
gies in the abstraction and model checking games for � .

Abstraction: The strategy for the abstraction game is es-
sentially identical to the winning strategy for � , with minor
alterations needed to account for the changes in going from
� to � . Inductively, player I tries to ensure that, for every
partial play � of the game, either the play is “stuck” in the
� state, or there is a stuttering-equivalent partial play � � of
� generated by its winning strategy. This partial play is ex-
tended in the induction step. The winning condition for a
play is � � � � . If a play � gets stuck in the � state, it is
a win trivially, since � is true. Otherwise, as � is stuttering-
equivalent to a winning play � � of � , since � � � � 
 �

holds for �"� , � � � � 
 �
holds of � , so that it is a win for

the abstraction game.
Model Checking: In the model checking game, player I

can ensure that, for every play of the game, the only config-
urations that occur are those labeled with � $N� $ � , for $ � �

.
This can be ensured for the initial configuration, which is
labeled with � �$I�	�$ � , and it is quite simple to maintain this
invariant when extending a play. Thus, plays never enter
the � state, so the winning condition of the game, which is
� � 
 , reduces to 
 � 
 . Since this is true trivially by
the invariant, every play results in a win for Player I.

Corollary 1 [Completeness for Ordinary TS’s] For every
ordinary transition system � and automaton property �
such that � T 
�� , there is a finite FTS � such that � � �
and � T 
�� .

Recall that a maximal model for a property � is a model
of which all other models of � are refinements.

Corollary 2 [Maximal Model Theorem] For any automa-
ton property � , � is a maximal model.

4. Discussion

By focusing (!) on the completeness question for branch-
ing time logics, we have uncovered an interesting new class
of transition systems to use for abstraction, with strong links
to alternating tree automata and deductive proof methods.
Space constraints preclude a discussion of implementation
issues; however, we would like to point out that the ma-
chinery necessary for defining focus operators is already
present in abstraction methods that use Galois connections
(cf. [8, 9]), since the lattice structure on the abstract domain
can be used to guide the definition of focus and de-focus of
abstract states.
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