
Pointer Analysis, Conditional Soundness,
and Proving the Absence of Errors

Christopher L. Conway1, Dennis Dams2, Kedar S. Namjoshi2,
and Clark Barrett1

1 New York University, Dept. of Computer Science
{cconway,barrett}@cs.nyu.edu

2 Bell Laboratories, Alcatel-Lucent
{dennis,kedar}@research.bell-labs.com

Abstract. It is well known that the use of points-to information can
substantially improve the accuracy of a static program analysis. Com-
monly used algorithms for computing points-to information are known
to be sound only for memory-safe programs. Thus, it appears problem-
atic to utilize points-to information to verify the memory safety property
without giving up soundness. We show that a sound combination is pos-
sible, even if the points-to information is computed separately and only
conditionally sound. This result is based on a refined statement of the
soundness conditions of points-to analyses and a general mechanism for
composing conditionally sound analyses.

1 Introduction

It is well known that information about pointer relationships is essential for
effective analysis and optimization of C programs [2,18]. Such information can
be provided by a variety of algorithms that compute an approximation of the
points-to relations of a program (e.g., [3,12,27]). For variables x and y, x points to
y if there is some execution of the program such that the value of x is either the
address of y or, if x and y are aggregate objects (such as arrays or structures),
the value of an element of x is an address within the extent of y.

A (may) points-to analysis is sound if the relation it computes over-approx-
imates the true points-to relation of the program. Typical analysis algorithms
are known to be sound only for “well-behaved” programs, i.e., programs with
behavior that is well-defined by the C standard [22]. For instance, typical points-
to analysis algorithms consider the points-to sets of pointer values x and x+1 to
be the same. This is justified if x+1 does not “overflow” the bounds of the object
pointed to by x. However, if the expression does overflow (i.e., the program is
not “well-behaved”), the object pointed to by x+1 is undefined.

In extending the Orion static analyzer [11] to verify memory safety, we found
that performing the analysis without access to points-to information resulted
in an overwhelming number of false alarms. In principle, a single, combined
analysis can be defined that computes memory safety and points-to information
simultaneously. Since the memory safety information being computed in one

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 62–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Pointer Analysis, Conditional Soundness, and Proving 63

“half” is available to the points-to “half,” the points-to information is kept sound
even for ill-behaved executions. Conversely, the memory safety component has
access to up-to-date points-to information, enabling a higher precision analysis.

However, such a fine-grained combination of analyses may not be scalable. We
would like to treat existing scalable points-to analyses as plug-in components.
Moreover, one may wish to perform the memory safety analysis in a “bottom-
up” fashion, computing a general summary for each function on any possible
input—in this case, separately computed points-to information helps limit the
possible values of pointer parameters and global variables.

These considerations lead to the central questions addressed in this paper: Is
it possible to obtain a sound combination of independent points-to and memory
safety analyses, especially as the first obtains sound results assuming memory
safety? More generally, under what conditions can conditionally sound analyses
be combined? What guarantees can be made for the combination?

This paper makes several contributions:

– We formalize the notion of conditional soundness, show how to compose
conditionally sound analyses, and derive the conditional soundness guaran-
tee of the composition. Although we describe conditional soundness in the
specific context of points-to analysis and a particular kind of memory safety,
we believe our framework can be used to refine the soundness results of a
variety of static analyses, e.g., analyses that are sound assuming sequen-
tial consistency or numerical analyses that are sound assuming the absence
of integer overflows. Conditional soundness can be formulated in terms of
the (unconditional) preservation of a class of temporal safety properties us-
ing Cousot and Cousot’s power construction [7,8,9]. Our formulation, while
more specialized, is simpler (e.g., it is state-based rather than path-based)
and captures the behavior of several interesting analyses more directly.

– We show that a set of points-to analyses similar to and sharing the soundness
properties of commonly-used flow-sensitive and insensitive analyses—such
as those of Emami, Ghiya, and Hendren [16]; Wilson and Lam [28]; Ander-
sen [3]; Steensgaard [27]; and Das [12]—provide results that are sound for
any memory-safe execution of a program. This statement is both stronger
and more precise than the traditional statement that such analyses are sound
for “well-behaved” programs.

– This more precise characterization of a points-to analysis, along with the
combination theorem for conditional analyses, shows that the combination
of an independent points-to analysis with a memory safety analysis is con-
ditionally sound. The soundness result guarantees that the absence of errors
can be proved. Conversely, for a program with memory errors, at least one
representative error—but not necessarily all errors—along any unsafe exe-
cution will be detected.

Motivating Example. Figure 1(a) is an example of a program which is not
well-behaved: there is an off-by-one error at label L1 and an off-by-one-thousand
error at label L3 when c is not 0. Assume that the functions ok and bad are
analyzed in a bottom-up fashion, without reference to the actual parameters



64 C.L. Conway et al.

int A[4], c;

void bad(int *p, int x, int y) {
L0: c = 0;
L1: p[4] = x;
L2: if( c!=0 ) {
L3: A[1003] = y;
L4: }
}

void ok(int *q, int n) {
L5: q[0] = n;
}

void main() {
ok(A,0);
bad(A,1,0);

}
(a)

V = {A, c, p, x, y, t1, t2}

Γ (v) =

{
4, if v = A

1, otherwise

�0

�1

�2

�3

�4

c := 0

t1 := p + 4
*t1 := x

[c �= 0]

[c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 1. An unsafe C program

supplied in main. Without any points-to information regarding q, the only safe
assumption is that the expression q[0] at label L5 can alias any location in
memory—a conservative memory safety analysis would be forced to assume that
the behavior of the program is undefined from this point on. But this is not
the case: the function ok is memory-safe so long as q points to an array of at
least one element. Points-to information is necessary to obtain a precise memory
safety analysis.

A typical points-to analysis (e.g., Andersen’s [3]) will determine that p and q
both point to A and not to c, n, x, or y. Using points-to information, a memory
safety analysis can (correctly) infer that q[0] is an in-bounds location at L5 and,
thus, the execution of ok is well-defined. Further, it can (correctly) detect that
p[4] is out-of-bounds at L1 and emit a useful error report.

In many implementations p[4] will alias c at L1—so that c is set to 1, making
L3 reachable—but p will not point to c according to the points-to relation. Since
c is initialized to 0 in bad and—according to the points-to relation—no expres-
sion aliasing c is subsequently assigned to, the analysis is likely to (incorrectly)
infer that the error at L3 is unreachable. Thus, it may seem that relying on the
points-to relation will lead a static analyzer to miss real errors. Note, though,
that the reachability of the error at L3 is due solely to the unsafe assignment
at L1: the points-to relation can be relied upon up to the first occurrence of a
memory safety error.

This line of reasoning is not specific to the example: as we will show, it applies
to any conditionally sound analysis, enabling such an analysis to detect at least
one error along any erroneous execution.
Note: Full proofs of all theorems in this paper are given in a technical report [5].



Pointer Analysis, Conditional Soundness, and Proving 65

2 Program Analysis and Conditional Soundness

To present program analysis in a formal setting, we use the framework of ab-
stract interpretation [6]. A full syntax of program statements is given in the
next section. For now, we are concerned only with the relationship between con-
crete and abstract interpretations. We omit any discussion of techniques (such
as widening and extrapolation) which serve to make program analyses finite and
computable—we are concerned solely with issues of soundness.

Let C be a distinguished set of concrete states. A domain (D, γ) is a pair,
where D is a set of abstract states and γ : D → 2C is a concretization function.
When the meaning is clear, we overload D to refer both to a domain and to its
underlying set of states and use γD to refer to the concretization function. We
lift γD to sets of states: γD(D′) =

⋃
d∈D′ γD(d), where D′ ⊆ D. We say a set

D′ ⊆ D over-approximates C′ ⊆ C iff γD(D′) ⊇ C′.
We define the soundness of a program interpretation in terms of a collecting

semantics. Given a (concrete or abstract) domain D, we will define a semantic
operator �·� which maps a program P to a set �P� ⊆ D of reachable states. The
semantics �P� is defined inductively in terms of semantic interpretations over
D: a set I[P ] ⊆ D of initial states and a transfer function F[P ] : D → 2D. We
lift F[P ] to sets of states: F[P ](D′) =

⋃
d∈D′ F[P ](d), where D′ ⊆ D.

An analysis A is represented as a tuple (D, I,F), where D is a domain and I
and F are semantic interpretations over D. We use DA, IA, and FA to denote
the constituents of an analysis A and γA to denote the concretization function
of the domain DA.

Definition 1. Let A = (D, I,F) be an analysis. The k-reachability predicate
Rk

A[P ] for a program P w.r.t. A holds if a state is reachable in A in exactly k
steps. We define Rk

A[P ] inductively as a subset of D:

R0
A[P ] = I[P ] Rk

A[P ] = F[P ](Rk−1
A [P ]), k > 0

The semantics �·�A w.r.t. A maps a program P to a subset of D, the reachable
states in P w.r.t. A:

�P�A =
⋃
k≥0

Rk
A[P ]

To judge the soundness of an analysis, we need a concrete semantics against
which it can be compared. The concrete domain DC is given by the pair (C, γC),
where γC is the trivial concretization function: γC(c) = {c}. We assume that
a concrete analysis C = (DC , IC ,FC) is given. The concrete analysis uniquely
defines a concrete semantics �·�C .

Definition 2. An analysis A is sound iff for every program P, �P�A over-
approximates �P�C (i.e., γA(�P�A) ⊇ �P�C).

Conditional Soundness. So far, we have defined a style of analysis which is
unconditionally sound, mirroring the traditional approach to abstract interpre-
tation. However, as we have noted, points-to analysis is sound only under certain



66 C.L. Conway et al.

assumptions about the behavior of the program analyzed. To address this, we
introduce the notion of conditional soundness with respect to a predicate θ. An
analysis will be θ-sound if it over-approximates the concrete states of a program
that are reachable via only θ-states. We first define a semantics restricted to θ.

Definition 3. Let A = (D, I,F) be an analysis and θ a predicate on D (we view
the predicate θ, equivalently, as a subset of D). The θ-restricted k-reachability
predicate Rk

A↓θ [P ] for program P w.r.t. A holds if a state is reachable in A in
exactly k steps via only θ states. Rk

A↓θ [P ] is defined inductively:

R0
A↓θ [P ] = I[P ] Rk

A↓θ [P ] = F[P ](θ ∩ Rk−1
A ↓θ [P ]), k > 0

The θ-restricted semantics �·�A↓θ w.r.t. A maps a program P to a subset of D,
the θ-reachable states in P w.r.t. A:

�P�A↓θ=
⋃
k≥0

Rk
A↓θ [P ]

Note that Rk
A↓θ [P ] may include non-θ states—neither I[P ] nor the range of F[P ]

are restricted to θ—but those states will not yield successors in Rk+1
A ↓θ [P ]. The

θ-restricted semantics give us a lower bound for the approximation of a θ-sound
analysis.

Definition 4. Let A be an analysis and θ a predicate on C. A is θ-sound iff
for every program P, �P�A over-approximates �P�C↓θ.

Note that an unconditionally sound analysis is also θ-sound for any θ. More
generally, any θ-sound analysis is also ϕ-sound, for any ϕ stronger than θ.

This notion of conditional soundness does not just give us a more precise
statement of the behavior of certain analyses—it provides us with a sufficient
condition to show an analysis proves the absence of error states.

Theorem 1. Let P be a program and A a θ-sound analysis. If there are no
reachable non-θ states in P w.r.t. A, then there are no reachable concrete non-θ
states in P (i.e., if γA(�P�A) ⊆ θ, then �P�C ⊆ θ)).

In Section 4, we will show that points-to analysis is SafeDeref-sound, where
SafeDeref is a predicate that captures memory safety.

Parameterized Analysis. Having defined a precise notion of conditional
soundness, we now consider how the results of a θ-sound analysis can be used
to refine a second analysis. Suppose that A is an analysis and we have already
computed the set of reachable states �P�A. We may wish to use the information
present in �P�A to refine a second analysis over a different domain B. For ex-
ample, we could use the reduced product construction [7] to form a new domain
over a subset of DA × B including only those states (a, b) where a is in �P�A
and the states a and b “agree” (e.g., γA(a) ∩ γB(d) �= ∅).



Pointer Analysis, Conditional Soundness, and Proving 67

Traditional methods for combining analyses take a “white box” approach—
e.g., Cousot and Cousot [7] assume that the state transformers are available and
can be combined in a mechanical way; Lerner et al. [24] assume that analyses
can be run in parallel, one step at a time. In contrast, we will assume that any
prior analysis is a black box: we have access to its result (in the form of a set of
reachable abstract states), its domain (which allows us to interpret the result),
and some (possibly conditional) soundness guarantee. This naturally models the
use of off-the-shelf program analyses to provide refinement advice.

We will define such a refinement in terms of a parameterized analysis which
produces a new, refined analysis from the results of a prior analysis. An analysis
generator G̃ is a tuple (D, E, Ĩ , F̃) where: D and E are domains (the input and
output domains, respectively) and Ĩ and F̃ are parameterized interpretations
mapping a set of states D′ ⊆ D to semantic interpretations Ĩ 〈D′〉 and F̃〈D′〉
over E. We denote by G̃〈D′〉 the analysis over E defined by the parameterized
interpretations on input D′: G̃〈D′〉 = (E, Ĩ 〈D′〉, F̃ 〈D′〉). As one might expect,
the soundness of G̃〈D′〉 depends on the input D′.

Definition 5. An analysis generator G̃ with input domain D is sound iff for
every set of states D′ ⊆ D, G̃〈D′〉 is θ-sound with θ = γD(D′).

Given an analysis generator, it is natural to consider the analysis formed by
composing the generator with an analysis over its input domain. If A is an
analysis and G̃ is an analysis generator with input domain DA (i.e., the input
domain of G̃ is the underlying domain of A), the composed analysis G̃ ◦ A is
defined by providing the result of A as a parameter to G̃ (i.e., G̃ ◦A = G̃〈�P�A〉).
An important property of the composed analysis is preservation of soundness.

Theorem 2. If G̃ is sound and A is θ-sound, then the composed analysis G̃ ◦A
is θ-sound.

In the remainder of this paper, we will apply Theorem 2 to the problem of
verifying memory safety using points-to information. In Section 3, we define the
concrete semantics for a little language that captures the pointer semantics of
C. In Section 4, we define a memory safety property SafeDeref and a set of
SafeDeref-sound points-to analyses similar to the points-to analyses found in
the literature. In Section 5, we define a memory safety analysis parameterized
by points-to information. These, together with Theorem 2, allow us to prove the
absence of memory safety errors.

Note that since the points-to analysis is SafeDeref-sound, we could in the-
ory use it to prove the absence of memory safety errors. However, the points-to
domain does not track memory safety information with adequate precision to
detect errors without an impractical number of false alarms. The value of The-
orem 2 is that it allows for the definition of a specialized memory safety anal-
ysis which uses the points-to analysis to increase its precision while remaining
SafeDeref-sound.



68 C.L. Conway et al.

n ∈ Z x, y ∈ Vars

L ∈ Lvals ::= x | *x
E ∈ Exprs ::= L | n | x ⊕ y | x � y | &x
S ∈ Stmts ::= L := E | [E]

Fig. 2. Grammar for a minimal C-like language

3 Concrete Semantics

To make precise statements about program analyses requires a concrete pro-
gram semantics. We will define the semantics of the little language presented
in Fig. 2. The language eliminates all but those features of C that are es-
sential to the question at hand. The semantics of the language is chosen to
model the requirements of ANSI/ISO C [22] without making implementation-
specific assumptions. Undefined or implementation-defined behaviors are mod-
eled with explicit nondeterminism. Note that an ANSI/ISO-compliant C com-
piler is free to implement undefined behaviors in a specific, deterministic manner.
By modeling undefined behaviors using non-determinism, the soundness state-
ments made about each analysis apply to any standard-compliant compilation
strategy.

The most important features of C that we exclude here are fixed-size integer
types, narrowing casts, dynamic memory allocation, and functions.1 We also
ignore the “strict aliasing” rule [22, §6.5]. Each of these can be handled, at the
cost of a higher degree of complexity in our definitions.

The syntactic classes of variables, lvalues, expressions, and statements, are
defined in Fig. 2. We use n to represent an integer constant and x and y to rep-
resent arbitrary variables. We use ⊕ to represent an arbitrary binary arithmetic
operator and � to represent a relational operator. Pointer operations include
arithmetic, indirection (*), and address-of (&). Statements include assignments
and tests ([E], where E is an expression).

Variables in our language are viewed as arrays of memory cells. Each cell may
hold either an unbounded integer or a pointer value. The only type information
present is the allocated size of each variable—the “type system” merely maps
variables to their sizes and provides no safety guarantees.

A program P is a tuple (V , Γ,L,S, τ, en), where: V ⊆ Vars is a finite set of
program variables ; Γ : V → N is a typing environment mapping variables to
their allocated sizes; L is a finite set of program points ; S ⊆ Stmts is a finite set
of program statements whose variables are from V ; τ ⊆ L×S×L is a transition

1 The omission of dynamic allocation in the discussion of points-to analysis and mem-
ory safety may seem an over-simplification. However, it is not essential to our pur-
pose here. Points-to analyses typically handle dynamic allocation by treating each
allocation site as if it were the static declaration of a global array of unknown size.



Pointer Analysis, Conditional Soundness, and Proving 69

relation; and en ∈ L is a distinguished entry point. In the following, we assume
a fixed program P = (V , Γ,L,S, τ, en).

Example 1. Figure 1(b) gives a fragment of the program representation for the
code in Fig. 1(a), corresponding to the function bad . We have introduced tem-
poraries t1 and t2 in order to simplify expression evaluation and compressed
multiple statements onto a single transition when they represent a single state-
ment in the source program.

In order to reason about points-to and memory safety analyses, we need a mem-
ory model on which to base the concrete semantics. The unit of memory allo-
cation is a home in the set H. Each home h represents a contiguous block of
memory cells, e.g., a statically declared array. A location h[i] represents the cell
at integer offset i in home h. The set of locations with homes from H is de-
noted L. The function size : H → N maps a home to its allocated size. When
0 ≤ i < size(h), location h[i] is in bounds; otherwise it is out of bounds. Memory
locations contain values from the set Vals = Z ∪ L. A memory state is a partial
function m : L → Vals. The set of all memory states is denoted M. The set of
concrete states C is the set of pairs (p, m) where p ∈ L represents the program
position and m is a memory state.

An allocation for V is an injective function home : V → H such that
size(home(x)) = Γ (x) for all x ∈ V . Given such an allocation, the lvalue of
x ∈ V is lval(x) = home(x)[0]. We write m(x) for m(lval(x)) and m[x �→ v] for
m[lval(x) �→ v], where m is a memory state. We say a location h[i] is within a
variable x if h = home(x) and h[i] is in bounds.

Figure 3 defines the concrete interpretations E and post of, respectively, ex-
pressions and statements. We present here only the most interesting cases.
Complete definitions are given in a technical report [5]. Note that both E and
post result in sets of, respectively, values and concrete states—the set-based
semantics is needed as undefined operations may have a nondeterministic result.
E returns the distinguished value ⊥ in the case where an expression is not just
ill-defined, but erroneous (e.g., reading an out-of-bounds memory location)—in
this case the next state can have any memory state at any program point.

We now define the concrete interpretation of a program.

Definition 6. The concrete semantics �P�C of a program P = (V , Γ,L,S, τ, en)
is defined by the analysis C = (DC , IC ,FC), where

IC [P ] = {(en, m) | ∀l ∈ L. m(l) is not a location}

FC [P ](p, m) =
⋃

(p,S,p′)∈τ

post(m, p′, S)

Example 2. Figure 4(a) gives a subset of the reachable concrete states of the
program in Fig. 1(b). At �0, p is A[0] (the base address of the array A), x is 1,
and y is 0. At �1, due to the assignment to out-of-bounds location A[4], the next
state is undefined: every program point is reachable with any memory state.



70 C.L. Conway et al.

E(m, x) =

{
Z, if m(x) is undefined
{m(x)}, otherwise

E(m, *x) =

⎧⎪⎨
⎪⎩

⊥, if m(x) is undefined, not a location, or out of bounds
Z if m(m(x)) is undefined
{m(m(x))}, otherwise

post(m, p, x := E) =

{
L × M, if E(m,E) = ⊥
{(p, m[x �→ v]) | v ∈ E(m,E)}, otherwise

post(m, p, *x := E) =

⎧⎨
⎩

L × M, if m(x) is undefined, not a location, or out of bounds;
or if E(m,E) = ⊥

{(p, m[m(x) �→ v]) | v ∈ E(m, E)}, otherwise.

Fig. 3. The concrete interpretation

4 Pointer Analysis

The goal of pointer analysis is to compute an over-approximate points-to set for
each variable in the program, i.e., the set of homes “into” which a variable may
point in some reachable state.

A points-to state is a relation between variables. We denote the set of points-to
states by Pts. When it is convenient, we treat a points-to state also as a relation
between variables and memory locations: for points-to state pts , variables x, y,
and location h[i], we say (x, h[i]) is in pts when (x, y) is in pts and h[i] is within
y (i.e., h[i] is in bounds and h = home(y)). We write pts(x) for the points-to
set of the variable x in pts , i.e., the set of variables y (alt. locations l) such that
(x, y) (alt. (x, l)) is in pts .

The concretization function γPts takes a points-to state to the set of concrete
states where at most its points-to relationships hold. Say that variable x points
to y in memory state m if there exist locations l1, l2 such that l1 is within x, l2 is
within y, and m(l1) = l2. Then m is in γPts(pts) iff for all x, y such that x points
to y in m, the pair (x, y) is in pts . Note that there may be other pairs in pts as
well—the points-to relation is over-approximate. Note also that only in-bounds
location values must agree with the points-to state; out-of-bounds locations are
unconstrained.

Figure 5 defines the interpretations EPts and postPts for a selection of, respec-
tively, expressions and statements in the points-to domain. (Complete definitions
are given in a technical report [5].) The interpretations are chosen to match those
used by common points-to analyses. A key feature is the treatment of the indi-
rection operator *, which assumes that its argument is within bounds. Without
this assumption, the interpretation would have to use the “top” points-to state
(i.e., all pairs of variables) for the result of any indirect assignment.

We lift Pts to the set L × Pts in the natural way.



Pointer Analysis, Conditional Soundness, and Proving 71

�0 : {(p, A[0]), (x, 1), (y, 0)}

�1 : {(p, A[0]), (x, 1), (y, 0), (c, 0)}

. . . . . .

c := 0

t1 := p + 4
*t1 := x

(a)

�0 : {(p, A)}

�1 : {(p, A)}

�2 : {(p, A), (t1, A)}

�3 : {(p, A), (t1, A)} �4 : {(p, A), (t1, A)}

�4 : {(p, A), (t1, A), (t2, A)}

c := 0

t1 := p + 4
*t1 := x

[c �= 0] [c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Fig. 4. Concrete and points-to semantics for the program in Fig. 1(b)

EPts(pts , x) = pts(x)

EPts(pts , *x) = {z ∈ V | ∃y ∈ V : pts(x, y) ∧ pts(y, z)}

postPts(pts , x := E) = pts ∪ {(x, y) | y ∈ EPts(pts , E)}

postPts(pts , *x := E) =
⋃

(x,y)∈pts

postPts(pts , y := E)

Fig. 5. Abstract interpretation over points-to states

Definition 7. A flow- and path-sensitive points-to analysis Pts is given by the
tuple (Pts, IPts ,FPts), where

IPts [P ] = {(en, ∅)}

FPts [P ](p, pts) =
⋃

(p,S,p′)∈τ

(p′,postPts(pts , S))

Example 3. Figure 4(b) shows a subset of the reachable points-to states for the
program in Fig. 1(b). At �0, p points to A. The transition from �1 to �2 causes
t1 to point to A as well. The presence of an out-of-bounds array access has
no effect on the points-to state: the analysis assumes that evaluating *t1 is
safe.

Definition 8. Let SafeDeref be the predicate that holds in a concrete state
(p, m) if, for every transition (p, S, p′) in τ where S includes an expression of
the form *x, m(x) is an in-bounds location.



72 C.L. Conway et al.

Theorem 3. The points-to analysis Pts is SafeDeref-sound.

We can extract more traditional flow-sensitive, global, and flow-insensitive
pointer analyses from �P�Pts as follows.

– A flow-sensitive, program-point-sensitive (path-insensitive) analysis is de-
rived by assigning to each program point p the least points-to state (by
subset inclusion) pts� such that, if (p, pts) is in �P�Pts , then pts ⊆ pts�.

– A flow-sensitive, global (program-point-insensitive) analysis is derived by
assigning to every program point the least points-to state (by subset inclu-
sion) pts� such that, if (p, pts) is in �P�Pts for any program point p, then
pts ⊆ pts�.

– A flow-insensitive analysis is derived by replacing τ in Definition 7 with the
relation τ �, where the edge (p, S, q) is in τ � whenever some edge (t, S, u) is in
τ , for any program points t and u. Intuitively, if a statement occurs anywhere
in the program, then it may occur between any two program points—the
interpretation ignores the control-flow structure of the program.

– Flow-insensitive, program-point-sensitive and flow-insensitive, global combi-
nations can be defined as above, substituting the flow-insensitive semantics
for �P�Pts .

Theorem 4. Each of the flow-, path-, and program-point-sensitive and insensi-
tive variations of the points-to analysis is SafeDeref-sound.

Note 1. The flow-sensitive, program-point-sensitive analysis yields a points-to
relation similar to that of Emami et al. [16]. The flow-insensitive, global anal-
ysis procedure yields a points-to relation similar to that of Andersen [3]. The
Steensgaard [27] and Das [12] relations add additional approximation to the
global relation. We claim (but do not prove formally here) that these procedures
approximate �P�Pts and, thus, are at least SafeDeref-sound.

By the definition of conditional soundness, it is possible some condition θ
weaker than SafeDeref exists such that some or all of the above analyses are
θ-sound. It is our belief that this is not the case: no realistic points-to analysis
is θ-sound for any θ weaker than SafeDeref. A proof of this proposition is
beyond the scope of this paper.

In summary, we have shown that a set of points-to analyses which share
the assumptions of widely used analyses from the literature are sound for all
memory-safe executions. This claim is both stronger and more precise than any
correctness claims the authors have encountered: our points-to analyses (and,
by extension, those cited above) compute a relation which is conservative not
only for “well-behaved” (i.e., memory-safe) programs, but for all well-behaved
executions, even the well-behaved executions of ill-behaved programs

We have shown that, if we can prove the absence of non-SafeDeref states in
�P�C , the points-to analyses we have defined above will be sound. It remains to
describe an analysis parameterized by points-to information which can perform
a precise memory safety analysis.



Pointer Analysis, Conditional Soundness, and Proving 73

5 Checking Memory Safety

We wish to define an analysis procedure that will soundly prove the absence of
non-SafeDeref states in the concrete program. Note that the only attributes
of a location value that are relevant to the property SafeDeref are its offset
and the size of its home; if we can precisely track these attributes, we can ignore
the home component of a location (i.e., which variable it is within) so long as
we have access to over-approximate points-to information.

Note 2. In our description of the analysis, we will omit the merging, widen-
ing, and covering operations necessary to make the reachability computation
tractable. In our implementation of a memory safety analysis in Orion, we
constrain integer values and pointer offsets using a relational abstract domain
(e.g., convex polyhedra [10]) and use merging and widening to efficiently over-
approximate the semantics given below.

Our analysis will track abstract values from the set V̂als . An abstract value
is either an integer or an abstract location, a pair (i, n) representing a location
at offset i in a home of size n. Each abstract value v̂ represents a set of concrete
values, according to the abstraction function α : Vals → V̂als . For integer values,
α is the identity (i.e., α(n) = n); for concrete location values, α preserves the
offset and size (i.e., α(h[i]) = (i, size(h))). An abstract location (i, n) is in bounds
if it represents only in bounds concrete locations (i.e., 0 ≤ i < n); otherwise it
is out of bounds. An abstract memory state is a partial function b : L → V̂als .
We denote by B the set of abstract memory states.

The concretization function γB : B → 2C takes an abstract memory state b to
the set of concrete memories abstracted by b. A concrete memory m is in γB(b)
iff for all l either m(l) and b(l) are both undefined or α(m(l)) = b(l).

Figure 6 defines the interpretations EB and postB for a selection of, respec-
tively, expressions and statements with respect to B. (Complete definitions are
given in a technical report [5].) Note that the interpretations rely on points-
to information. In the limiting case, where no points-to information is avail-
able (i.e., the points-to relation includes all pairs), the expression *x can take
the value of any location abstracted by b(x). As in the concrete interpretation
EB returns the value ⊥ in the case where expression evaluation is (potentially)
erroneous.

We lift B to the domain L × B in the natural way.

Definition 9. The analysis generator B̃ maps a set of points-to states Q to the
memory safety analysis B̃〈Q〉 defined by the parameterized interpretations

ĨB〈Q〉[P ] = {(en, b) | ∀l ∈ L : b(l) is undefined}

F̃B〈Q〉[P ](p, b) =
⋃

(p,S,p′)∈τ

⋃
(p,pts)∈Q

postB(b, pts , p′, S)

Theorem 5. The analysis generator B̃ is sound.



74 C.L. Conway et al.

EB(b, pts, x) =

(
Z, if b(x) is undefined
{b(x)}, otherwise

EB(b, pts, *x) =

8><>:
⊥, if b(x) is undefined, not a location, or out of boundsdVals, if b(l) is undefined for some l in pts(x), where α(l) = b(x)
{b(l) | pts(x, l), α(l) = b(x)}, otherwise

postB(b, pts, p, x := E) =

(
L × B, if EB(b, pts, E) = ⊥
{(p, b[x �→ v̂]) | v̂ ∈ EB(b, pts, E)], otherwise

postB(b, pts, p, *x := E) =

8>><>>:
L × B, if b(x) is undefined, not a location, or out

of bounds; or if EB(b, pts, E) = ⊥
{(p, b[l �→ v̂]) | pts(x, l), α(l) = b(x), v̂ ∈ EB(b, pts, E)},

otherwise

Fig. 6. Abstract interpretation over B

Corollary 1. If a points-to analysis Q is SafeDeref-sound, the composed
memory safety analysis B̃ ◦ Q is SafeDeref-sound.

Combining Corollary 1 with Theorems 3 and 4, we can compose B̃ with any of
the points-to analyses described in Section 4 and the resulting analysis will be
SafeDeref-sound. Recall from Theorem 1 that SafeDeref-soundness guar-
antees the detection of error states. If any non-SafeDeref state exists in �P�C ,
then a non-SafeDeref state is represented by the composed semantics; if only
SafeDeref states are reachable in the composed analysis then no concrete
non-SafeDeref state is reachable—the absence of error states can be proved.

6 Related Work

Methods for combining analyses have been described in the abstract interpre-
tation community, starting with Cousot and Cousot [7]. The focus has been on
exploiting mutual refinement to achieve the most precise combined analyses, as
in Gulwani and Tiwari [19] and Cousot et al. [9]. The power domain of Cousot
and Cousot [7, §10.2] provides a general model for analyses with conditional
semantics. We believe our notion of conditional soundness provides a simpler
model which captures the behavior of a variety of interesting analyses.

Pointer analysis for C programs has been an active area of research for
decades [21,16,28,3,27,17,12,20,23]. The correctness arguments for points-to algo-
rithms are typically stated informally—each of the analyses has been developed
for the purpose of program transformation and understanding, not for use in
a sound verification tool. Although Hind [21] proposes the use of pointer anal-
ysis in verification, the authors are not aware of any prior work that formally
addresses the soundness of verification using points-to information.



Pointer Analysis, Conditional Soundness, and Proving 75

Adams et al. [1] explored the use of Das’ algorithm to prune the search
space for a typestate checker and to generate initial predicates for a software
model checker. In both cases, the use of the points-to information is essentially
heuristic—the correctness of the overall approach does not depend on the points-
to analysis being sound.

Dor, Rodeh, and Sagiv [15] describe a variation on traditional points-to anal-
yses intended to improve precision for a sound, inter-procedural memory safety
verifier. A proof of soundness is given in Dor’s thesis [14]. However, the proof is
not explicit about the obligations of the points-to analysis. We provide a more
general framework for reasoning about verification using conditionally sound
information.

Bruns and Chandra [4] provide a formal model for reasoning about pointer
analysis based on transition systems. The focus of their work is primarily com-
plexity and precision, rather than soundness.

Dhurjati, Kowshik, and Adve [13] define a program transformation which pre-
serves the soundness of a flow-insensitive, equality-based points-to analysis (e.g.,
those of Steensgaard [27] and Lattner [23]) even for programs with memory safety
errors. The use of an equality-based analysis is necessary to achieve an efficient
implementation, but it limits the use of the technique in applications where a
more precise analysis may be necessary, e.g., in verification. The soundness re-
sults we describe here are equally applicable to flow-sensitive, flow-insensitive,
equality-based and subset-based pointer analyses.

Our abstraction for memory safety analysis is very similar to the formal mod-
els used in CCured [26] and CSSV [15]. Miné [25] describes a combined analy-
sis for embedded control systems which incorporates points-to information. His
analysis makes implementation-specific (i.e., unsound in general) assumptions
about the layout of memory.

7 Conclusion

This work grew out of a simple, but puzzling question: is it possible to utilize the
results of an analysis (points-to) whose soundness is dependent on a property
(memory-safety) in a sound analysis for the same property? There seemed to be
a circularity that could make a sound combination impossible.

Studying this question, we were led to a more precise statement of the sound-
ness properties of points-to analysis and to the definition of conditional sound-
ness. The final result shows that the combination is sound enough to correctly
prove the absence of errors, although it may not be strong enough to point out
every possible error.

We have concentrated here on points-to and memory safety analysis, but our
conditional soundness framework is by no means restricted to these domains. For
example, some static analyses are sound only assuming sequential consistency,
that integer overflow does not occur, or that the program is free of floating point
exceptions. The soundness claims of such analyses could be refined using the
methods we have described in this paper.



76 C.L. Conway et al.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0341685. Additional support was
provided by NSF Grant No. 0644299.

References

1. Adams, S., Ball, T., Das, M., Lerner, S., Rajamani, S.K., Seigle, M., Weimer, W.:
Speeding up dataflow analysis using flow-insensitive pointer analysis. In: Static
Analysis Symposium, Madrid, Spain, pp. 230–246 (September 2002)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1988)

3. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (May 1994)

4. Bruns, G., Chandra, S.: Searching for points-to analysis. In: Foundations of Soft-
ware Engineering, Charleston, South Carolina, pp. 61–70 (November 2002)

5. Conway, C.L., Dams, D., Namjoshi, K.S., Barrett, C.: Points-to analysis, condi-
tional soundness, and proving the absence of errors. Technical Report TR2008-910,
New York University, Dept. of Computer Science (2008)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, Los Angeles, California, pp. 238–252 (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Principles of Programming Languages, San Antonio, Texas, pp. 269–282 (1979)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTRÉE analyzer. In: European Symposium on Programming, Edinburgh,
Scotland, pp. 21–30 (April 2005)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Asian Computing
Science Conference (ASIAN), Tokyo, Japan (December 2006)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Principles of Programming Languages, Tucson, Arizona (January
1978)

11. Dams, D., Namjoshi, K.S.: Orion: Building blocks for program analyzers. In: Formal
Methods for Components and Objects, Amsterdam, The Netherlands (November
2005)

12. Das, M.: Unification-based pointer analysis with directional assignments. In: Pro-
gramming Language Design and Implementation, Vancouver, British Columbia,
pp. 35–46 (2000)

13. Dhurjati, D., Kowshik, S., Adve, V.: SAFECode: enforcing alias analysis for weakly
typed languages. In: Programming Language Design and Implementation, Ottawa,
Canada, pp. 144–157 (June 2006)

14. Dor, N.: Automatic Verification of Program Cleanness. PhD thesis, Tel Aviv Uni-
versity (December 2003)

15. Dor, N., Rodeh, M., Sagiv, M.: CSSV: towards a realistic tool for statically detect-
ing all buffer overflows in C. In: Programming Language Design and Implementa-
tion, San Diego, California, pp. 155–167 (July 2003)

16. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Programming Language Design
and Implementation, pp. 242–256 (June 1994)



Pointer Analysis, Conditional Soundness, and Proving 77

17. Foster, J.S., Fähndrich, M., Aiken, A.: Flow-insensitive points-to analysis with term
and set constraints. Technical Report UCB/CSD-97-964, University of California,
Berkeley (August 1997)

18. Ghiya, R., Lavery, D.M., Sehr, D.C.: On the importance of points-to analysis and
other memory disambiguation methods for C programs. In: Programming Lan-
guage Design and Implementation, Snowbird, Utah, pp. 47–58 (June 2001)

19. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Programming Lan-
guage Design and Implementation, Ottawa, Canada (June 2006)

20. Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: Programming Lan-
guage Design and Implementation, Snowbird, Utah, pp. 24–34 (June 2001)

21. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In: Program Anal-
ysis for Software Tools and Engineering, Snowbird, Utah (June 2001)

22. ISO Standard - Programming Languages - C, ISO/IEC 9899:1999 (December 1999)
23. Lattner, C.: Macroscopic Data Structure Analysis and Optimization. PhD thesis,

University of Illinois at Urbana-Champaign (May 2005)
24. Lerner, S., Grove, D., Chambers, C.: Composing dataflow analyses and transfor-

mations. In: Principles of Programming Languages, Portland, Oregon, pp. 270–282
(2002)

25. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Languages, Compilers, and Tools for Embedded Sys-
tems, Ottawa, Canada (2006)

26. Necula, G.C., McPeak, S., Weimer, W.: CCured: type-safe retrofitting of legacy
code. In: Principles of Programming Languages, Portland, Oregon, pp. 128–139
(January 2002)

27. Steensgaard, B.: Points-to analysis in almost linear time. In: Principles of Pro-
gramming Languages, St. Petersburg Beach, Florida, pp. 32–41 (January 1996)

28. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C pro-
grams. In: Programming Language Design and Implementation, San Diego, Cali-
fornia, pp. 1–12 (June 1995)


	Introduction
	Program Analysis and Conditional Soundness
	Concrete Semantics
	Pointer Analysis
	Checking Memory Safety
	Related Work
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


