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Abstract. We describe a parallel, symbolic, model-checking algorithm, built
around a compositional reasoning method. The method constructs a collection of
per-process (i.e., local) invariants, which together imply a desired global safety
property. The local invariant computation is a simultaneous fixpoint evaluation,
which easily lends itself to parallelization. Moreover, locality of reasoning helps
limit both the frequency and the amount of cross-thread synchronization, lead-
ing to good parallel performance. Experimental results show that the parallelized
computation can achieve substantial speed-up, with reasonably small memory
overhead.

1 Introduction

The verification of concurrent programs remains an difficult task, in spite of numerous
advances in model checking methods. The main difficulty is state explosion: the verifi-
cation question is PSPACE-hard in the number of components. In practice, this means
that the size of the reachable state space can be exponential in the number of processes.

Compositional reasoning and other abstraction approaches can ameliorate the effects of
state explosion. In this work, we point out that compositional reasoning is also particu-
larly amenable to parallelization. In compositional reasoning, each process is analyzed
separately, and the information exchanged between processes is limited by the localized
nature of the analysis. Both factors are crucial to effective parallelization.

To the best of our knowledge, this is the first work to explore parallel model check-
ing based on automatic compositional analysis. Prior approaches to parallelization (see
Section 5) use algorithms which compute the exact set of reachable states. The compo-
sitional algorithm, however, generally computes an over-approximation of the reachable
state set—one which suffices to prove the desired property.
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The algorithm we consider is a mechanization of the classical Owicki-Gries composi-
tional method [29]. The model is that of asynchronously-composed processes, commu-
nicating through shared-memory. The algorithm constructs a “local proof”, which is a
collection of per-process assertions, {6; }, whose conjunction (i.e., 01 A 03 ... A Oy)is
guaranteed to be an inductive whole-program invariant. This vector of local assertions
is called a split-invariant, as the program invariant is in this conjunctive form. In pre-
vious work [6-9], we have shown that this algorithm often out-performs the standard
reachability-based method of verifying safety properties.

The computation of the strongest split invariant is a simultaneous fixpoint computation
over the vector (01,05, . ..,0y). In the simplest setting, each thread of a multi-threaded
implementation is responsible for computing one component of the fixpoint. The inter-
action between thread ¢ and another thread j is limited to communicating the effect that
the transitions of processes ¢ have on the shared program state.

While it is easy to see how to parallelize the fixpoint computation, an actual imple-
mentation with BDDs is not straightforward. The BDD data structure is naturally “en-
tangled”. Standard BDD libraries are not thread-safe. We show that one can exploit
the locality of the reasoning, and use independent non-thread-safe BDD stores, one per
thread.

The algorithm has been implemented using JTLV [32], a Java-based framework for
developing verification algorithms. The experimental results are very encouraging, on
several (parameterized) protocols, the parallel algorithm demonstrates speedup ranging
from 5 to nearly 7.5 on a system with 8 cores, with a small memory overhead.

The extension of the local reasoning computation to liveness properties given in [7, 8]
is also easily parallelizable. In a nutshell, the liveness algorithm first computes the
strongest split invariant, followed by an independent analysis of each component pro-
cess. The second step is trivially parallelized.

To summarize, we view the main contribution of this work is in proposing and eval-
uating the use of compositional reasoning as a basis for parallel model checking. As
local reasoning is itself often more efficient than a global reachability computation,
parallelization offers a multiplicative improvement over sequential reachability analy-
sis. While our implementation and experiments use finite-state protocols and BDDs, the
algorithmic ideas are more general, and apply also to non-finite domain representations,
such as those used in static program analysis.

An abbreviated description of this work will be presented at the EC2 workshop, associ-
ated with CAV 2010 [10].

2 Background

This section introduces split invariance and gives the simultaneous fixpoint formulation
of the strongest split invariant. Some of this material is taken from [27], and is repeated
here for convenience.



Definition 0 A program is given by a tuple (V,I,T), where V is a set of (typed) vari-
ables, 1(V') is a predicate over V defining an initial condition, and T(V, V") is a pred-
icate defining a transition condition, where V' is a fresh set of variables in 1-1 corre-
spondence with V.

The semantics of a program is given by a fransition system: a triple (S, Sp, R), where
S is the state domain defined by the Cartesian product of the domains of variables in
V,8 ={s : I(s)},and R = {(s,t) : T(s,t)}. T is assumed to be left-total, i.e.,
every state has a successor. A state predicate (also called “assertion”) is a Boolean-
valued expression over the program variables. The truth value of a predicate at a state
is defined as usual, by induction on formula structure. The expression w(s) represents
the value of variable w in state s.

Definition 1 The asynchronous composition of processes {P;}, written as ||, P;, is the
program P = (V,1,T), where the components are defined as follows. Let V = J, V;
and I = )\, I;. The shared variables, denoted X, are those that belong to V; NV}, for
some distinct pair (i, j). The local variables of process P;, denoted L;, are the variables
in V; that are not shared (i.e., L, = V;\ X). We assume, for simplicity that, for each i,
it is true that V; = L;|J X. The set of local variables is L = | J, L;.

LetTy = Ti(Vi, VYA (V32 j # i: pres(L;)), where pres(W) is short for Nwew (W' =
w). Thus, T; behaves like T}, but leaves local variables of other processes unchanged.
The transition relation of the composition, T, is defined as \/, T;.

Notation In what follows, we use a notation introduced by Dijkstra and Scholten [13].
Sets of program states are represented by first-order formulas. Existential quantification
of a formula £ by a set of variables X is denoted as (3X : £) The notation [£] stands
for “¢ is valid”. The successor operation is denoted by sp (for strongest postcondition):
sp(T, €) represents the set of states reachable in one 7-transition* from states in &.

Inductiveness and Invariance A state predicate is an invariant of program M = (V,1,T)
if it holds at all reachable states of the transition system defined by M. It is an inductive
invariant for M if (1) it includes all initial states (i.e., [I = £]), and (2) it is preserved
by program transitions (i.e., [sp(T,€) = £]). An inductive invariant £ is adequate to
prove the invariance of a state predicate  if it implies .

Local Reasoning and Split Invariants Consider an N-process composition P = | |kPk.
To reason locally about P, we restrict the shape of invariance assertions to a special
form. A local assertion is one that is based on the variables of a single process, say
V; (equivalently, on X and L;). A vector of local assertions, § = (01,0s,...,0n), is
called a split assertion. A split assertion 6 is a split invariant if the conjunction of the
components, i.e., /\ & 0, is an inductive invariant for P.

* This can be represented by the formula unprime(3V : 7(V, V') A £(V)), where the unprime
operator replaces each next-state variable =’ with its current-state counterpart .



Definition 2 (Summary Transition) For a split assertion 0 and process k, the summary
transition for process i, denoted T (X, X'"), is defined as (3L, L}, : Ty A 0y). This
captures the effect of the transition relation T}, of process k on the shared variables X,
from states satisfying 0.

Split Invariance as a Fixpoint As shown in [27], the split-invariance constraints can
be simplified into the equivalent set of constraints below, making use of locality. For
process 4, sp, is the strongest post-condition operator for component P;; i.e., sp;(7,&) =
unprime;(3V; : 7 A ). By definition, the result of sp, is a local assertion (on V;). For
each process index i:

1. [initiality] 6; should include all initial states of process P;: [(3L\ L; : I) = 6;]

2. [step] 6; must be closed under local transitions of P;: [sp,;(T;,6;) = 6;]

3. [non-interference] 6; must be closed under transitions by processes other than P;.
For all k different from 4, [sp;(Tx A pres(L;),0;) = 0]

Calculating the Strongest Split Invariant By monotonicity of the left-hand sides of
these constraints and the Knaster-Tarski theorem, there is a least vector solution, which
is the least fixpoint, denoted by 8* = (05, ...,0%). For each i, the ¢’th component of
0* is a local assertion on V;; thus, the least solution is also the strongest split-invariant.
Hence, from [27], a global property ¢ is invariant for program P if [(A, : 6;) = ¢]
holds. The least fixpoint can be computed by the standard Knaster-Tarski approximation
sequence, as shown in Fig. 1. The calculation can be optimized by computing only
the change to each 6;, in a manner similar to the use of a frontier set in the standard
reachability algorithm.

foralli: 0; := (3L\ L; : I); /» initialize 6; by (1) =*/
while (fixpoint is not reached){
/* compute summary transitions x/
foralli: T; := (3Lk, L}, : T A Ok);
/* compute states reachable by (2) and (3) =/
foralli: 0, :=0; Vv sp,(T3,0;) V (\/k#Z sp,(Tx A pres(L:), 0:));

Fig. 1. Outline of the sequential split invariance computation.

Completeness of Local Reasoning A split invariant is a restricted class of formula;
hence, the local reasoning method may fail to prove a property—the induced global
invariant may be too weak. As shown by Owicki and Gries [29] and Lamport [24], this
can always be remedied by adding shared auxiliary variables to the program, whose sole
purpose is to expose more of the local state of the processes. Heuristics for automati-
cally deriving such auxiliary variables were presented in [6, 7]. In this paper, we focus
on the split invariance calculation, with auxiliary variables already added, if necessary.



3 Parallelizing The Split-Invariance Calculation

This section describes how to parallelize the simultaneous fixpoint calculation of the
strongest split invariant and provides a generic algorithm outline. We discuss BDD im-
plementation issues and heuristics.

3.1 Parallelizing the Least Fixpoint Evaluation

The operations required to evaluate the simultaneous fixpoint (conjunction, disjunction,
quantification, etc.) can be carried out by standard BDD manipulation for finite vari-
able domains. From the chaotic iteration theorem [12], the least vector fixpoint can be
obtained by any fair schedule of the operations. This theorem is central to the paral-
lelization, as it allows the computation for 6; to be carried out at a different rate than
that of 0, for j # 4. Hence, as pointed out in [11], the computations can be carried out
on distinct processors with very loose synchronization.

The parallel algorithm is outlined in Fig. 2. For simplicity, it is assumed that each com-
ponent of the fixpoint is computed by a separate thread. The algorithm is described for
thread ¢, which is responsible for component 6;. It corresponds to the fixpoint evaluation
schedule where 0; is initialized according to (1); the sp,; operations in (2) and (3) are
iterated until 6; stabilizes (this generates states reachable from actions of process P; and
the shared effects of other processes); only then is the effect of process P; calculated,
and broadcast to all other processes. This is repeated until global convergence.

Constraint (3) forces communication and synchronization between the various threads.
By definition, the summary transition, Ty, represents the effect on the shared state of
transitions taken by process P}, from the set of states satisfying ). This term is peri-
odically evaluated at thread k, using its current value for 0, and the result is broadcast
to all other threads (as shown in Fig. 2 for thread ¢). The broadcast can be carried out
through a (virtual) communication topology. The reception of such broadcasts is left
implicit in the algorithm description.

3.2 BDD implementation issues

Implementing the computation in Fig. 2 with BDD techniques gives rise to issues con-
cerning synchronization and memory locality, which we discuss below.

Currently available BDD implementations are not thread-safe and require substantial
modification to be so [35]. A sequential BDD store can be made thread-safe at a coarse-
grain level by a global lock acquired prior to each BDD operation; however, this is
prohibitively expensive. Moreover, even a single thread-safe BDD store may have lo-
cality issues. The summary transition terms broadcast by each thread are accessed by
multiple threads, which requires synchronization. BDDs representing “mixed” terms
(i.e., terms such as 6; that depend on both X and L;) are accessed by a single thread,
and do not require synchronization. Using a single (thread-safe) BDD store to represent



0; :=(3L\L;:I); /» initialize 6; by (1) */
forallk : k # i : T(k) := false;
while (not globally converged){
while (6; does not stabilize){
/* compute states reachable by (2) and (3) =/
0; :=0; vV sp,(T;,0;) V (\/k# sp,(T(k) A pres(L;), 6;))
}
/* broadcast this process’ summary =/
asynchronously broadcast T'(i) = (3L;, L} : Ty A 6;);

}

Fig. 2. Outline of the computation for Thread i. Vector T represents summary transitions. A
secondary thread (not shown) is used to receive updates for 7" from other threads via the broadcast
operation.

both types of BDDs uniformly could result in mixed BDDs from distinct threads being
mapped to the same unique table bucket, which unnecessarily synchronizes accesses to
these BDDs. (This scenario is similar to “false sharing”, which arises when variables
local to distinct threads are mapped to the same cache line.)

Our current implementation has multiple (non-thread-safe) BDD stores, one for each
thread. From the structure of the local reasoning computation, the #; term does not re-
fer to Lj, for j # 4, so that it is not necessary to pick a single total ordering of the
local variables. The BDD stores have to agree on the ordering of the shared variables X
(or incur a cost to translate between distinct orders). With this structure, there is a cer-
tain amount of replication amongst the BDD stores: if local BDDs from distinct threads
have a common term (necessarily over X, X’), the BDD for this term is replicated. An-
other potential issue is the cost of copying summary transition BDDs (the {7} terms)
between stores to implement the broadcast operation from Fig. 2. In many of our exper-
iments, we did not observe a serious effect from either replication or copying, but the
degree to which this is an issue depends on the amount of shared state in the protocol.
This is examined in more detail in Section 4.

3.3 Implementation Decisions

Perhaps the most important decision is that of the topology of the implementation,
the most obvious ones being a clique, a star, and a tree. While intuitively it seems
that the topology of the threads should mimic the topology implemented protocol, it
turns out that often this is not the case. For example, while the underlying topology of
Szymanski’s mutual exclusion algorithm [37] is a clique, our experiments show that an
implementation with a star topology is more advantageous.

The simplified description given above allocates one thread to each component of the
vector. This can be bad for performance if too many threads are created. (For good
utilization, the number of threads should be approximately the number of cores.) An
alternative is to let each system thread represent several processes. Hence, each thread



or core is responsible for computing several components of the split-invariant vector.
The BDDs for these components are managed by a single, per-thread BDD store.

Large BDD caches can improve performance by avoiding recomputation of previously
computed BDD nodes. In our experimental results, we present the performance of the
sequential and parallel algorithms on the cache size which gave the best results for the
type of algorithm.

4 Experiments and Results

We compared the parallel algorithm with the sequential split invariant algorithm, which
was shown in [9] to often have order-of-magnitude improvements in run-time over
monolithic model checking. All experiments reported here were conducted on a dual-
quad-core AMD Opteron (8 cores total), with 1.1G H z clock-speed and 512K B cache
processors, and a total of 32G RAM. Both versions were implemented in Java, using
JTLV (Java Temporal Logic enVironment) [32], a BDD-based framework for developing
verification algorithms. JTLV provides a common Java API to several BDD libraries. We
used a native JAVA BDD package, based on BUDDY, which is supplied in JAVABDD.

For our testbed, we used four known algorithms, three mutual exclusion protocols and
a cache coherence protocol, representing parameterized systems with various number
of shared variables, amount of synchronization, and complexity of transition relation.

We tested an optimized sequential implementation, and the parallel algorithm with dif-
ferent numbers of processing cores (2/4/8). The tests were done on several instantia-
tions of each protocol. All the results reported here refer to the optimal execution we
obtained. For each parameterized system, we measured, for each instantiation, the num-
ber of BDD nodes in the sequential and in the parallel case and the increment (if any)
caused by the latter. We then compare, for each instantiation, the speedup obtained, and
the efficiency of the parallel implementation measured as

speedup sequential time

# of active cores parallel time x # of active cores

where “# of active cores” is the minimum between the number of threads and the
number of processing cores available.

4.1 The Examples

Unless noted, code for examples can be found in [1].

Mutual Exclusion with Semaphores MUXSEM is a simple parameterized mutual
exclusion protocol, which uses a semaphore to coordinate accesses to the critical re-
gion. Multiple processes from the protocol were mapped to a single thread. For N =



512,1024, 1536 we used 32 threads, and 64 threads for N = 2048. The broadcast op-
eration is implemented by the central thread, which disjuncts transitions from multiple
threads before forwarding them, thus reducing the number of messages (while increas-
ing their complexity). The property we verified is that of mutual exclusion. Table 1
shows the number of BDD nodes for each instantiation. Table 2 shows the speedup and
efficiency obtained. Note that the number of BDD nodes is roughly the same for the
sequential and parallel implementations.

Sequential Parallel
N || number of BDD nodes || number of BDDs nodes | BDD inc.
512 19.5M 19.8M 1%
1024 81.0M 82.0M 1%
1536 219.0M 221.0M 1%
2048 335.0M 342.0M 2%

Table 1. Number of BDD nodes for MUXSEM

sequential 2 cores 4 cores 8 cores
N Time Time | Speedup | Eff. || Time | Speedup | Eff. || Time | Speedup | Eff.
512 27 16 1.68 10.84|| 8.3 325 1081 4.8 5.6 0.70

1024 117 65.8 1.77 10.88 | 34.8 33 0.821]| 19.2 6.1 0.76
1536 360 203 1.77 10.88 || 112 3.2 0.80|| 65 5.5 0.69
2048 561 314 1.80 [0.90]| 165 34 0.85]] 92 6.1 0.76

Table 2. Test results for MUXSEM

Szymanski’s protocol [37] SZYMANSKI is a more complex mutual exclusion protocol
where communication is achieved by shared distributed (single-writer multiple-readers)
variables. We verified the mutual exclusion property for both sequential and parallel
implementations for N = 6,7,8,9 on 2-, 4- and 8-core machines. The results when
applying a star topology are provided in Table 3 and Table 4. As can be seen from the
tables, the efficiency obtained is similar to that obtained for MUXSEM, however, there
is an increase in the number of BDD nodes required for the parallel implementation
(that is correlated with the size of the instantiation).

German 2004 German'’s original cache coherence protocol (see, e.g., [31]), consists of
a central controller called Home and N clients that coordinate with Home for shared
and exclusive access to a shared variable. In a tutorial at FMCAD’04, German intro-
duced a more involved version of the protocol, that became known as “German 04”. A



Sequential Parallel
N || number of BDD nodes || number of BDDs nodes | BDD inc.
6 4.8M 6.9M 43%
7 16.1M 23M 42%
8 49M 73M 48%
9 141M 216M 53%
Table 3. Number of BDD nodes for SZYMANSKI
sequential 2 cores 4 cores 8 cores

Time Time ‘ Speedup‘ Eff. || Time ‘ Speedup ‘ Eff. || Time ‘ Speedup‘ Eff.

20.5 11.6 1.76 [0.88|| 6.5 3.15 10.78] 4.4 4.65 10.78
130 73.5 1.76 [0.88|] 41 3.17 10.79|| 23.7 548 10.78
564 302 1.87 093] 163 346 10.86|] 93 6.06 10.76
2896 1362 | 2.12 [1.06] 739 391 10.97] 492 5.88 10.73

O [0 || || 2

Table 4. Test results for SZYMANSKI

description of the protocol is in [16]. The new protocol differs from its predecessor by
allowing each process to be both a home of some cache lines, and a client for all cache
lines. It also allows for message queues, and a “send/receive” cycle for each process.
Our modeling of the protocol is based on the one of [31]. We do not deal with the mes-
sage queues and rather assume that each channel can hold at most one message, and
model the channels as shared variables. We also simplified the protocol by assuming
that each process is a home for a single cache line, though we can easily remove this
assumption. Finally, we replace the send/receive cycles by non-determinism; our safety
proof implies that of the more detailed version.

The protocol is defined by | |£V: Pli] where each process P[i] is itself a parallel compo-
sition of /N homes (one for each client it serves) and N clients (one for each home),
which we denote by Homeli][1],..., Homel[i][N] and Client[i][1],..., Client[i][N],

that is,
N

N
Pl = || Homelilljl || || Client[i]]j
j=1 j=1
The property we wish to verify for this system is that of coherence by which there
cannot be two clients, one holding a shared access to a cache line and the other holding,
simultaneously, an exclusive access to the same cache line.

The system thus consists of a parallel composition of N2 subsystems, and is equivalent
to the system | |le: 1QIi] where clients are grouped with the homes they refer to.

N N
Qi) = || Home[d)lj) || || Client[;]]]
Jj=1 j=1
In the P[i] processes, home and clients share no variables, while a home and its clients
on other threads share only communication channels. The advantage of this refactor-



ing is that the Q[i]’s do not communicate with one another — they each consist of a
home process and the fragments of clients that communicate with it. We thus apply the
analysis where each thread models a single ([i]. We used a star topology where the
central thread is used only for communication and does not model any process. The
experimental results are in Table 5.

We omit the table of the number of the BDD nodes since they are the same for both the
sequential and the parallel case, with one important exception: The sequential version
state exploded with N = 12 (BuDDY allows up to 429M BDD nodes), while the
parallel version did not, and used 718M BDD nodes, split among the threads. Note that
for a few instances the efficiency exceeds 1! We believe that this may be due to better
cache utilization due to the multiple BDD stores.

sequential 2 cores 4 cores 8 cores
N Time Time | Speedup | Eff. || Time | Speedup | Eff. || Time | Speedup | Eff.
8 185 78 237 [1.19]] 44 420 [1.05]] 31 596 [0.74
9 489 234 2.08 1.04 || 126 3.88 097 76 6.40 10.80
10 1076 511 2.10  [1.05] 268 4.00 |1.00]| 164 6.56  0.82
11 2867 1310 | 2.18 1.09 || 691 4.14 11.03]| 385 744 10.93
12 || over BDD limit || 3505 - - 1819 - - 1013 - -

Table 5. Test results for German’s cache coherence protocol

Peterson’s Mutual Exclusion Protocol [30] This protocol uses both shared arrays
and distributed shared variables. We proved its mutual exclusion property. This is a
particularly interesting examples, because of the high number of shared variables (see
Subsection 4.2 for elaboration on this point). Yet, we obtained significant speedup (see
Table 7) for all cases but for N = 4 on an 8-core machine, with rather small increment
in the number of BDD nodes (see Table 6).

Sequential Parallel
N || number of BDD nodes || number of BDDs nodes | BDD inc.
4 266k 301k 13%
5 2M 2.4M 20%
6 15M 21M 40%

Table 6. Number of BDD nodes for PETERSON’s
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sequential 2 cores 4 cores 8 cores

N Time Time | Speedup | Eff. || Time | Speedup | Eff. || Time | Speedup | Eff.
4 0.7 0.7 1.00 10.50)| 0.7 1.00 [0.25]| 0.6 1.16 10.29
5 6.1 4.5 1.35 10.67|| 2.5 244 10610 1.9 320 10.64
6 123 63 195 [097] 36 341 ]0.85]| 22.5 546 (091

Table 7. Test results for PETERSON’s

4.2 Comments and Observations

Letting each thread have its own BDD store and distributing the BDD nodes among the
store resulted in only a slight increase in the total number of BDD nodes, and at times
accommodated larger instantiations than allowed by the sequential counterpart.

Roughly speaking, we believe that what is happening here has to do with “locality” —
the more restricted a process is to its local environment, the less BDD nodes and the
faster runtime. In addition, the number of shared variables may also play a role in the
results:

In MUXSEM, there are two shared variables (and no distributed shared variables), one
that is finitary (as a matter of fact, boolean) and the other that takes on values in the
range [1..N], thus there are O(log N) shared variables with relatively simple access. In
SZYMANSKI there are no shared variables, but each process has a finitary distributed
shared variable. Thus, there are O (V) shared variables, each can be written by a single
process and read by all. Indeed, the efficiency obtained for this case is somewhat worse
than that obtained for MUXSEM. For German, after we manipulated the processes, we
obtained no sharing, and, consequently, high efficiency.

PETERSON has the most complex structure of variables each process has a distributed
shared variable that can have values in the range [1..N], and there is a shared array
[1..N] — [0..N]. In fact, the arrays are not stratified (see [1]). There are O(N log N)
shared variables, however, a conclusion from our promising results is that the interaction
among them is rather localized.

Another issue, mentioned in Subsection 3.2, is that the multiple-store implementation
incurs costs due to replication and copying of BDD’s. We instrumented the code to mea-
sure speedup costs due to copying of BDD’s across threads. The results for 8 cores are
shown in Table 8. (The structure of GERMAN'’s protocol implies that there is no copying
required.) From this table, it is clear that the copying cost is low, but also that there is
a strong correlation between the copying cost and the efficiency of the parallel algo-
rithm on a given protocol. Thus, providing a way to do the broadcast without requiring
copying of BDD’s would further improve the performance of the parallel algorithm.

5 Related Work and Conclusions

We compare our approach with earlier work on partitioned BDD representations and
parallel model checking.
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’ N ‘ Threads ‘ Copy (sec) ‘ Algorithm (sec) ‘ Total (sec) ‘ Copy/Total

MUXSEM:
512 32 0 4.8 4.8 0.00
1024 32 0.3 18.9 19.2 0.01
1536 32 0.8 64.2 65 0.01
2048 64 2.4 91.7 92 0.02
SZYMANSKI:
6 6 1.0 34 4.4 0.22
7 7 3.5 21 23.7 0.15
8 8 11.3 81.7 93 0.12
9 9 32 460 492 0.06
PETERSON’s:
4 4 0.10 0.50 0.6 0.16
5 5 0.28 1.62 1.9 0.14
6 6 1.60 20.9 22.5 0.07

Table 8. Results showing copying time

It is known that partitioned representation of the reachable states, and of transition re-
lations, can significantly speed up a reachability computation. Examples include (im-
plicit) conjunctive partitioning of transition relations [2] and reachability sets [22], over-
lapping projections [17], approximate traversal [4,33], and OBDDs partitioned accord-
ing to window functions [28]. These representations, and others, have been used to split
up the work of reachability in parallel (distributed) algorithms [3, 18, 19], as well as in
parallel (shared-memory) algorithms [14,23,34,35].

A significant point of difference with these methods is that, instead of computing the ex-
act set of reachable states, the local reasoning method computes an over-approximation
in the form of a split invariant. The form of the split invariant requires “looser”” connec-
tions between the BDDs in the split invariance vector—the connections are, by defini-
tion, only on the portions of the BDDs which represent shared variables.

The Machine-by-Machine and Frame-By-Frame traversals and their variants [5, 26]
perform approximate reachability in a synchronous computation model. The results of
LMBM can be tighted by using overlapping projections [17]. In particular, the LMBM
method in [26] has similarities to the split-invariance computation. At each fixpoint step
of LMBM, 6; is updated using the image of (/\, : 6x) by T;, treating non-P; variables
as unconstrained. This is qualitatively weaker than the steps (2) and (3) in Section 2,
which account for interference by other processes. Of course, the underlying models
differ; but applying LMBM to an encoding of asynchronous computation in the syn-
chronous model would result in weaker results than split-invariance.

To the best of our knowledge, this work represents the first parallel model checking
method based on compositional reasoning. Intuitively, compositional reasoning has the
advantage of more localized computation over non-compositional reasoning. Moreover,
the local reasoning algorithm can often succeed in proving a property without comput-
ing the exact reachability set, and automated heuristics can be applied for choosing the
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auxiliary variables necessary for completeness [6, 7]. The locality of the computation
makes it easier to parallelize, and results in locality in BDD operations. The experiments
justify this intuition by showing significant speedup over an optimized sequential com-
putation of split invariance.

In most cases, the memory overhead of our implementation is small. As explained in
Section 4, this overhead is correlated with the size and the usage of the shared variable
space. The small overhead of the compositional approach can be contrasted with the
parallel (exact) symbolic reachability computation on asynchronous programs in [14,
25], where the parallelized algorithms showed excessive memory overhead, between 2
and 20 times the memory required by the sequential algorithm.

Parallel versions of explicit-state model checking algorithms have been developed for
the Mury and SPIN model checkers [20, 21, 36]. These algorithms compute the exact
reachability set (under partial-order reductions), and are different in that crucial respect
from the local computations described here. When cast in explicit-state terms, the split
invariance calculation is precisely the “thread-modular” algorithm described by Flana-
gan and Qadeer in [15].

In terms of future work, several directions open up. One is to investigate whether a sin-
gle (thread-safe) BDD store can provide better performance than the current multiple-
store implementation. Another is to experiment with a distributed-memory implemen-
tation of this method. Yet another is to design parallel algorithms for computing split
invariance with explicit state representations. We also plan to incorporate the parallel
algorithm into SPLIT [9].
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