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Abstract. Proofs of progress properties often require fairness assumptions. Di-
rectly incorporating global fairness assumptions in a compositional method is
difficult, given the local flavor of such reasoning. We present a fully automated
local reasoning algorithm which handles fairness assumptions through a process
of iterative refinement. Refinement strengthens local proofs by the addition of
auxiliary shared variables which expose internal process state; it is needed as
local reasoning is inherently incomplete. Experiments demonstrate that the new
algorithm shows significant improvement over standard model checking.

1 Introduction

Model checking is fundamentally constrained by state explosion [6]: for concurrent pro-
grams, the state space can grow exponentially with the number of processes. A promis-
ing approach to ameliorating state explosion is to decompose a verification task so that
the reasoning is as localized as possible. In this work, we propose and evaluate a new al-
gorithm which carries out compositional reasoning for temporal properties which hold
only under global fairness assumptions.

Fairness assumptions are often needed for proofs of progress properties. It has long
been understood how to incorporate fairness in standard model checking [5, 14], but
doing so is a challenge for compositional methods. The difficulty is that fairness as-
sumptions commonly refer to local state from a number of processes. For example, a
common (strong) fairness constraint is that “for every process: if the process is enabled
infinitely often, it is infinitely often executed”. As “enabledness” depends on local state,
this assumption refers to the local state of every process. Since compositional reason-
ing is based on a per-process view, the presence of such global assumptions can be
problematic.

This work develops a new algorithm for compositional model checking with fairness
assumptions, which tackles this problem with a successive refinement method. It also
presents a new compositional proof rule for verification under fairness. Moreover, the
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model checking algorithm can be instrumented to generate a valid instantiation of the
proof rule upon success.

The new algorithm is the continuation of a line of research on mechanizing assertional
(i.e., state-predicate based) compositional verification. The starting point is an algo-
rithm from [22] which computes the strongest split invariant. A split invariant is a
vector of interference-free, per-process invariants. (A set of per-process invariants is
free of interference [24, 19] if the action of one process does not invalidate the invariant
of another process.) The term “split invariant” is used as the conjunction of the local
invariants forms a inductive invariant for the program as a whole. The strongest split in-
variant may be weaker than the set of reachable states, and therefore not strong enough
to prove a safety property. In [8], we solve this problem by formulating an complete
verification procedure which strengthens the split invariant by discovering and adding
auxiliary shared variables to track local predicates. In [9], we use split invariance as
the basis for a new compositional algorithm for checking LTL properties. Experiments
reported in these papers show that assertional local reasoning can be significantly faster
than monolithic (i.e., non-compositional) model checking.

The local liveness method of [9] does not directly apply to fairness constraints. This
is because the method is sound only for properties expressed over shared variables.
Incorporating fairness into the specification, through the identityM |= AFair(Spec) ≡
M |= A(Fair ⇒ Spec), results in a new specification which names a number of
local variables (due to Fair). One can, of course, turn all the local variables in Fair
into shared variables, but this defeats the purpose of local reasoning.

The new algorithm gets around this difficulty by a process of iterative refinement. The
fairness constraint is replaced with a weaker form, which depends monotonically on
the current split invariant, and is expressed over only the shared variables. This allows
using the compositional algorithm from [9], with slight modifications. If verification
succeeds with the weaker fairness assumption, the property is proved. If not, a bogus
counter-example is produced, and analyzed to discover new local predicates which are
then exposed as auxiliary shared variables. Exposing local state strengthens the split
invariant in the next round of computation, which strengthens the abstracted fairness
assumption by monotonicity. This is repeated until a decisive result (either success
or a real counter-example) is obtained. The iterative process terminates—and is thus
complete—for finite-state programs: eventually, enough of the local state is exposed to
either prove a correct property or to disprove an incorrect one. Moreover, it is possible
to disprove a property without building up the entire state space.

The algorithm, being predicate-based, has a simple implementation using BDDs. We
carry out an evaluation with several parameterized protocols, where each instance of
the protocol is finite-state. The experimental results show promise: the compositional
verification is faster in almost all cases, sometimes by one or two orders of magni-
tude. Exposing a limited amount of local state suffices for both proofs and disproofs of
properties, validating the basic premise behind compositional reasoning.



2 Related Work

The question of handling fairness in compositional verification is a natural and impor-
tant one. The comprehensive book on compositional methods by de Roever et. al. [11],
however, does not mention a compositional proof rule directly incorporating fairness.
Compositional proof rules for general LTL properties (e.g., [1, 20, 21, 23]) can handle
fairness only by compiling it into the specification. To the best of our knowledge, this
is the first compositional algorithm and proof rule to directly incorporate fairness.

The methods used here are assertional; i.e., they are based on computing state pred-
icates. The “thread-modular” reasoning method [16] computes a split invariant using
explicit-state representations, but is limited to safety properties. An alternative line of
work on automated compositional reasoning is based on representing interface behav-
ior, and is thus behavioral in nature. One instance of this method uses the following
complete proof rule: to show M1//M2 |= Spec, find an interface automaton A such
that M1 |= A and M2//A |= Spec. (Here, |= is read as language inclusion.) The
procedures developed in [17, 27] employ a combination of model checking and finite-
automaton learning via variants of the L∗ method [2] to construct an appropriate au-
tomaton A. Standard learning algorithms compute automata on finite words, and hence
can be used only for proofs of safety properties. An algorithm is developed in [15] for
learning a Büchi automaton, but it has not yet been applied to verification of progress
properties. Although an automaton is a powerful and compact representation object,
current implementations of behavioral methods have difficulty showing a significant
improvement over non-compositional model checking [7].

3 Background: Local Reasoning and Liveness Properties

This section defines the system model and split invariance, and gives a short summary
of the method for local liveness checking. Part of this material is taken from [22, 8, 9],
and is repeated here for convenience.

A Note on Notation. Throughout the paper, we use notation based on that of Dijkstra
and Scholten [12]. Sets of program states are represented by first-order formula on
program variables. Existential quantification of formula ξ by a set of variables X is
written as (∃X : ξ). The notation [ξ] stands for “ξ is valid”. The successor operation
is denoted by sp (for strongest post-condition): sp(τ, ξ) represents the set of states
reachable from states satisfying ξ in one τ -transition. The notation spi(τ, ξ) is used for
successors computed within the state space of process Pi.

3.1 Model: Asynchronous, Shared-Memory Composition

A process is given by a tuple (V, I, T ), where V is a set of (typed) variables, I(V ) is
a predicate over V defining an initial condition, and T (V, V ′) is a predicate defining a



transition condition, where V ′ is a fresh set of variables in 1-1 correspondence with V .
The semantics of a process is given by a transition system in the standard way.

The asynchronous composition of processes {Pi} is written as
i
Pi. For convenience,

we suppose that there is a set of variables, X , called the shared variables, and sets of
variables, {Li}, called the local variables, such that Vi = X ∪ Li for each i, and Li
is disjoint from Lj , for i 6= j, and Li is also disjoint from X . The components of the
composition are defined as follows. Let V =

⋃
i Vi and I =

∧
i Ii. The set of local

variables is L =
⋃
i Li. Let T̂i = Ti(Vi, V ′i ) ∧ (∀j : j 6= i ⇒ unch(Lj)), where

unch(W ) is short for
∧
w∈W (w′ = w). Thus, T̂i behaves like Ti, but leaves local

variables of other processes unchanged. The transition relation of the composition, T ,
is defined as

∨
i T̂i.

3.2 Split-Invariance: Definition and Calculation

Let P =
k
Pk be an N -process composition. For localized reasoning about invariance,

the shape of invariance assertions is restricted to a conjunction of local (i.e., per-process)
assertions. A local assertion is one that is based on the variables of a single process.
A split assertion is a vector of local assertions, θ = (θ1, θ2, . . . , θN ), one for each
process, so that θi is defined on Vi (equivalently, on X and Li). Split assertion θ is a
split invariant if the conjunction of its components, i.e.,

∧
k θk, is an inductive invariant

for the full program P . Split-invariance can equivalently be defined as in Figure 1.

Definition 0 The notation T θk (X,X ′) denotes (∃Lk, L′k : Tk ∧ θk). This is a “summary
transition”, representing the effect that a move of Pk from a state satisfying its local
invariant has on the shared variables.

For each process index i:

1. [initiality] θi includes all initial states of process Pi. I.e., [(∃L \Li : I) ⇒ θi]
2. [step] θi is closed under transitions of Pi. I.e., [spi(Ti, θi) ⇒ θi]
3. [non-interference] θi is closed under transitions (interference) by processes other than Pi.

I.e., for all k different from i, [spi(T
θ
k ∧ unch(Li), θi) ⇒ θi]

Fig. 1. Split Invariance Conditions

These conditions are a simple instance of (syntactically circular) assume-guarantee rea-
soning: θi is the invariance guarantee provided by process i, based on assumptions
{θj : j 6= i} about the other processes. The constraints can be gathered into the set of
simultaneous implications: for each i,

[(∃L \Li : I) ∨ spi(Ti, θi) ∨ (∨ k : k 6= i : spi(T
θ
k ∧ unch(Li), θi)) ⇒ θi] (1)

Theorem 0 (Namjoshi [22]) The simultaneous least fixpoint of equations (1) exists by
the Knaster-Tarski fixpoint theorem. This defines the strongest split invariant.



3.3 Incompleteness and Auxiliary Variables

x : boolean initially x = 1

N

‖
i=1

P [i] ::

266664
loop forever do2664
l0 : Non-Critical
l1 : request x
l2 : Critical
l3 : release x

3775
377775

Fig. 2. MUXSEM

last : 0..N initially last = 0
x : boolean initially x = 1

N

‖
i=1

P [i] ::

266664
loop forever do2664
l0 : Non-Critical
l1 : 〈request x; last := i〉
l2 : Critical
l3 : release x

3775
377775

Fig. 3. MUXSEM with auxiliary variable

Local reasoning is inherently incomplete. This is illustrated by the mutual exclusion
protocol from Figure 2. The strongest split invariant for 2 processes is (true, true),
which is too weak to prove mutual exclusion. A general mechanism for overcoming
incompleteness, proposed by Owicki-Gries and Lamport [19], is to add auxiliary shared
variables which expose portions of the local state or execution history. In Figure 3, an
auxiliary variable records the last process to enter the critical section. The strongest split
invariant for the augmented protocol is given by θi ≡ (l2(i) ≡ (x = 0) ∧ (last =
i)), which suffices to prove mutual exclusion as [θi ∧ θj ∧ (i 6= j) ⇒ ¬(l2(i)∧ l2(j))].
The discovery of auxiliary predicates can be effectively automated [8].

3.4 Local Verification of Liveness Properties

Owicki and Gries also developed compositional proof rules for termination. In [9], a
related proof rule is turned into a compositional algorithm for checking general linear-
time temporal properties. This “local liveness” method, referred to subsequently as the
LL algorithm, is shown in Figure 4. We give a sketch of its soundness proof, as this is
important for the extension to fairness. The LL algorithm requires that the LTL property
is expressed by shared variables. With this method, one can show that the property
“infinitely often (x = 0)” holds for the protocol in Figure 2—i.e., that some process is
in the critical section infinitely often. Starvation freedom, however, holds only under a
strong fairness assumption, and its compositional proof requires the new method.

Theorem 1 (Cohen-Namjoshi [9]) The LL method is sound.

Proof Sketch. The soundness proof shows the following: if a property does not hold,
any global counter-example can be projected to a counter-example for some abstract
process. Let σ be a global counter-example. Then (1) each state of σ must satisfy the
split invariant and (2) the Büchi automaton must accept infinitely often along σ. As
there is a fixed number of processes, by (2), there is a process, say Pi, whose tran-
sition is executed infinitely often from a Büchi accepting state along σ. Consider the
abstract process P θi formed out of Pi. The computation σ can be projected, transition-
by-transition, to an execution of P θi . A transition by process Pi is kept as is; a transition



Local Liveness (LL) Algorithm

1. Compute the strongest split invariant, θ.
2. For each i: build an abstract form of process i, called P θi , with initial states given by

(∃L \Li : I), and two kinds of transitions:
– the transition Ti of process i, and
– summary transitions T θj (see Defn. 0) for all other processes Pj (j 6= i)

3. Form a Büchi automaton for the negated specification. For each i, form the synchronous
product of this automaton with P θi and check that there is no computation where infinitely
often there is a process i transition from a Büchi accepting state

4. Declare success if the check succeeds for each abstract process

Fig. 4. Local Liveness (LL) Algorithm.

by another process, say Pk, is replaced by its summary transition, T θk (detailed proof
is in [9]). Any summary transition preserves the change to shared variables made by
the original; hence, the sequence of shared-variable values is identical in the original
and the projected computations. As the automaton checks properties defined only over
shared variables, its accepting run carries over to the projected computation. In the pro-
jected computation, there are infinitely many positions where there is a transition by Pi
from an accepting automaton state. Hence, the check in Step 3 fails for process P θi . �

4 Fairness

We describe the modifications necessary to incorporate fairness assumptions into the
local liveness method. We begin with a simple but useful kind of fairness, called uncon-
ditional fairness.

4.1 Unconditional Fairness

This fairness notion is a foundational concept in the UNITY programming language
and proof system [3], and it suffices for many interesting distributed protocols. Under
unconditional fairness, every process is scheduled infinitely often in an infinite com-
putation. The statement uses “scheduled” rather than “executed”—a process may be
scheduled but do nothing (i.e., behave as skip) because its transition is not enabled. To
analyze a protocol under unconditional fairness, Step 3 of the local liveness method is
modified to check that, for each P θi , there is no unconditionally fair computation where
infinitely often there is a process i transition from a Büchi accepting state.

Theorem 2 The LL method modified for unconditional fairness is sound.
Proof Sketch. The proof sketch for Theorem 1 shows that the sequence of process
identifiers associated with the transitions is identical in the original and the projected
computations. As the original error computation is unconditionally fair by assumption,
the projected error computation must also be unconditionally fair. This argument shows
that the modified check is sound. �



4.2 Strong Fairness

The strong fairness algorithm is based on iterated refinement. The idea is to start with
a weakened form of the strong fairness assumption, and use the refinement mechanism
which adds auxiliary variables to strengthen this assumption with each iteration, until
a conclusive result is obtained. To keep the notation simple, we consider a common
form of strong fairness, given as Φ ≡ (

∧
i : FG(pi) ∨ GF(qi)), where pi and qi

are assertions over the variables of process Pi. Recall that the proof of soundness of the
local liveness method projects a global counter-example, σ, on to a local computation of
abstract process P θk , for some k. In the presence of fairness, there are two key properties
of σ:

1. Every state on σ satisfies
∧
i θi, as θ is a split invariant, and

2. σ satisfies the fairness assumption Φ

Taken together, this implies—crucially—that σ must also satisfy the stronger fairness
assertion, Φ∗, given by (

∧
i : FG(θi ∧ pi) ∨ GF(θi ∧ qi)). The fact that Φ∗ is stronger

than Φ for any θ follows from the monotonicity of G and F. The fact that Φ∗ holds
for σ follows by the first property: as every state on σ satisfies (

∧
j : θj), assertions

FG(θi ∧ pi) and FG(pi) are equivalent on σ, as are assertions GF(θi ∧ qi) and GF(qi).

The abstract fairness property is formed by quantifying out local variables from Φ∗, as
follows.

Φθ = (
∧
i : FG((∃Li : θi ∧ pi)) ∨ GF((∃Li : θi ∧ qi)))

Subsequently, we refer to the term (∃Li : θi ∧ pi) as pθi and to (∃Li : θi ∧ qi) as qθi .
The transformed fairness property is weaker than Φ∗, but not necessarily weaker than
Φ, and it is defined over the shared variables only.

It is important that Φθ depends on θ, and does so in a monotonic manner. This enables
refinement: as the split invariant is strengthened by adding auxiliary variables, the ab-
stract fairness assumption also becomes stronger. The new method is shown in Figure
5; other than a modified check at Step 3, it is identical to the LL method from Figure 4.

Fair Local Liveness (FLL) Algorithm

1. Compute the strongest split invariant, θ.
2. For each i: build an abstract form of process i, P θi , as defined in Figure 4
3. Form a Büchi automaton for the negation of the specification. For each i, form the syn-

chronous product of this automaton with P θi and check that there is no computation which
is strongly fair according to Φθ and on which infinitely often there is a process i transition
from a Büchi accepting state

4. Declare success if the check succeeds for each abstract process

Fig. 5. Fair Local Liveness (FLL) Algorithm.



Theorem 3 The FLL method is sound.

Proof. This proof is an extension of the proof of Theorem 1. Consider a global counter-
example σ which is fair according to Φ. By the proof of Theorem 1, the projection of
σ on P θi satisfies the second part of the condition of Step 3: i.e., infinitely often there
is a process i transition from a Büchi accepting state. It remains to be shown that the
projected computation also satisfies Φθ.

As σ is a counter-example based on the fairness assumption, it satisfies Φ; as it is a
program computation, it satisfies the split invariant, θ. Hence, by the reasoning above,
it satisfies Φ∗ and therefore the weaker property Φθ. As Φθ is a property over shared
state only, and the sequence of values for shared variables is preserved by the projection,
Φθ holds also of the projected computation. �

Remark 0 Our implementation uses a stronger abstraction of the fairness property. In
Step 3 of the FLL algorithm, instead of the uniform assumption Φθ, the implementation
uses a fairness assumption for P θi where all terms from Φ are abstracted relative to θ as
described above, except the term (FG(pi) ∨ GF(qi)), which is used as is, since it refers
only to variables of process Pi.

4.3 FLL Algorithm Variant

The basic FLL algorithm can be varied by changing Steps (2)-(4) as follows. The new
combination checks whether for some i, the abstract process P θi satisfies the specifica-
tion, assuming strong fairness according to Φθ. We call this algorithm the B-variant of
the FLL algorithm; the original is called the A-variant. Note that the correctness condi-
tion in FLL (B) is stricter than that for FLL (A); on the other hand, it suffices that one
of the abstract processes satisfies the test. The justification is based on a proof similar
to that of Theorem 3: if a global counter-example exists, its projection in P θi fails the
FLL (B) requirement, for every i. The contra-positive shows that it suffices for some i
to satisfy the FLL (B) requirement for the program to be correct.

The two algorithms offer a trade-off. Due to the weaker correctness condition of FLL
(A), this algorithm may prove correctness while FLL (B) does not, leading to extra
refinements in the B-variant. On the other hand, for FLL (B), it suffices to check a single,
fixed process (say, P θ0 ); this is potentially faster for programs with a large number of
components.

4.4 Refinement for Fairness

As local reasoning is approximate, it is possible for the FLL method to fail even though
the property is true of the whole program. One can analyze the failure, though, to sug-
gest auxiliary Boolean variables which expose local state predicates, as shown in Figure
6, which extends the refinement procedure used for the LL method.

Step 1 is the refinement step for LL. Recall that a transition of σ in P θi by a process
Pk other than Pi can modify only the shared variables. A change of shared state from



Refinement for Fair Local Liveness

1. Check if every summary transition in the abstract counter-example σ is a MUST transition
for the process which makes it. If not, expose a local predicate for the MUST condition, as
defined in [9] for the LL method, and REPEAT the full verification.

2. Inductively construct a global computation δ which matches σ
3. Check if δ satisfies the original fairness condition, Φ. If so, HALT with δ as the valid global

counter-example.
4. Use a fairness term (FG(pj) ∨ GF(qj)) which is not satisfied by δ to discover and expose a

local predicate, and REPEAT full verification.

Fig. 6. Refinement for the FLL method, given a counter-example σ in the abstract process P θi .

X = a to X ′ = b is considered a MUST transition if this change is possible no matter
what the local state of process Pk may be, so long as it is consistent with θk. The
predicate m(Lk) ≡ θk(a, Lk) ∧ ¬(∃L′k : Tk(a, Lk, b, L′k)) expresses this succinctly:
the transition from X = a to X ′ = b is a MUST transition if, and only if, m is
unsatisfiable. If m is satisfiable, it is “exposed” by adding an auxiliary shared variable
xm. The constraint x′m ≡ m(L′k) is added to the transition relation of Pk, and the
constraint x′m ≡ xm to that for all other processes. Together with the initialization of
xm to m(Lk), these constraints maintain the global invariant (xm ≡ m).

Regarding Step 2, if each summary transition in σ is a MUST transition, it is possible to
inductively construct a global computation δ which matches σ. The initial values for the
local variables for processes other than Pi can be chosen arbitrarily, consistent with the
initial condition. Inductively, the MUST property guarantees that a concrete transition
can be found for each process making a summary move such that the change to the
shared state is preserved. Although σ satisfies Φθ, it need not be the case that δ satisfies
Φ. If Φ fails to hold on the computed δ (Step 3), the proof of Theorem 5 shows how a
new predicate can be derived by analyzing this failure.

Theorem 4 (Soundness for failures) If the FLL refinement procedure halts with failure,
the trace is a valid counter-example under strong fairness.

Proof. Follows from the reasoning given for Steps 2 and 3. �

Theorem 5 (Finitary Completeness) The FLL procedure with refinement terminates for
finite-state programs.

Proof. It suffices to show that a new predicate—one that is not a Boolean combination
of existing predicates—is added at each refinement step. Termination follows, as there
is a finite number of distinct predicates. Theorems 3 and 4 show that each termination
outcome is correct; thus, the method is complete. For Step 1, the fact that a new predi-
cate is added was shown for the LL method in [9]. For the predicate added at Step 4, it
can be shown as follows.

If the check at Step 3 fails, there is a term, (FG(pj) ∨ GF(qj)), for some j, which fails
to hold for δ. Thus, from some point on, all states on δ fail qj , and infinitely often, there



is a state failing pj . Depending on which sub-term is used to satisfy (FG(pθj ) ∨ GF(qθj ))
on σ, there is a state s that is on σ and its corresponding state t on δ such that either (i)
s satisfies pθj and t does not satisfy pj or (ii) s satisfies qθj while t does not satisfy qj .

Consider the first case, the proof of the second is similar. By the definition of pθj as
(∃Lj : θj ∧ pj), there is a valuation c for Lj such that for u = (s(X), c) it is the case
that θj(u) and pj(u) both hold. On the other hand, while θj(t) holds by the invariance
of θ for the concrete computation δ, pj(t) does not hold by the assumption. By the
correspondence of s and t, states u and t differ only on the valuation of Lj . Let q be
a predicate expressing this difference (e.g., q(Lj) = (Lj = c)). We have to show that
q is a new predicate; i.e., it cannot be expressed as a function of the already exposed
predicates.

A property of the split invariant, which can be shown by induction, is that [θj ⇒
(xm ≡ m)] for each shared refinement variable xm that is added for a predicate m
exposed for process Pj . As u and t agree on all shared variables, including refinement
variables, and as both satisfy θj , it follows that all prior predicates exposed for Pj have
identical values on u and t. As this is not true for q, it cannot be expressed as a function
of the already exposed predicates. �

4.5 Weak and Generalized Fairness

Weak Fairness, also called “justice”, has the normal form GF(p) (“infinitely often p”).
It is often used to express the constraint that a continuously enabled transition cannot be
forever ignored; i.e., FG(enabled) ⇒ GF(executed). As its normal form is a special
case of strong fairness, the algorithm developed for strong fairness can be applied to
it. Thus, the common weak fairness specification Φ ≡ (

∧
i : GF(pi)), where pi is

an assertion over the variables of process Pi, is abstracted to Φθ ≡ (
∧
i : GF(∃Li :

θi ∧ pi)) for use in the FLL algorithm.

Emerson and Lei consider a general fairness criterion in [13], which is a disjunction of
strong fairness conditions. This can be handled by abstracting each disjunct separately
and re-forming the disjunction.

For simplicity, the development of the algorithm considered fairness assertions (
∧
i :

FG(pi) ∨ GF(qi)) where pi and qi are expressed in terms of the variables of process
Pi. In a more general setting, these predicates may be expressed over the local state of
more than one process. The analysis method extends easily, with each predicate being
abstracted by quantifying out the relevant local variables. Thus, the general abstraction
function is pθ ≡ (∃L : (

∧
i : θi) ∧ p).

5 Experimental Results

We implemented our method as part of SPLIT [10] – a compositional LTL verifier, and
tested it on several parameterized examples which require fairness assumptions. We
also compared it with the LTL model checker implemented on top of JTLV [26], and



Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

1 BAKERY no-starvation 3 300K 0.3 2 1.2M 2.5 2 0.9M 1.5
– Valid – 4 11.6M 93 2 14.6M 52 2 7.4M 17.4

2 MUXSEM no-starvation 5 58K 0.2 1 48K 0.3 1 44K 0.3
– Invalid – 10 21M 24 2 371K 1.1 2 330K 1

20 over 20 minutes 2 2.1M 9 2 1.9M 8.3

Table 1. Experimental results when assuming only unconditional fairness

with the model checker NUSMV [4]. The latter, however, is optimized for verifying
synchronous systems and even after disabling the conjunctive partitioning the results
obtained by it were considerably inferior to those obtained by JTLV and SPLIT. We
therefore do not include in this paper the results obtained by NUSMV. The experiments
were conducted on a Intel Core 2 Duo 2.4 GHz with 4 GB RAM running 64-bit Linux.
Both SPLIT and JTLV were configured to use the CUDD BDD library. We set a timeout
of 20 minutes for the experiments.

The experiments test the method on a number of well-known parameterized protocols.
These protocols form a good set of benchmarks: they represent succinct models of stan-
dard synchronization patterns found in concurrent software; their characteristics (e.g.,
proof structure and complexity) are well known, making comparisons with other meth-
ods easy for the reader. While the descriptions are short, standard model checking is
by no means proportionally easy, as shown by the time-outs in experiments. Both vari-
ants (A and B) of the FLL compositional algorithm are examined. In our experiments,
variant B has the better performance.

As mentioned in Subsection 4.1, unconditional fairness is sufficient to guarantee various
properties in selected protocols. For example, in algorithm BAKERY [18] ensuring in-
dividual starvation-freedom, i.e., ∀i : G(wait(i)⇒ F(crit(i))), does not require to as-
sume any weak or strong fairness conditions. For other protocols, such as MUXSEM, the
same property is not valid when assuming only unconditional fairness, and both JTLV
and SPLIT generate valid counter examples when attempting to verify it. The results for
checking the eventual access property of P [1] for the two protocols are provided in Ta-
ble 1. Note that since the property should be over global variables, the location variable
of P [1] was exposed to all processes. “N” is the number of processes, “Nodes” is the
peak number of BDD nodes generated, “Time” is the run time in seconds, and ”Ref.” is
number of refinements had to be executed by SPLIT. For both examples the run-times
are better for SPLIT; for MUXSEM, where counter examples had to be constructed, they

Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

3 MUXSEM no-starvation 5 24K 0 1 61K 0.2 1 38K 0.2
– Valid – 10 1.2M 3.8 1 259K 0.7 1 142K 0.5

20 over 20 minutes 1 1.2M 3 1 697K 1.5

Table 2. Experimental results when assuming only strong fairness only over P[0]



f : array [0..N ] of boolean initially f = 1

P [1] ::

2666666664

loop forever do26666664
l0 : Non-Critical
l1 : request f [2]
l2 : request f [1]
l3 : Critical
l4 : release f [1]
l5 : release f [2]

37777775

3777777775
N

‖
i=2

P [i] ::

2666666664

loop forever do26666664
l0 : Non-Critical
l1 : request f [i]
l2 : request f [i⊕N 1]
l3 : Critical
l4 : release f [i⊕N 1]
l5 : release f [i]

37777775

3777777775
Fig. 7. Program DINING-PHIL: the dining philosophers

are better by several orders of magnitude. Both SPLIT and JTLV required more than 20
minutes for verifying BAKERY for N = 5.

Assuming the strong fairness GF(P [1].at loc1 ∧ x)⇒ GF(P [1].at loc2) only for P [1]
is sufficient to prove the correctness of G(wait(1) ⇒ F(crit(1))) for MUXSEM. Both
model checkers indeed validated the property under this condition and the results are
provided in Table 2; they are again in favor of our method by a few orders of magnitude.

Most interesting and challenging test cases with respect to fairness are those that re-
quire to assume weak or strong fairness conditions for all the processes. The first such
example is DINING-PHIL (a simple solution to the dining philosophers problem us-
ing semaphores), presented in Fig. 7. The eventual access property is valid only when
assuming that GF(P [i].at loc1 ∧ f [i]) ⇒ GF(P [i].at loc2) and GF(P [i].at loc2 ∧
f [i ⊕N 1]) ⇒ GF(P [i].at loc3) for 1 < i ≤ N and assuming the symmetric con-
ditions for i = 1. Namely, for each philosopher, if she can (enabled) infinitely often
pick the first fork and subsequently pick the second fork then she should eat Spaghetti
infinitely often. Example 4 in Table 3 presents the run-time results for verifying this
example, that are again in favor of our method.

The second example is proving termination of COND-TERM. The protocol is presented
in Fig. 8. A process terminates only if the strong fairness condition GF(P [i].at l3) ⇒
GF(false) is assumed over all processes. This condition permits only computations
where y is increased a finite number of times. We verified the termination of COND-

Example Property N JTLV SPLIT (A) SPLIT (B)
Nodes Time Ref. Nodes Time Ref. Nodes Time

4 DINING- no-starvation 8 3M 13 0 1.9M 4 0 1.2M 1.8
PHIL – Valid – 9 9.1M 63 0 4.1M 8.6 0 2.4M 4.3

10 25M 421 0 8.6M 18 0 5.3M 9.9
5 COND- termination 4 91K 0.4 3 389K 1 2 299K 0.8

TERM – Valid – 6 537K 1.6 3 2.1M 6.7 2 1.6M 5.1
8 4M 10 3 19M 101 2 11M 75.4

6 MUXSEM- no-starvation 8 262K 0.6 1 172K 0.5 1 96K 0.4
NON-DET – Valid – 12 5.3M 32.6 1 393K 1 1 210K 0.5

16 over 20 minutes 1 720K 1.8 1 385K 0.9

Table 3. Results for properties that require to assume general fairness over all processes



y : 0..M where y = M

N

‖
i=1

P [i] ::

266664
l0 : while y 6= 0 do

l1 :

24 l2 : y := y − 1
or

l3 : y := min(y + 1,M)

35
: l4

377775
Fig. 8. COND-TERM

TERM forM = 15. The results are provided as example 5 in Table 3. This time they are
in favor of the monolithic model checking as SPLIT requires a number of refinements
to prove the property.

x : boolean where x = 1

N

‖
i=1

P [i] ::

266664
loop forever do2664
l0 : Non-Critical
l1 : request x
l2 : 〈Critical; await (false) or skip〉
l3 : release x

3775
377775

Fig. 9. MUX-SEM-NON-DET: mutual exclusion with a non-deterministic stay in critical section

The last example that requires to assume general fairness over all the processes is MUX-
SEM-NON-DET, presented in figure Fig. 9. This example is a variation of MUXSEM
that allows each of the processes to stay non-deterministically, possibly forever, in
the critical section. Thus, G(wait(1) ⇒ F(crit(1))) is valid only when assuming∧
i : GF(P [i].at l2) ⇒ GF(P [i].at l3). Namely, for each process, if it can (enabled)

infinitely often leave the critical section then it should leave it infinitely often. Example
6 in Table 3 presents the run-time results for verifying this example, that are again in
favor of our method.

6 Deductive Compositional Proofs under Fairness

The LL method was derived in [9] from a proof rule for verifying linear-time properties
expressed by a Büchi automaton for their negation. That proof rule has two parts: the
first part expresses that θ is a split invariant, while the second part shows that a Büchi
accepting state occurs only finitely often on any joint computation of the program and
the automaton, using rank functions which are local to each process.

This structure can be modified to accommodate fairness, as shown in Figure 10. The
proof rule of [25] is used with the conclusion being false . A valid proof shows the
absence of any joint computation which is fair and is an accepting Büchi automaton run.
All assertions and rank functions are local by definition. Moreover, as shown in [25],
one can generate these components by instrumenting the model checking algorithms
used in FLL.



1. Find a vector of local assertions, θ = (θ1, . . . , θN ), which meets the split invariance condi-
tions from Figure 1

2. Form a fairness assertion,Ξ , out of the abstract assertions inΦθ and the acceptance condition
of the Büchi automaton for the negated property. For each i, instantiate the strong fairness
proof rule of [25] for the synchronous composition of the automaton and the abstract process
P θi , with the fairness assertion Ξ and specification G(true ⇒ Ffalse).

Fig. 10. Local Proof Rule for LTL properties

7 Conclusions and Future Work

The algorithm presented here enables fully automated and compositional verification
of progress properties under fairness and is, we believe, the first algorithm to do so. It
deals with the main difficulty, that of handling the global nature of fairness, by a process
of refinement: the fairness assumption is initially weakened relative to a split invariant,
and is then strengthened in subsequent iterations until a decisive result is obtained.
The algorithm has a simple implementation. Experiments with several parameterized
protocols show a clear advantage for the compositional method over the standard non-
compositional one.

One aspect that merits further exploration is the choice of counter-example trace for re-
finement; currently, the algorithm uses whichever trace is provided by the model check-
ing procedure. It would help, for instance, if the trace generation is biased to generate a
trace which satisfies as many MUST requirements as possible.
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