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Abstract. This paper explores locality in proofs of global safety prop-
erties of concurrent programs. Model checking on the full state space
is often infeasible due to state explosion. A local proof, in contrast, is
a collection of per-process invariants, which together imply the desired
global safety property. Local proofs can be more compact than global
proofs, but local reasoning is also inherently incomplete. In this paper,
we present an algorithm for safety verification that combines local rea-
soning with gradual refinement. The algorithm gradually exposes facts
about the internal state of components, until either a local proof or a
real error is discovered. The refinement mechanism ensures completeness.
Experiments show that local reasoning can have significantly better per-
formance over the traditional reachability computation. Moreover, for
some parameterized protocols, a local proof can be used as the basis of
a correctness proof over all instances.

1 Introduction

The success achieved by model checking [6, 31] in various settings has always
been tempered by the problem of state explosion [4]. Strategies based on ab-
straction and compositional analysis help to ameliorate the adverse effects of
state explosion. This paper explores a particular combination of the two, which
may be called “local reasoning”. The context is the analysis of invariance prop-
erties of shared-variable, multi-process programs. Multi-threaded programs, and
protocols for cache coherence and mutual exclusion can be modeled in this set-
ting. This paper concentrates on invariance properties; more complex safety
properties can be reduced to invariance checking by standard methods.

Model checking algorithms prove an invariance property through a reachability
computation, computing an inductive assertion (the reachable states) that is
defined over the full state vector. In contrast, a local proof of invariance for an
asynchronous composition, P1||P2|| . . . ||Pn, is given by a vector of assertions,
{θi}, one for each process, such that their conjunction is inductive, and implies
the desired invariance property. Locality is enforced by syntactically limiting each
assertion θi to the shared variables, X, and the local variables, Li, of process Pi.
The vector θ is called a split invariant.



In recent work [26], it is shown that a strongest split invariant exists, and can
be computed as a least fixpoint. It is also shown that the split invariance formu-
lation inherently encodes the principle of non-interference that is central to the
compositional, deductive proof method of Owicki and Gries [27].

Local proofs can be more compact than global proofs, but local reasoning is also
inherently incomplete: i.e., some valid properties do not have local proofs. This
is because a split invariant over-approximates the set of reachable states, which
may cause some unreachable error states to be included in the invariant. The
over-approximation arises from the loose coupling between local process states:
a joint constraint on Li and Lj can be enforced only via X, through the term
θi(X,Li) ∧ θj(X,Lj). Owicki and Gries showed that completeness can be re-
covered by adding auxiliary history variables to the shared state. Independently,
Lamport showed in [23] that sharing all local states also ensures completeness.
Lamport’s construction has an advantage for finite-state programs, as the com-
pleted program retains its finite-state nature, but it is also rather drastic: ideally,
a completion should expose only the information necessary for a proof.

Inspired by these completion proofs, this paper presents a fully automatic, grad-
ual, completion procedure for finite-state programs. This differs from Lamport’s
construction by exposing predicates defined over local variables rather than the
variables themselves, which can be more efficient. The starting point is a com-
putation of the strongest split invariant. If the split invariant does not suffice to
prove the property, local predicates are extracted from an analysis of error states
contained in the current invariant, and added to the program as shared vari-
ables; then the computation is repeated. Unreachable error states are eliminated
in successive rounds, while reachable error states are retained, and eventually
detected.

Our algorithm is not optimal, as it does not always produce a minimal comple-
tion. It works well on a number of protocols, however, often showing a signifi-
cant speedup over forward reachability. It is also useful in another setting, that
of parameterized verification. In [26], it is observed that a quantified inductive
invariant for a parameterized protocol induces a split invariant for each instance.
In the other direction, under some restrictions, it is shown that it is possible to
generalize a split invariant for a sufficiently large instance to a quantified in-
ductive invariant which holds for all instances. Thus, stronger split invariants
generated using the completion procedure can result in automatically generated
proofs of correctness for the parameterized setting.

In summary, the main contributions of this paper are (i) a completion proce-
dure for split invariance, and (ii) the experimental demonstration that, in many
cases, the fixpoint calculation of split invariance, augmented with the comple-
tion method, works significantly better than forward reachability. Parameterized
verification, while not the primary goal, is a welcome extra!



2 Background

This section defines split invariance and gives the fixpoint formulation of the
strongest split invariant. Some of this material is taken from [26], it is repeated
here for convenience.

Definition 0 A program is given by a tuple (V, I, T ), where V is a set of (typed)
variables, I(V ) is an initial condition, and T (V, V ′) is a transition condition,
where V ′ is a fresh set of variables in 1-1 correspondence with V .

The semantics of a program is given by a transition system, which is a triple
(S, S0, R), where S is the state domain defined by the Cartesian product of the
domains of variables in V , S0 = {s : I(s)}, and R = {(s, t) : T (s, t)}. We
assume that T is left-total, i.e., every state has a successor. A state predicate
(also called an “assertion”) is a Boolean expression over the program variables.
The truth value of a predicate at a state is defined in the usual way by induction
on formula structure. The expression w(s) denotes the value of a variable w in
state s.

Predicate Transformers We denote by wlp the weakest liberal precondition trans-
former introduced by Dijkstra [11]. For a predicate ξ, wlp(M, ξ) denotes the
weakest predicate (i.e., the largest set of states) from which all transitions of M
lead to a state satisfying ξ. Namely,

wlp(M, ξ) = {s | (∀t : T (s, t) : ξ(t))}

sp (also known as post) is the strongest post-condition, defined by

sp(M, ξ) = {t | (∃s : T (s, t) ∧ ξ(s))}

Inductiveness and Invariance A state predicate ϕ is an invariant of program
M if it holds at all reachable states of M . A state assertion ξ is an inductive
invariant for M if it is initial (condition 1) and inductive (condition 2) (i.e.,
preserved by every program transition). The notation [ψ], from Dijkstra and
Scholten [13], indicates that ψ is valid.

[IM ⇒ ξ] (1)
[ξ ⇒ wlp(M, ξ)] (2)

An inductive invariant is adequate to prove the invariance of a state predicate ϕ
if it implies ϕ (condition 3).

[ξ ⇒ ϕ] (3)

From the Galois connection between wlp and sp, condition 2 is equivalent to

[sp(M, ξ) ⇒ ξ] (4)



The conjunction of conditions 1 and 4 is equivalent to

[(IM ∨ sp(M, ξ)) ⇒ ξ]

Since function f(ξ) = IM ∨ sp(M, ξ) is monotonic, by the Knaster-Tarski theo-
rem (below), it has a least fixpoint, which is the set of reachable states of M .

Theorem 0 (Knaster-Tarski) A monotonic function f on a complete lattice
has a least fixpoint, which is the strongest solution to Z : [f(Z) ⇒ Z]. Over
finite-height lattices, it is the limit of the sequence Z0 = ⊥; Zi+1 = f(Zi).

Program Composition The asynchronous composition of programs {Pi}, written
as (||i : Pi) is the program P = (V, I, T ), where the components are defined as
follows. Let V = (

⋃
i : Vi) and I = (

∧
i : Ii). The transition condition Ti of

program Pi is constrained so that it leaves local variables of other processes
unchanged. Namely, define T̂i as Ti(Vi, V

′
i ) ∧ (∀j : j 6= i : unchanged(Lj)), where

unchanged(X) means that the values of all variables in X are preserved from
the current state to the next state. Then T is defined simply as (

∨
i : T̂i), and

wlp(P,ϕ) is equivalent to (
∧
i : wlp(P̂i, ϕ)), where P̂ is the program P after

modifying the transition relation to T̂i.

The shared variables, denoted X, are those that belong to Vi ∩ Vj , for a distinct
pair (i, j). The local variables of process Pi, denoted Li, are the variables in Vi

that are not shared (i.e., Li = Vi \X). The set of local variables is L = (
⋃
i : Li).

2.1 Split Invariance

For simplicity, we consider a two-process composition P = P1||P2; the results
generalize to multiple processes. The desired invariance property ϕ is defined over
the full product state of P . A local assertion for Pi is an assertion that is based
only on Vi (equivalently, on X and Li). A pair of local assertions θ = (θ1, θ2) is
called a split assertion. Split assertion θ is a split invariant if the conjunction
θ1 ∧ θ2 is an inductive invariant for P .

Split Invariance as a Fixpoint (Portions of this section are taken from [26] for
completeness.)

The conditions for inductiveness of θ1 ∧ θ2 can be rewritten, following the Galois
connection between wlp and sp, to the form below.

[sp(P1, θ1 ∧ θ2) ⇒ (θ1 ∧ θ2)] (5)
[sp(P2, θ1 ∧ θ2) ⇒ (θ1 ∧ θ2)] (6)

Re-arranging these in terms of θ1 and θ2, in combination with the initial condi-
tion gives the following implications, which are equivalent to the original. The



existential quantification in implications 7 (symmetrically for implications 8)
over the local variables L2 of P2 does not lose equivalence, as these variables are
irrelevant to θ1 by the syntactic restriction on local assertions.

[(∃L2 : sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2) ∨ I) ⇒ θ1] (7)
[(∃L1 : sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2) ∨ I) ⇒ θ2] (8)

Implications 7 and 8, in turn, can be written as the pre-fixpoint formulation:

[F(θ1, θ2) � (θ1, θ2)]

where F is the pair function formed by the left-hand expressions in the impli-
cation, and � denotes pair-wise implication. Since F is monotone over (θ1, θ2)
according to � (sp is a monotone function), by the Knaster-Tarski theorem, F
has a least fixpoint.

The standard Knaster-Tarski algorithm for computing the least fixpoint by suc-
cessive approximation results in the fixpoint solution (θ∗1 , θ

∗
2), which is, by the

derivation above, the strongest split invariant. The operations required to evalu-
ate F (the computation of sp, and existential quantification) can be carried out
by standard bdd manipulation for finite variable domains.

Theorem 1 [26] A split invariance proof of the invariance of ϕ exists if, and
only if, [(θ∗1 ∧ θ∗2) ⇒ ϕ].

For a program with more than two processes, the general form of Fk(θ) is

(∃L \Lk : I ∨ (
∨
j : sp(Pj , (

∧
m : θm))))

This definition can be read as follows: to compute the new value of θk using
Fk(θ), compute successors of θ with respect to each process Pj (the sp terms),
add in the initial states, then project on to the variables X and Lk (equivalently,
quantify out all local variables other than those in Lk).

3 The Full Procedure

The completeness problem, and its solution, is nicely illustrated by the mutual
exclusion protocol in Figure 1.a, for which the safety property is

∀i, j : i 6= j : ¬P [i].at l2,3 ∨ ¬P [j].at l2,3

Namely, for each pair of processes at least one is not in its critical section. (Note:
the control predicate P [i].at li,j is an abbreviation of P [i].at li ∨ P [i].at lj .) For



x: boolean initially x = 1 x: boolean initially x = 1
last : 0..N initially last = 0

N

‖
i=1

P [i] ::

loop forever do2664
l0 : Non-Critical
l1 : request x
l2 : Critical
l3 : release x

3775
N

‖
i=1

P [i] ::

loop forever do2664
l0 : Non-Critical
l1 : 〈request x; last := i; 〉
l2 : Critical
l3 : release x

3775
a: protocol Mux-Sem b: protocol Mux-Sem-Last

Fig. 1. Illustration of the (In)Completeness of Local Reasoning.

a 2-process instance, the strongest split invariant is true, i.e. all states are reach-
able. This includes (unreachable) states that violate mutual exclusion, making
it impossible to prove the property. On the other hand, modifying the program
by adding the auxiliary variable last, which records the last process to enter the
critical section (Figure 1.b), results in the strongest split invariant given by

θ =
∧
i : i ∈ {1, 2} : P [i].at l2,3 ≡ (¬x ∧ last = i)

This suffices to prove mutual exclusion. The proof is by contradiction: if distinct
processes Pi and Pj are in their critical sections together, the split invariant
implies that last = i and last = j, which is a contradiction. Our algorithm,
Split-Inv, defined below, automatically discovers auxiliary variables such as this
one.
A second route to completion, which we refer to as Split-Inv-Pairwise, is to
widen the scope of local assertions to pairs of processes. A split invariant is now
a matrix of entries of the form θij(X,Li, Lj). The 1-index fixpoint algorithm is
extended to compute 2-index θ’s as follows. Instead of n simultaneous equations,
there are O(n2) equations, one for each pair (i, j) such that i 6= j. The operator,
Fij , is defined as

(∃L \ (Li ∪ Lj) : I ∨ (
∨
k : sp(Pk, θ̂)))

where θ̂ is (
∧
m : m 6= n : θmn). For the original program from Figure 1.a, Split-

Inv-Pairwise produces the solution

θij(X,Li, Lj) = (x ⇒ (P [i].at l0,1 ∧ ¬P [j].at l2,3)) ∧
((¬x ∧ P [i].at l2,3) ⇒ ¬P [j].at l2,3)

which also suffices to prove mutual exclusion. Notice that no auxiliary variables
are required. An interesting point is that, despite the quadratic number of calcu-
lations, pairwise split invariance outperformed both single-index split invariance
(with completion) and reachability in some of our experiments.



3.1 Algorithm Split-Inv

The input to the algorithm is a concurrent program, P , with n processes, {Pi},
and a global property ϕ. There are two main steps. The initial step is to compute
the strongest split invariant by the standard Knaster-Tarski iterative process,
while checking that each stage has no errors. If this succeeds, the property is
declared proved. If not, the refinement step either adds a new predicate, or
enlarges the error set by adding some predecessors of the current error states.
Two variables are updated during the algorithm: pred is the set of predicates;
and error is the set of error states. This description gives the basic template,
whereas Section 4 describes some of the heuristic variations that have been tried.
In the description, we use θi to represent the i’th approximation θi

1∧θi
2∧ . . .∧θi

n.

Definition 1 Define states s and t to be equivalent, denoted s ∼ t, if they have
identical values for the original shared variables X, and the Boolean variables
corresponding to the current set of predicates pred.

Definition 2 A distinguishing pair is a pair of states (s, t) such that s ∼ t but
error(s) 6≡ error(t).

Step 0 Initialize pred to ∅, and error to ¬ϕ
Step 1 If (I ∧ error) is satisfiable, HALT with “The system fails to satisfy ϕ”.
Step 2 Compute the split invariant for the system augmented with the predicates

pred using the fixed point algorithm. If, at the (i+1)’st stage, (θi+1 ∧ error) is
satisfiable, proceed to Step 3. Otherwise, if a fixpoint is reached, HALT with
“The system satisfies the property”, and provide the split invariant as proof.

Step 3 Let viol = θi+1 ∧ error .
If there exists a distinguishing pair of states in θi+1, extract relevant pred-
icates from this pair, add them to pred , and return to Step 1. Otherwise,
continue to Step 4.

Step 4 Add the immediate predecessors of viol that are in θi to the error con-
dition. I.e., modify error to error ∨ (EX(viol) ∧ θi). Return to Step 1.

The process for detecting new predicates, and augmenting the system to include
the new predicates is described below. This is followed by an illustration of the
algorithm on an example, and a proof of correctness.

3.2 Predicate Detection and Augmentation

As θ1 ∧ θ2 ∧ ... ∧ θn is always an over-approximation of the reachable states,
Split-Inv may detect states that violate ϕ but are not actually reachable. Those
states should be identified and left out of the split invariant. To do so, once
a violating state is detected, Split-Inv computes essential predicates using a
greedy strategy.



At Step 3, given a state s in viol , the greedy strategy tries to determine a state
t such that (s, t) forms a distinguishing pair. For each local variable (from some
process), the algorithm tests whether it is relevant to the error for that state;
this is considered to be the case if an alternative value for the variable results
in a non-error state in θi+1. If such a variant exists, the pair is a distinguishing
pair.

For example, when the safety property is mutual exclusion, a violation occurs
when two processes are in their critical section simultaneously. For such a vio-
lating state, the locations of these processes are essential for the error, and are
represented as predicates (the location variable itself is then called an essential
variable). The location of processes not in their critical section is irrelevant for
the error at this state, so a predicate is not created for these processes.

The augmentation process works as follows. For each essential variable v of
process Pi in an error state s, a predicate p of the form (Li = v(s)) is added to
pred , and a corresponding Boolean variable, b, is added to the shared variables
of the program. It is initialized to the value of p(Li) at the initial state, and is
updated as follows:

b′ ≡ p(L′i) for process Pi

b′ ≡ b for process Pj where j 6= i

This augmentation clearly does not affect the underlying transitions of the pro-
gram: the new Boolean variables are purely auxiliary, and the transitions enforce
the invariant (b ≡ p(Li)).

Each component θi is now defined over X, Li, and auxiliary Boolean variables.
The auxiliary variables are used as additional constraints between θi and θj ,
sharpening the split invariant. A rough idea of how the sharpening works is as
follows. Consider a state s to be “fixed” by the values of the auxiliary variables
b1, . . . , bn (one for each process) if the local state components in s form the only
satisfying assignment for (

∧
i : bi(s) ≡ pi(Li)). The correctness proof shows (cf.

Lemmas 1 and 2) that an unreachable error state with no predecessors is elimi-
nated from the split invariance once it is fixed. However, a fixed, but unreachable,
error state may be detected for the second time, if it has predecessors (which
must be unreachable). In this case, the predecessors need to be eliminated, so
they are considered as new error states.

Considering predecessors as error states and analyzing them in subsequent rounds
continues until either sufficient new predicates are added for a proof, or the en-
larged error set violates the initial condition. The latter indicates that the algo-
rithm has found a real error since it detected a violating state and revealed a
set of states that forms a valid path, beginning at an initial state and leading
toward it.

It is important to point out that the algorithm is not necessarily optimal. When
the algorithm detects a violating state it tries to expand predicates such that in



case the state does not have predecessors it will be eliminated in a subsequent
round. The state, however, might have unreachable predecessors such that even
after exposing the predicates it is detected in a following round. Only predicates
that eliminate states with no predecessors cause unreachable violating states
to be eliminated. Thus the algorithm might expose predicates which do not
contribute to the elimination of unreachable violating states. It is conceivable
that path-based analysis (as used in other abstraction-refinement approaches)
may generate better predicates.

3.3 Illustration

We illustrate some of the key features of this algorithm on the Mux-Sem example
from Figure 1.a. For simplicity we have only two processes; thus, the safety
property is ϕ ≡ ¬(P [1].at l2,3 ∧ P [2].at l2,3).

Iteration 0
Step 1 The initial condition is x = 1∧P [1].at l0∧P [2].at l0. It does not violate
the safety property.
Step 2 Split-Inv computes the split invariant until θ1 ∧ θ2 violates ϕ. At this
stage,

θ1 ∧ θ2 ≡ x = 0 ∧ P [1].at l0,1,2 ∧ P [2].at l0,1,2

∨ x = 1 ∧ P [1].at l0,1 ∧ P [2].at l0,1

Step 3 Let viol be the set of states that satisfy θ1 ∧ θ2 ∧¬ϕ. The only state in
viol is the one which satisfies x = 0∧P [1].at l2∧P [2].at l2, and together with the
state that satisfies x = 0∧P [1].at l1∧P [2].at l1 they make a distinguishing pair.
New essential predicates P [1].at l2 and P [2].at l2 are extracted, for which two
new shared auxiliary variables b1 and b2 are added to the program, as described
in Subsection 3.2. Since new predicates were found, a new iteration sets off in
the next round.

Iteration 1
Step 1 The initial condition is x = 1 ∧ P [1].at l0 ∧ P [2].at l0 ∧ ¬b1 ∧ ¬b2, and
again it does not violate the safety property.
Step 2 Split-Inv starts a new computation of the split invariant. Once again
it is computed until θ1 ∧ θ2 violates ϕ. At this stage,

θ1 ∧ θ2 ≡ x = 0 ∧ P [1].at l0,1,3 ∧ P [2].at l0,1,3 ∧ ¬b1 ∧ ¬b2
∨ x = 0 ∧ P [1].at l0,1 ∧ P [2].at l2 ∧ ¬b1 ∧ b2
∨ x = 0 ∧ P [1].at l2 ∧ P [2].at l0,1 ∧ b1 ∧ ¬b2
∨ x = 1 ∧ P [1].at l0,1 ∧ P [2].at l0,1 ∧ ¬b1 ∧ ¬b2

Step 3 viol is computed, and again it consists of only one state which satisfies
x = 0∧P [1].at l3∧P [2].at l3 (and makes a distinguishing pair together with x =
0∧ P [1].at l1 ∧ P [2].at l1). The shared variables b3 and b4, which are associated



with the essential predicates P [1].at l3 and P [2].at l3, respectively, are added to
the program. A new iteration starts in the next round.

Iteration 2
Step 1 The initial condition is x = 1 ∧ P [1].at l0 ∧ P [2].at l0 ∧ ¬b1 ∧ ¬b2 ∧
¬b3 ∧ ¬b4, and once again it does not violate the safety property.
Step 2 The split invariance is computed, however, this time a fixed point is
reached. At this stage,

θ1 ∧ θ2 ≡ x = 0 ∧ P [1].at l0,1 ∧ P [2].at l2 ∧ ¬b1 ∧ b2 ∧ ¬b3 ∧ ¬b4
∨ x = 0 ∧ P [1].at l0,1 ∧ P [2].at l3 ∧ ¬b1 ∧ ¬b2 ∧ ¬b3 ∧ b4
∨ x = 0 ∧ P [1].at l2 ∧ P [2].at l0,1 ∧ b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4
∨ x = 0 ∧ P [1].at l3 ∧ P [2].at l0,1 ∧ ¬b1 ∧ ¬b2 ∧ b3 ∧ ¬b4
∨ x = 1 ∧ P [1].at l0,1 ∧ P [2].at l0,1 ∧ ¬b1 ∧ ¬b2 ∧ ¬b3 ∧ ¬b4

Since it does not violate ϕ the algorithm reports “The system satisfies the prop-
erty”, provides θ and halts.

3.4 Correctness

The correctness argument has to show that the procedure will eventually ter-
minate, and detect correctly whether the property holds. For simplicity, the
theorems are proved for the 2-process case, the proofs for the general case are
similar. Lemmas 0, 1, and 2 show the effect that adding auxiliary Boolean vari-
ables has on subsequent split invariance calculations. Lemma 3 shows that a split
invariant is always an over-approximation to the reachable states.

The state of a 2-process instance is represented using variable names X, b1, b2, L1

and L2, where X is the set of shared variables (of the original program), L1, L2

are the local variables of processes P1, P2 respectively, and b1, b2 are shared
auxiliary Boolean variables added for predicates p1(L1) and p2(L2), respectively.
Recall that, for a variable w, and a state s, w(s) denotes the value of w in s.

Recall that states s and t are said to be equivalent, denoted s ∼ t, if they have
identical values for X, b1, and b2. A set of states S is closed under ∼ if, for each
state in S, its equivalence class is included in S. A set of states is pre-closed if
all predecessors of states in S are included in S.

Lemma 0 (Invariance Lemma) The assertion (b1 ≡ p1) ∧ (b2 ≡ p2) holds
for all states in θi

1 ∧ θi
2, for all approximation steps i.

Proof. The proof is by induction. The claim holds trivially for i = 0, as the θ’s
are empty. Let s be a state in the (i + 1)’st fixpoint approximation. As s is in
θi+1
1 , by the definition of F , there is a variant state s′ (which may differ from s

in the value of L2), that is either initial or is a successor of a state in θi
1 ∧ θi

2. If
s′ is initial, then b1(s′) ≡ p1(L1(s′)) by the definition of the initial condition. If
s′ is a successor state, by the induction hypothesis, and the update expressions



for b1 for a step of either P1 or P2, b1(s′) ≡ p1(L1(s′)). As s and s′ agree on L1

and b1, this equivalence holds also for s. Moreover, as s is in θi+1
2 , a symmetric

proof shows that b2(s) ≡ p2(L2(s)), establishing the claim. �

Lemma 1 If state s is in the (i + 1)’st approximation to the split invariant,
there is an equivalent state t that is also in the (i + 1)’st approximation, and
either t is initial, or it has a predecessor in the i’th approximation.

Proof. Let s be a state in the (i + 1)’st approximation. By the definition of
θi+1
1 , s has a variant t, which may differ from it in the value of L2, but agrees on

the values of X,b1, and b2, such that t is either an initial state, or is a successor
of a state in θi

1 ∧ θi
2. From the update expressions for θ, t belongs to both θi+1

1

and θi+1
2 . �

The following lemma gives some insight into the split invariance procedure, and
the effect of adding auxiliary variables. A variation of the argument is used in
the proof of the main theorem.

Lemma 2 (Exclusion Lemma) Let S be a set of states that is pre-closed, closed
under ∼, and unreachable. Then S is excluded from the split invariant.

Proof. The proof is by contradiction. Let i + 1 be the first stage of the split-
invariance calculation that contains a state from S, and let s be such a state.
By Lemma 1, a state t equivalent to s must be in the (i+ 1)’st approximation,
and t is either initial or has a predecessor in the previous approximation. As S
is ∼-closed, t is in S, so it is unreachable, and cannot be an initial state. Thus,
it must have a predecessor. This predecessor must be in S, as S is closed under
taking predecessors. But this contradicts the assumption that i + 1 is the first
stage containing a state from S. �

Lemma 3 (Reachability Lemma) The split invariant fixpoint is always an over-
approximation of the set of reachable states.

Proof. First, note that the addition of auxiliary Boolean variables does not
affect the reachability of any state.

The claim follows from an easy induction on the split invariant calculation. The
inductive hypothesis is that states that are reachable by a path with at most
i states are included in the i’th approximation. This is true trivially for i = 0.
Assuming true for i, consider a state s that is only reachable by a path of i+ 1
states. Then either i = 0 and s is initial, or i > 0 and s has an immediate
predecessor on the path, t, which is in the i’th approximation. The update for
θi+1
1 is (∃L2 : I ∨ sp(P1||P2, θ1 ∧ θ2)). The update expression ensures that s is

in θi+1
1 . A symmetric argument shows that s is in θi+1

2 . �

Lemma 4 It is an invariant of the algorithm that (i) [¬ϕ ⇒ error ], and (ii)
[error ⇒ EF(¬ϕ)].



Proof. The first claim follows from the initialization in Step 0, and the fact
that error is only enlarged (in Step 4), and is unchanged otherwise. The second
claim follows by induction from the initialization in Step 0, and the fact that
the enlargement of error in Step 4 adds predecessors for some of the states in
error . �

Theorem 2 (Soundness) (a) If ϕ is declared to be proved, it is an invariant.
(b) If ϕ is declared to fail, there is a reachable state where ϕ is false.

Proof. Part (a): The contrapositive of Lemma 4(i) is [¬error ⇒ ϕ]. Thus, if
the split invariant has no error states, it implies ϕ. By Lemma 3, ϕ is true for
all reachable states, and it is therefore invariant for the program.
Part (b): By Lemma 4 (ii), if an initial state satisfies error , there is a path to a
state falsifying ϕ. �

Theorem 3 The procedure always terminates.

Proof. In this proof, we make key use of the fact that the programs are finite-
state. Thus, there is a finite set of available predicates, call this Apreds. The
progress measure is the pair (|Apreds \ pred |, |¬error |), i.e., the pair that mea-
sures the remaining available predicates, and the number of states that are not
error states. Both quantities are non-negative, we order them by lexicographic
order.

The measure is initialized to (|Apreds|, |ϕ|) in Step 0. In Step 2 (the split-
invariance calculation) the measure does not change . If Step 3 is enabled, a new
predicate is added to pred ; thus, the first component decreases strictly. Other-
wise, in Step 4, the set of predicates stays constant, while states in (EX(viol)∧ θi)
are added to error . We have to show that this set contains at least one state
that is not already in error ; if this is true, the second component of the measure
decreases strictly.

Consider a state s in viol . By definition, it belongs to θi+1 and error . As Step 3
is not applicable, there is no state t in θi+1 such that (s, t) forms a distinguishing
pair. Let t be the state guaranteed to exist by Lemma 1. Thus, t is equivalent
to s, and in θi+1. Since (s, t) is not a distinguishing pair, t is also in error , and
therefore in viol . By the lemma, t is either initial, or it has a predecessor in θi.
The first case cannot hold, as the error (with t) would have been detected in
Step 1. Thus, a predecessor t′ of t is in (EX(viol) ∧ θi), and t′ cannot be in error ,
as θi is error-free. Thus, t′ is a new state that is added to error . �

Theorem 4 (Completeness I) If the property ϕ is an invariant for P1||P2, it is
eventually proved.

Proof. By Theorem 3, the algorithm terminates. By the contrapositive of
Lemma 4(ii), [AGϕ ⇒ ¬error ]. As ϕ is an invariant, this implies that all
reachable states are not error -states. Thus, the test in Step 1 can never be true;
hence, it must be that the algorithm terminates at Step 2 with the conclusion
that the property is true, and the split invariant as proof. �



Theorem 5 (Completeness II) If ϕ is not an invariant of P1||P2, this is even-
tually detected.

Proof. By Theorem 3, the algorithm terminates. If the property is not invariant,
there is a reachable state on which it fails. By the Reachability Lemma, the split
invariant always includes these states; thus, the algorithm will not stop at Step
2 with success. Hence, it must terminate at Step 1 with an indication that the
property does not hold. �

4 Heuristics

Split-Inv as described in Subsection 3.1 is in its simplest form. In this section
we provide several heuristics that may be used to speed up the computation.
These heuristics are sound, but not necessarily complete.

Limiting Conjunction: In Owicki and Gries’ deductive proof procedure, for each
process Pi, one considers only the conjuncts θi ∧ θj , for j 6= i, rather than the
full conjunction θ1 ∧ θ2 . . . ∧ θn. This is sound, but can result in a weaker split
invariant. However, as fewer conjunctions are performed, this may speed up the
split invariance calculation.

Early Quantification: Recall that, for a program with more than two processes,
the general form of Fk(θ) is

∃L \Lk : I ∨ (
∨
j

: sp(Pj , (
∧
m

: θm)))

This expression may be optimized with early quantification, as follows. Distribut-
ing ∃ over ∨ and over sp, and using the fact that the θi’s are local assertions,
F1(θ) may be rewritten as follows, where lsp (read as “local sp”) represents a
quantified strongest postcondition.

(∃L \L1 : I) ∨ (
∨
j

: lsp1(Pj , θ))

Similar expressions can be formulated for Fi, for other values of i. This formu-
lation quantifies out variables as early as possible. In this expression, lsp1(Pj , θ)
is defined as follows:

(∃Lj : sp(Pj , θ1 ∧ θj ∧ (
∧
k : k 6∈ {1, j} : (∃Lk : θk)))) for j 6= 1

sp(P1, θ1 ∧ (
∧
k : k 6= 1: (∃Lk : θk))) for j = 1



Exploiting Symmetry in the Split Invariance Computation: Parameterized pro-
tocols are typically symmetric, i.e., the code of one process is isomorphic to the
code of another, modulo the process index. It is shown in [26] that, as a result,
the components θi and θj of the strongest split invariant are symmetric up to
process index. This can be exploited during the calculation, instead of comput-
ing all the θ components, it suffices to compute only one, say θ1, and derive
the rest by substitution: θj = θ1[1 ← j]. This scheme considerably reduces the
number of computations, and is significantly faster than the full split-invariance
computation.

Exploiting Symmetry in Refinement: Modify Split-Inv such that in step 3, af-
ter detecting a new predicate and adding the relevant auxiliary variable to the
program, it should not further analyze states which satisfy the same predicate.
This heuristic should only be applied for parameterized systems. The strength
of this heuristic is very nicely illustrated by the following example: Consider
again the example from Figure 1.a, instantiated with N equals to 4. The vi-
olating states s1 : x = 0 ∧ P [1].at l3 ∧ P [2].at l3 ∧ P [3].at l0 ∧ P [4].at l0 and
s2 : x = 0∧P [1].at l0∧P [2].at l3∧P [3].at l3∧P [4].at l0 are detected in the same
round. Assuming s1 is analyzed first, relevant auxiliary variables are added for
the predicates P [1].at l3 and P [2].at l3. According to the heuristic s2 should not
be analyzed during the same round because, like s1, it satisfies P [2].at l3, thus
the program is not going to be enhanced with an auxiliary variable for the pred-
icate P [2].at l3 as a result of analyzing s2. However, there are other violating
states, for example, s3 : x = 0 ∧ P [1].at l0 ∧ P [2].at l0 ∧ P [3].at l0 ∧ P [4].at l0,
which potentially may “contribute” that predicate. For parameterized systems,
because of Split-Inv’s shape, once a violating state is detected, all its symmetric
violating states are also detected in the same round. Sometimes this may cause
Split-Inv to “skip over” an essential predicate instead of handling it; However,
it is guaranteed that eventually all the unreachable violating states which sat-
isfy this predicate are eliminated or else detected in a subsequent round. This
heuristic appears to be very useful in reducing the running time by avoiding the
analysis of violating states that do not contribute new essential predicates to the
computation. on the other hand, it may lead to extra refinement computations.

Extracting Relevant Predicates: When analyzing a violating state in step 3,
covering all combinations that cause the state to violate the safety property
requires trying 2n − 1 possible permutations of subsets of processes. Instead,
Split-Inv can be modified to chose processes eagerly and check the predicate
of each process only once. If the predicate is not essential for the state to vi-
olate the safety property, as explained in Subsection 3.2, then it ignores that
process (existentially quantify it) and continues analyzing the other processes.
If it is essential, Split-Inv marks the predicate, keeps the state of its process
(does not existentially quantify it) and continues analyzing the other processes.
It is important to start this process by first analyzing predicates that were pre-
viously detected (if such exist) in order to detect new combinations of essential



predicates (if there are other combinations, analyzing predicates that were al-
ready detected first eliminates them thus revealing the other combinations). For
example let’s consider again the example from Figure 1.a, instantiated again
with N equals 4. Observe the violating state s1 : x = 0∧P [1].at l3 ∧P [2].at l0 ∧
P [3].at l3∧P [4].at l0 (assuming no essential predicates were previously detected).
Starting from the last process, the predicate P [4].at l0 is not essential for mak-
ing s1 a violating state. Therefore this predicate is existentially quantified and
s′1 : x = 0 ∧ P [1].at l3 ∧ P [2].at l0 ∧ P [3].at l3 is left to be analyzed. The predi-
cate of the next process, P [3].at l3, is essential and therefore marked and kept.
Next, P [2].at l0 is not essential and therefore it is existentially quantified, leav-
ing s′′1 : x = 0 ∧ P [1].at l3 ∧ P [3].at l3 to be analyzed. P [1].at l3 is essential and
therefore marked and kept.

bdd variable ordering: The program is augmented with new auxiliary variables
in Step 3 of Split-Inv, if new essential predicates are detected. When using a
symbolic model checker, which is based on bdd representation, it is sometimes
more beneficial to add several shared Boolean variables before executing Split-
Inv, without restricting them in the transition system (i.e. they may be changed
nondeterministically in every transition). In Step 3, instead of adding new vari-
ables, these variables are used by modifying the transition relation and the initial
condition as explained in Subsection 3.2. For some examples, this heuristic sig-
nificantly reduces the size of the bdd and the running time of Split-Inv.

5 Experiments and Results

We implemented Split-Inv and Split-Inv-Pairwise using tlv [30], a bdd-based
model checker, and tested it on protocols taken from the literature. The tests
were conducted on a 2.8GHz Intel Xeon with 1GB RAM. For each experiment,
the number of bdds and the number of bytes encompass loading tlv and running
the specific task. The running times only measure executing the specific task and
do not include the time for loading tlv.

The primary aim of the experiments is to compare the two forms of our algo-
rithm, i.e. Split-Inv and Split-Inv-Pairwise, against the forward reachability
calculation on the full state space. Split-Inv is uniformly faster (sometimes sig-
nificantly so) than forward reachability. Although not the main objective, we also
compared our algorithms against model checking that uses inverse reachability
(i.e., AG). The results were in favor of the latter for the Mux-Sem based ex-
amples, whereas both Split-Inv and Split-Inv-Pairwise obtained significantly
better results for algorithm Bakery, Peterson’s and an incorrect mutual ex-
clusion protocol.

For many protocols, including Bakery and Mux-Sem, Split-Inv results in an
inductive invariant that shows correctness for all instances, using the results in
[26]. Split-Inv (as opposed to reachability) is essential for obtaining this result.
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in N : natural where N > 1
type Pr id : [1..N ]

Level : [0..N ]
local y : array Pr id of Level where y = 0

s : array Level of Pr id

N

‖
i=1

P [i] ::

266666666664

loop forever do :2666666664

l0 : Non-Critical
l1 : (y[i], s[1]) := (1, i)
l2 : while y[i] < N do»

l3 : await s[y[i]] 6= i ∨ ∀j 6= i : y[j] < y[i]
l4 : (y[i], s[y[i] + 1]) := (y[i] + 1, i)

–
l5 : Critical
l6 : y[i] := 0
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Fig. 2. Peterson’s mutual exclusion protocol

As previously explained, Split-Inv consists of a loop with three main phases:
computing the split invariant, refining the system by exposing predicates over
local variables, and analyzing predecessors of violating states. It is important to
point out that not all examples require the use of all three phases.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 2k 589k 0 - -
Split-Inv 2 2k 589k 0 0 0

Split-Inv-Pairwise 2 1.8k 589k 0 0 0
Forward Reachability 5 23k 983k 0.06 - -

Split-Inv 5 20k 917k 0.03 0 0
Split-Inv-Pairwise 5 26k 1M 0.08 0 0
Forward Reachability 10 195k 3.8M 0.95 - -

Split-Inv 10 177k 3.5M 0.28 0 0
Split-Inv-Pairwise 10 266k 5.2M 1.9 0 0
Forward Reachability 20 1.8M 30M 126 - -

Split-Inv 20 1.7M 29M 10.2 0 0
Split-Inv-Pairwise 20 3.1M 53M 281 0 0

Table 1. Test results for Peterson’s mutual exclusion protocol.

The first example, provided in Figure 2, is Peterson’s mutual exclusion proto-
col, for which the safety property requires that simultaneously not more than one
process is in its critical section. Namely, ∀i, j : i 6= j : (¬P [i].at l5,6∨¬P [j].at l5,6).
Split-Inv terminates faster than forward model checking and Split-Inv-Pairwise,
regardless the number of processes. It also appears that this example contain suf-
ficient shared information for computing the split invariant, without having to
employ any refinements. Table 1 provides the results for Split-Inv, Split-Inv-
Pairwise and forward reachability.

Another algorithm that contains sufficient shared information for computing the
split invariant without having to employ any refinements is Bakery. The run



times achieved by Split-Inv are significantly better for larger instances. The
detailed results are provided in Table 2. For both Peterson’s mutual exclusion
protocol and algorithm Bakery, Split-Inv obtains better results than Split-
Inv-Pairwise since none of them require any refinement steps, but Split-Inv-
Pairwise includes quadratically more invariant computations.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 2.6k 590k 0 - -
Split-Inv 2 2.5k 590k 0 0 0

Split-Inv-Pairwise 2 2.7k 590k 0 0 0
Forward Reachability 6 152k 3.1M 3.8 - -

Split-Inv 6 139k 2.8M 1.6 0 0
Split-Inv-Pairwise 6 184k 3.8M 2 0 0
Forward Reachability 8 908k 15.2M 100 - -

Split-Inv 8 783k 13.2M 28 0 0
Split-Inv-Pairwise 8 1.1M 18.8M 40.8 - -
Forward Reachability 10 - - >2hrs - -

Split-Inv 10 4.5M 72M 992 0 0
Split-Inv-Pairwise 10 6.2M 102M 64min 0 0

Table 2. Test results for the algorithm Bakery.

Another tested example was protocol Mux-Sem, which is a very simple solution
for the mutual exclusion problem, where the coordination between the processes
is done by a semaphore. The safety property of the protocol again requires that
no computation contains a state in which two or more processes are in their
critical section at the same time. A description of the protocol was provided in
Figure 1 at the beginning of the paper. The run times of Split-Inv and Split-
Inv-Pairwise are once again better than those of forward reachability. For this
example Split-Inv requires two refinement steps in which new shared variables
are added to the system in order to expose part of the local information. The
detailed results for Mux-Sem are provided in Table 3.

26666664
in N : natural where N > 1
local x : boolean where x = 1

N

‖
i=1

P [i] ::

2664
loop forever do :24 l0 : Non-Critical

l1 : request x
l2 : release x
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Fig. 3. protocol Mux-Sem-Short

Protocol Mux-Sem-Short is a reduced version of Mux-Sem, in which location
3 is removed and the safety property is therefore ∀i, j : i 6= j : (¬P [i].at l2 ∨
¬P [j].at l2). Figure 3 provides a description of the protocol. For this protocol,
regardless of the number of processes, Split-Inv requires only one refinement in



Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 0.3k 590k 0 - -
Split-Inv 2 1k 590k 0 2 4

Split-Inv-Pairwise 2 0.3k 590k 0 0 0
Forward Reachability 10 10k 720k 0.03 - -

Split-Inv 10 12k 852k 0.18 2 20
Split-Inv-Pairwise 10 10k 852k 0.05 0 0
Forward Reachability 20 19k 983k 0.96 - -

Split-Inv 20 47k 16M 0.91 2 40
Split-Inv-Pairwise 20 24k 1.4M 0.29 0 0
Forward Reachability 50 116k 3M 23.3 - -

Split-Inv 50 289k 6.4M 13.2 2 100
Split-Inv-Pairwise 50 190k 6.8M 4.4 0 0
Forward Reachability 100 462k 10M 405 - -

Split-Inv 100 1.1M 24M 152 2 200
Split-Inv-Pairwise 100 1M 31M 130 0 0

Table 3. Test results for protocol Mux-Sem

which one bit of shared information is added for each process correspondingly.
This bit indicates whether a process is in its critical section. Table 4 indicates
that for this protocol Split-Inv obtains better run times than forward model
checking.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 248 589k 0 - -
Split-Inv 2 511 589k 0 1 2

Split-Inv-Pairwise 2 223 589k 0 0 0
Forward Reachability 20 19k 917k 0.86 - -

Split-Inv 20 32k 1.1M 0.35 1 20
Split-Inv-Pairwise 20 22k 1.3M 0.22 0 0
Forward Reachability 50 114k 2.8M 21.4 - -

Split-Inv 50 203k 4.5M 4.56 1 50
Split-Inv-Pairwise 50 184k 6.3M 3.36 0 0
Forward Reachability 100 459k 9.6M 384 - -

Split-Inv 100 828k 16.3M 48 1 100
Split-Inv-Pairwise 100 1M 28M 101 0 0

Table 4. Test results for protocol Mux-Sem-Short

Protocol Mux-Sem-Last, presented in Figure 1 at the beginning of the pa-
per, is a very simple enhancement of the Mux-Sem protocol, wherein a new
shared variable, last, indicates which of the processes was most recently in its
critical section. Immediately after a process enters its critical section, it modi-
fies last to hold its ID. the safety property that is verified for this protocol is
∀i, j : i 6= j : (¬P [i].at l2,3∨¬P [j].at l2,3). Table 5 indicates that for this protocol
no refinements were required for computing the split invariant. When compared
to forward model checking, Split-Inv produces better run times, smaller num-
bers of bdds and less memory usage. Split-Inv also obtains better results than
Split-Inv-Pairwise since, similarly to algorithm Bakery and Peterson’s mu-



tual exclusion protocol, both do not require any refinement steps but Split-Inv-
Pairwise includes quadratically more invariant computations.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 524 589k 0 - -
Split-Inv 2 488 589k 0 0 0

Split-Inv-Pairwise 2 489 589k 0 0 0
Forward Reachability 10 10k 786k 0.16 - -

Split-Inv 10 10k 720k 0.02 0 0
Split-Inv-Pairwise 10 10k 852k 0.08 0 0
Forward Reachability 20 47k 1.4M 2.79 - -

Split-Inv 20 22k 983k 0.14 0 0
Split-Inv-Pairwise 20 36k 1.6M 0.57 0 0
Forward Reachability 50 449k 8.3M 207 - -

Split-Inv 50 118k 2.8M 1.37 0 0
Split-Inv-Pairwise 50 298k 8.5M 19.6 0 0

Table 5. Test results for protocol Mux-Sem-Last

A very interesting example is Mux-Sem-Count, of figure 4. This example is an
enhancement of Mux-Sem where a counter is added locally for each process such
that every time it enters into the critical section, the counter is increased by 1.
The safety property is again ∀i, j : i 6= j : (¬P [i].at l2,3 ∨ ¬P [j].at l2,3). Note,
however, that it is independent of the counter.
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in N, M : natural where N, M > 1
local x : boolean where x = 1

N

‖
i=1

P [i] ::

26666664
local counter : integer where counter = 0
loop forever do :2664

l0 : Non-Critical
l1 : 〈request x; counter := counter + 1 (mod M)〉
l2 : Critical
l3 : release x
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Fig. 4. protocol Mux-Sem-Count

The results for this example are again in favor of Split-Inv even that it always
requires two refinement steps. When executing forward reachability it computes
many similar states that only differ by the value of the counter, and even with
relatively small values for M , having the counter leads to a state explosion
very quickly. Split-Inv and Split-Inv-Pairwise, on the other hand, naturally
abstract the value of the counter since it is never included as part of the essen-
tial predicates. Therefore, once an unreachable violating state is detected, after
adding the relevant predicate variables, not only that the same state is elimi-
nated in the following refinement step, but also other states, which differ from it
only in the value of counter, are eliminated as well. The bound of the counter, i.e.



the value for M , does not really effects Split-Inv or Split-Inv-Pairwise while
it has a crucial impact when computing forward reachability. Detailed results,
for taking M equals to 10, are presented in Table 6.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 6.5k 720k 0 - -
Split-Inv 2 8.9k 720k 0 2 4

Split-Inv-Pairwise 2 5.1k 720k 0 0 0
Forward Reachability 6 57k 1.7M 33 - -

Split-Inv 6 19k 917k 0.93 2 12
Split-Inv-Pairwise 6 62k 1.9M 14.3 0 0
Forward Reachability 8 129k 3M 126 - -

Split-Inv 8 32k 1.1M 1.87 2 16
Split-Inv-Pairwise 8 118k 3.1M 29.8 0 0
Forward Reachability 10 211k 4.5M 351 - -

Split-Inv 10 49k 1.5M 3.31 2 20
Split-Inv-Pairwise 10 162k 4.2M 57 0 0

Table 6. Test results for protocol Mux-Sem-Count

Test-and-Set, is a variation of the example presented in [18], where the up-
date to the shared variable is now defined to be the critical section. The pro-
tocol is shown in Figure 5 and the safety property that is verified is ∀i, j : i 6=
j : (¬P [i].at l2,3∨¬P [j].at l2,3). Table 7 shows that the Test-and-Set protocol
requires several refinement steps in which the system is enhanced with more
than one variable for each process.
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in N : natural where N > 1
local state : boolean

N

‖
i=1

P [i] ::

26666664
local old : boolean
loop forever do :2664

l0 : 〈old := state; if state = 0 then state := 1; 〉
l1 : if old = 0 then
l2 : Critical
l3 : state := 1;
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Fig. 5. Algorithm Test-and-Set

The obtained run times and the number of bdds were this time in favor of forward
model checking when compared to Split-Inv. However, when using Split-Inv-
Pairwise the results turn over, and Split-Inv-Pairwise yields better run times
(the number of bdds and the memory usage were still better for model checking).
For Test-and-Set, Split-Inv also results in an inductive invariant that shows
correctness for all instances, using the results in [26]. It is also interesting to
observe that when applying heuristic 3 of Section 4 the running time when



executing Split-Inv for the test case of 14 processes was reduced from over two
hours to 6.4 seconds.

Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 592 589k 0 - -
Split-Inv 2 2.4k 589k 0 2 6

Split-Inv-Pairwise 2 569 589k 0 0 0
Forward Reachability 6 8.5k 720k 0.01 - -

Split-Inv 6 24k 1M 0.55 4 22
Split-Inv-Pairwise 6 7.3k 720k 0.02 0 0
Forward Reachability 10 10k 720k 0.23 - -

Split-Inv 10 1M 17M 25.1 10 39
Split-Inv-Pairwise 10 10k 852k 0.1 0 0
Forward Reachability 14 20k 983k 0.75 - -

Split-Inv 14 - - >2hrs - -
Split-Inv-Pairwise 14 17k 1.1M 0.24 0 0

Table 7. Test results for Test-and-Set.

All examples provided before were of correct protocols, i.e they all satisfy their
safety properties. The next and last example, provided in Figure 6, is of an
incorrect mutual exclusion protocol, Mux-Sem-Try, and it illustrates the ability
of Split-Inv to cope with systems that violate their own safety property and its
ability to identify real violations. In this case, when performing the computation
all three phases have to be employed, including several refinement steps in which
multiple new variables are added and predecessors of violating states must be
analyzed. The safety property that is verified is ∀i, j : i 6= j : (¬P [i].at l2,3,4 ∨
¬P [j].at l2,3,4).
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in N : natural where N > 1
local y : array 1..N

N

‖
i=1

P [i] ::

26666664
loop forever do :266664

l0 : Non-Critical
l1 : await ∀j : j 6= i : ¬y[j]
l2 : y[i] := 1
l3 : Critical
l4 : y[i] := 0
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Fig. 6. protocol Mux-Sem-Try

Table 8 compares forward reachability to Split-Inv for Mux-Sem-Try. Both
the number of bdds and the run times achieved by Split-Inv and Split-Inv-
Pairwise are significantly better. When performing tests on 20 processes, what
requires more than 2 hours when using model checking is completed in 6.5 sec-
onds when using Split-Inv, and we can only assume that as the number of
processes increases - the difference increases as well.



Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 904 589k 0 - -
Split-Inv 2 3.1k 589k 0 4 6

Forward Reachability 5 10k 720k 0.14 - -
Split-Inv 5 10k 786k 0.09 4 12

Forward Reachability 10 337k 6M 28.4 - -
Split-Inv 10 47k 1.4M 0.56 4 22

Forward Reachability 20 - - >2hrs - -
Split-Inv 20 365k 6.8M 6.5 4 42

Table 8. Test results for protocol Mux-Sem-Try

6 Related Work

Early work on compositional reasoning is primarily on deductive proof methods
[10]. The pioneering methods of Owicki and Gries [27] (see also [12]) and Lamport
[23] are extended to assume-guarantee reasoning by Chandy and Misra [3] and
Jones [22], and to linear-time temporal properties (including liveness properties)
by Pnueli [28]. The split invariance calculation can be viewed as mechanizing the
Owicki-Gries proof rule, while the refinement procedure is inspired by Lamport’s
completeness proof.

Recent work on compositional reasoning is more algorithmic. Tools like Ca-
dence SMV provide support for compositional proofs [25, 21]. Thread-modular
reasoning [14, 15, 19] computes a per-process transition relation abstraction in a
modular way. In [18], this abstraction is made more precise by including some
aspects of the local states of other processes, and extended to parameterized
verification. However, the method remains incomplete [15]. The abstraction al-
gorithm of [24] avoids precision loss by preserving dependencies between local
states, yet is also incomplete.

The split invariance computation is based on a simpler, state-based represen-
tation. The fixpoint algorithm for computing a strongest split invariant is by
Namjoshi [26]. Cousot and Cousot also describe in [9] how non-interference arises
from a conjunctive invariance formulation, but the paper does not provide a
computation method. The key new aspect of this paper is that it addresses the
central incompleteness problem.

The completion procedure is in the spirit of failure-based refinement meth-
ods, such as counter-example guided refinement [5]. Given a composition P =
P1|| . . . ||Pn, earlier refinement algorithms may be viewed as either abstracting
P to a single process, which is successively refined; or applying compositional
analysis to individual abstractions of each Pi. However, the latter method is
incomplete, though compositional; while the first method is non-compositional,
though complete. The procedure given here achieves both compositionality and
completeness.

A different type of assume-guarantee reasoning applies machine learning to de-
termine the weakest interface of a process as an automaton [17, 33, 16, 2]. It is
complete, but the algorithms are complex, and may be expensive [7].



In [32], compositional verification and abstraction based on 3-valued games are
combined into an automatic technique that can verify properties from the full
µ-calculus. This differs from the present paper in that the technique operates
on synchronous compositions, and has as a key step the global analysis of a
composition of abstract processes.

Hu and Dill propose in [20] to dynamically partition the bdd’s arising in a back-
ward reachability (AG) computation. The partitioning is not necessarily local.
A fixed local partitioning allows a simpler fixpoint procedure, and especially a
simpler termination condition. Unlike split invariance, the Hu-Dill method com-
putes the exact AG set. As the experiments show, however, over-approximation
is not necessarily a disadvantage.

A split invariant, (∧ i : θi), is quite similar in form to a quantified invariant,
(∀i : θ(i)). This similarity is explored in [26], which shows a strong connection
between split invariance and quantified invariants for parameterized protocols.
A universally quantified invariant has the form (∀i : 0 ≤ i < N : θ(X,Li)),
where N represents the size of an instance of the parameterized system. In one
direction, a quantified inductive invariant must be invariant for each specific
instance and, in fact, a split invariant for that instance, as the individual θ’s are
local assertions. (E.g., θ(X,L0) ∧ θ(X,L1) is a split invariant for N = 2.) The
converse is shown to hold in a restricted sense, under the assumption that the
split invariant components are limited to assertions from a logic with a small
model property. Under this restriction, a split invariant for a sufficiently large
instance, viewed as a universally quantified formula, is an inductive invariant for
all instances. The size of the “sufficiently large” instance is determined by the
small model property for the logic. Thus, split invariance calculations over small
instances can be used to construct parameterized invariants.

Logics with such properties are introduced in the context of the invisible invari-
ants method [29]. This method generates quantified invariants using a heuris-
tic approach, and can be used to show correctness for several of the protocols
considered here. However, it is sometimes necessary to manually add auxiliary
variables. It is unclear whether this is due to the limitations of the heuristics, or
for a more fundamental reason.

The connection described above shows that the need is fundamental: as param-
eterized invariants correspond to split invariants, it is, in general, necessary to
add auxiliary variables to obtain a sufficiently strong invariant. The completion
procedure given here determines relevant variables for each specific instance
of a parameterized system. For some protocols, the variables added for small
instances suffice to construct a parameterized invariant. However, for other pro-
tocols, it is necessary to utilize existentially quantified auxiliary predicates (e.g.,
“there is at least one process in the critical region”). Developing a systematic,
efficient, procedure to discover such predicates is an open question. The IIV tool
[1], which implements the invisible invariants method, can sometimes discover
such assertions through heuristics.



7 Conclusions and Future Work

This paper provides an algorithm—the first, to the best of our knowledge—
which address the incompleteness problem for local reasoning. The local reason-
ing strategy itself computes a split state invariant, which is a simpler object than
the transition relations or automata considered in other work.

Conceptually, local reasoning is an attractive alternative to model checking on
the full state space. Our experiments show that this is justified in practice as well:
split invariance, augmented with the completion procedure, can be a valuable
model checking tool. In many cases, a split invariance proof can be used to show
correctness of all instances of a parameterized protocol.

The completion procedure is defined for finite-state components. Extending this
method to unbounded state components (e.g., C programs) would require a
procedure that interleaves internal, per-process abstraction with split invariance
and completion. Other interesting questions include exploring local reasoning for
liveness properties (see [8]) and exploiting multi-core processing to speed up the
independent θi computations in Split-Inv.
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