
Local Proofs for Linear-Time Properties of
Concurrent Programs

Ariel Cohen1 and Kedar S. Namjoshi2

1 New York University, arielc@cs.nyu.edu
2 Bell Labs, Alcatel-Lucent, kedar@research.bell-labs.com

Abstract. This paper develops a local reasoning method to check linear-
time temporal properties of concurrent programs. In practice, it is often
infeasible to model check over the product state space of a concurrent
program. The method developed in this paper replaces such global rea-
soning with checks of (abstracted) individual processes. An automatic
refinement step gradually exposes local state if necessary, ensuring that
the method is complete. Experiments with a prototype implementation
show that local reasoning can hold a significant advantage over global
reasoning.

1 Introduction

Model Checking [5, 34] has been singularly successful at automating (in)correctness
proofs of programs. On the other hand, the standard model checking method
suffers from a serious state explosion problem [6]. For concurrent programs, state
explosion is caused by an exponential growth of the global state space with in-
creasing number of components. It is often necessary to use abstraction and
compositional reasoning methods to break up a model checking question into a
series of local questions.

This paper develops just such a local reasoning method, for analyzing linear
temporal properties of asynchronously composed, concurrent programs. In the
first step, a split invariant (a conjunction of local, per-process invariants) is
calculated, as shown in [30, 9]. The next step is to construct abstractions of
individual processes, based on the split invariant. Finally, liveness properties
are checked individually on each abstraction. A contribution of this work is
the derivation of this method from a deductive reasoning rule similar to that
of Owicki and Gries [31]. The deductive rule is based on user-supplied rank
functions: the derivation shows how to replace these with model checking.

Local reasoning is inherently incomplete: informally speaking, each process ab-
straction can view only part of the behavior of the other processes, which may
not suffice to establish a property. Both Owicki and Gries, and Lamport [28] pro-
pose ways to resolve this problem. Owicki and Gries suggest introducing auxil-
iary (typically unbounded, “history”) variables, while Lamport suggests making

some local state globally visible. In essence, both methods expose information
about the internal behavior of the component processes.

History variables, which are often valuable for a deductive proof, complicate
model checking, as the generic construction turns a finite-state problem into
an infinite-state one. Lamport’s proposal retains the finite-state nature of the
problem, but it is not clear how to choose the local state to be exposed. (Exposing
all local state results in a global model checking problem.) A second contribution
of this work is a systematic refinement scheme, which is based on an analysis of
counter-examples produced for the abstracted processes.

This combination of local reasoning with refinement is sound for all programs,
and is shown to be complete for finite-state programs. I.e., for a finite-state pro-
gram, a property is eventually proved or disproved. The combined method is
simple to implement in terms of BDD manipulations. Experiments with an im-
plementation based on TLV [33] show that local reasoning can have a significant
advantage over global reasoning. Full proofs and more experiments are in [10].

2 Motivating Example

x: boolean initially x = 1 x: boolean initially x = 1

N

‖
i=1

P [i] ::

loop forever do264 l0 : Non-Critical
l1 : request x
l2 : Critical
l3 : release x

375 P [θ, i] :: P [i] ‖ x := {0, 1}

a: protocol mux-sem b: abstracted form of process P [i]

Fig. 1. Example Illustrating the Local Reasoning Method.

Figure 1(a) shows a very simple mutual exclusion protocol. It satisfies mutual
exclusion (a safety property), and the following (weak) progress property: “in-
finitely often x = 0”, i.e., infinitely often, some process is in its critical section.
It does not satisfy the stronger individual progress property “every waiting pro-
cess eventually enters its critical section”. In the following, consider a 2-process
instance.

The first step of the local method is to compute the strongest split invariant,
θ, which is the strongest vector of local, per-process inductive invariants. (The
reachable states form the strongest global inductive invariant.) This computa-
tion, by the fixpoint method in [30], results in θi = true, for all i.

The second step uses θ to compute an over-approximation P [θ, i] of each process
Pi. For process i, the transition relation of P [θ, i] is the disjoint union of (a)
the transition relation, Ti, of Pi and (b) for every other process, a transition
relation which summarizes its effect on the shared state, under the constraint θ.
The contribution for process Pj (j 6= i) is computed by quantifying out the local

variables of process Pj (both current and next-state) from the formula θj ∧ Tj .
For this protocol, the summary for Pj allows x to change arbitrarily, leading to
the abstract process shown in Figure 1(b).

The final step is to check, using a standard model checker whether, for all i,
the abstraction P [θ, i] satisfies a weakening of the original progress property:
that there is no execution on which a Büchi automaton for the negated original
property accepts infinitely often from Ti transitions. This check succeeds for both
abstract processes, which proves the original property for the original program.

It is interesting to note that the abstract form of process P1 does fail the original
property, as the summary transition for process P2 can ensure that x is “stuck”
at 1 forever. However, in this execution, a T1 transition does not appear infinitely
often, so it does not represent a failure for the weaker property defined above.

The particular form of these checks arises naturally from the derivation that fol-
lows. In broad brush, however, the steps can be seen as: (1) constraining the glob-
ally reachable states with a split invariant, (2) computing an over-approximation
of the behavior of each component process, restricted by the split invariant and
(3) checking a weakened property on these over-approximations. In each step,
the method avoids computing with the global product state space.

Although it is not the case for this protocol, it is possible that the abstraction of
step (2) is too weak, resulting in false error reports in step (3). Exposing more
local information strengthens the split invariant at the next iteration and, con-
sequently, tightens the process summaries computed in step (2). This eventually
results in the elimination of false errors.

Finally, for this protocol, the local proof for the 2-process instance suffices to
show that the property holds for all instances (i.e., in a parameterized sense).
This is true as both the split invariant θ = true, and the abstract process P [θ, 1]
are unchanged for larger instances, and P [θ, j] is identical to P [θ, 1] by symmetry.
We do not explore such parameterized proofs further in this paper.

3 The Local Reasoning Method

This section defines the computational model, and presents the derivation of the
local reasoning method. Some of the preliminary definitions are taken from [30],
and are repeated here for convenience.

3.1 Basic Definitions

Programs and Composition A program is defined as a tuple (V, I, T), where V is
a set of (typed) variables, I(V) is an initial condition, and T (V, V ′) is a transition
condition, where V ′ is a fresh set of variables in 1-1 correspondence with V .

Programs need not be finite-state. The local reasoning method is sound in gen-
eral, but we show completeness only for finite-state programs.

The semantics of a program is given by a transition system, which is defined by
a triple (S, S0, R), where S is the state domain defined by the Cartesian product
of the domains of variables in V , S0 = {s : I(s)}, and R = {(s, t) : T (s, t)}.
We assume that T is left-total, i.e., every state has a successor. A state predicate
(or assertion) is a Boolean expression over the program variables. The value of
a variable w at state s is denoted by w(s). The truth value of a predicate p at a
state s, denoted by p(s), is defined as usual by induction on formula structure.

Given a non-empty, finite, set of programs, {Pi}, their asynchronous composition,
written as (||i :: Pi), is the program P = (V, I, T), with components defined as
follows. Let V = (

⋃
i :: Vi) and I = (

∧
i :: Ii). The shared variables, denoted

X, are those that belong to Vi ∩ Vj , for a distinct pair (i, j). For simplicity,
we assume that X ⊆ Vi, for all i. The local variables of Pi, denoted Li, are
the non-shared variables in Vi (i.e., Li = Vi \X). We assume that the local
variables of distinct processes are disjoint. The set of local variables is L =
(
⋃
i :: Li). The transition condition Ti of program Pi is constrained to leave local

variables of other processes unchanged. Define T̂i as Ti(Vi, V
′
i) ∧ unch(L \Li),

where unch(W), for a set of variables W , is defined as (∀w : w ∈ W : w′ = w).
Then T is defined simply as (

∨
i :: T̂i).

Inductiveness and Invariance A state predicate ϕ is an invariant of program
P = (V, I, T) if it holds at all reachable states of P . A state assertion ξ is an
inductive invariant for P if it is initial (1) and inductive (2).

[I ⇒ ξ] (1)
[ξ ⇒ wlp(T, ξ)] (2)

Notation: wlp is the weakest liberal precondition transformer introduced by Dijk-
stra in [14]. The notation [ψ], from [15], is read as “ψ is valid”. For P = (||i :: Pi),
it is the case that [wlp(T, ϕ) ≡ (

∧
i :: wlp(T̂i, ϕ))].

Split Invariance A local assertion, θi, is defined over the variables of Pi. Thus,
θi is defined over Li and X, but does not refer to other local variables. A split
assertion for a composition (||i :: Pi) is a vector of local assertions, one for
each process. A split assertion, θ, is a split invariant if the conjunction (∧ i ::
θi) is an inductive invariant for the composition. To simplify notation, θ refers
indifferently either to the vector or to the conjunction of its components, with
the interpretation clear from the context. In [30], it is shown that the strongest
split invariant can be computed as the (simultaneous) least fixpoint of the set
of equations below, one for each i.

[θi ≡ (∃L \Li :: I ∨ (∨ j :: sp(T̂j , θ)))]

Here, sp is the strongest post-condition operator (also known as “post”). The
expression takes successors of θ (i.e., of (∧ i :: θi)) for each T̂j , adds the initial
states, and quantifies out non-Pi local variables, to ensure that the result is
a local assertion for Pi. For finite-state programs, these calculations are easily
implemented with standard BDD operations.

3.2 Background: Proofs of Linear-time Properties

The automata-theoretic approach to model checking [37] is followed here. Linear-
time properties are specified by a finite-state automaton over infinite words for
the complemented property. The derivations below rely on a few assumptions.

1. Programs are deadlock-free. As the transition relation of each component
is left-total, the program as a whole never gets stuck. As in the UNITY
model [3], however, “deadlock” may be defined as a state where the only
transition is a self-loop. Deadlock-freedom is thus a safety property, which
can be checked locally using the method from [9].

2. The property is defined by a non-deterministic Büchi automaton for its com-
plement, and refers only to the shared variables. This enables the automaton
transitions to be inserted into the program, synchronously with each com-
ponent transition. The predicate accept , on the shared state, indicates that
the automaton is in an accepting state.

3. Fairness constraints are enforced by the automaton. Liveness properties often
depend on fairness assumptions about execution schedules. For simplicity,
we assume that any fairness conditions are part of the automaton; i.e., the
automaton accepts an execution if it is fair but fails the property.

Under these assumptions, the following non-compositional proof rule can be
used to prove a linear-time property for a program P = (V, I, T). The proof rule
requires an assertion θ, and a rank function ρ, a partial map from states to a
well-founded domain, (W,≺), which satisfy the conditions below.

[I ⇒ θ] (3)
[θ ⇒ wlp(T, θ)] (4)
[θ ⇒ domain(ρ)] (5)

∀k : k ∈W : [θ ∧ (ρ = k) ⇒ wlp(T, ρ � k)] (6)
∀k : k ∈W : [θ ∧ accept ∧ (ρ = k) ⇒ wlp(T, ρ ≺ k)] (7)

Theorem 0 The proof rule is sound and relatively complete.

3.3 Localizing the Proof Rule

Consider now the case where P is a composition (||i : Pi). The goal is to localize
the reasoning rule given previously. To this end, a first change is to make θ a
split invariant. A second change is to let ρ be a vector of local functions, with
ρi defined over the variables Vi of Pi, with a well-founded domain, (Wi,≺i), as

its range. The local proof rule is as follows.

[I ⇒ θ] (8)
[θ ⇒ wlp(T, θ)] (9)

∀i : [θ ⇒ domain(ρi)] (10)
∀i, k : k ∈Wi : [θ ∧ (ρi = k) ⇒ wlp(T, ρi �i k)] (11)

∀i, k : k ∈Wi : [θ ∧ accept ∧ (ρi = k) ⇒ wlp(T̂i, ρi ≺i k)] (12)

Theorem 1 The local proof rule is sound.
Proof Sketch. The first two conditions ensure that θ is a (split) inductive
invariant. Define a global rank function ρ by ρ(s) = (vec i :: ρi(si)), where si is
s restricted to Vi. Global rank vectors are compared point-wise. From (10)-(12),
it follows that the pair (θ, ρ) satisfies the hypotheses of the previous proof rule,
ensuring soundness by Theorem 0. �

Condition (11) ensures that ρi is not adversely affected by any transition of P .
This is one of the “non-interference” properties defined by Owicki and Gries in
[31]. The local formulation has the following interesting consequence.

Theorem 2 If the local proof rule is applicable, it can be applied with θ being
the strongest split invariant.
Proof. Suppose that the local proof rule is applicable for some θ. Let θ∗

represent the strongest split invariant. Conditions (8) and (9) are satisfied by
θ∗ by definition. The other conditions are anti-monotone in θ; as θ∗ is stronger
than θ, they hold also for θ∗. �

This theorem provides the first hint for mechanizing the local proof rule, as
it eliminates one part of the guesswork: one can let θ be the strongest split
invariant. The next section shows how to replace the rank function requirements
with model checking.

3.4 Guessing Ranks through Model Checking

In this section, we consider a fixed split invariant, θ. The goal is to replace the
reasoning about rank functions with a local model checking procedure. First,
note that by the conjunctivity of wlp for asynchronous composition, conditions
(11) and (12) are equivalent to saying that, for each i, each j, and k ∈Wi,

[θ ∧ (ρi = k) ⇒ wlp(T̂j , ρi �i k)] (13)

[θ ∧ accept ∧ (ρi = k) ⇒ wlp(T̂i, ρi ≺i k)] (14)

These conditions are rewritten below, exploiting locality. In these derivations, we
do not explicitly write the variable dependencies, to avoid clutter. For reference,
they are: θ(X,L), θi(X,Li), ρi(X,Li), T̂i(X,L,X ′, L′), and Ti(X,Li, X

′, L′i).
We write ρ′i to refer to ρi(X ′, L′i). The calculations make extensive use of the
following fact: [p(x, y) ⇒ q(y)] is equivalent to [(∃x :: p(x, y)) ⇒ q(y)].

For each i, each j, and k ∈Wi,

[θ ∧ (ρi = k) ⇒ wlp(T̂j , ρi �i k)]
≡ { definition of wlp }

[θ ∧ (ρi = k) ∧ T̂j ⇒ ρ′i �i k]
≡ { by locality, as the consequent is independent of L \Li and L′ \L′i }

[(∃L \Li, L
′ \L′i :: θ ∧ (ρi = k) ∧ T̂j) ⇒ ρ′i �i k]

≡ { pushing quantifiers inwards }
[(∃L \Li :: θ ∧ (∃L′ \L′i :: T̂j)) ∧ (ρi = k) ⇒ ρ′i �i k]

For j 6= i, the term (∃L′ \L′i :: T̂j) simplifies to (∃L′j :: Tj) ∧ unch(Li). As θ is
really (∧ i :: θi), the final implication simplifies to

[(∃L \Li :: θ) ∧ (∃Lj : θj ∧ (∃L′j :: Tj)) ∧ unch(Li) ∧ (ρi = k) ⇒ ρ′i �i k] (15)

This has a shape similar to that of the condition (6) from the non-local rule,
with (∃L \Li :: θ) playing the role of the invariant assertion, and the term
“(∃Lj : θj ∧ (∃L′j :: Tj)) ∧ unch(Li)” playing the role of a transition relation.
This observation leads to the following definition.

Definition 0 For j distinct from i, define Tj [θ, i] as (∃Lj :: θj ∧ (∃L′j :: Tj)) ∧
unch(Li). With free variables (X,Li, X

′, L′i), this is a transition term for Pi.

Similarly transforming the other conditions, one obtains for any i, and any j :
j 6= i,

[(∃L \Li :: init) ⇒ (∃L \Li :: θ)] (16)
[(∃L \Li :: θ) ⇒ wlp(Ti, (∃L \Li :: θ))] (17)

[(∃L \Li :: θ) ⇒ wlp(Tj [θ, i], (∃L \Li :: θ))] (18)
[(∃L \Li :: θ) ⇒ domain(ρi)] (19)

∀k : k ∈Wi : [(∃L \Li :: θ) ∧ (ρi = k) ⇒ wlp(Tj [θ, i], ρi �i k)] (20)
∀k : k ∈Wi : [(∃L \Li :: θ) ∧ accept ∧ (ρi = k) ⇒ wlp(Ti, ρi ≺i k)] (21)

The implications (16)-(21) suggests the definition of an abstract process.

Definition 1 The abstraction of process Pi relative to θ is a process denoted
P [θ, i], with variables Vi, initial condition (∃L \Li :: Ii), and transition relation
formed by the terms Ti and Tj [θ, i], for j : j 6= i, combined disjunctively.

Conditions (20) and (21) lead to the following theorem.

Theorem 3 For fixed θ: if there is a rank function vector which satisfies the local
proof conditions then, for any i, P [θ, i] satisfies the property “for all executions,
it is not the case that Ti occurs infinitely often from states satisfying accept”.

The contrapositive of this theorem implies that, for a given θ, if the check fails
for one of the abstract processes, there is no rank function vector which can
satisfy the local proof rule (for the same θ). This forces a refinement of the split
invariant in order to rule out false errors, as described in the next section. On
the other hand, as shown below, if the check succeeds for all of the abstract
processes, the property must hold of the original program.

Theorem 4 For any split invariant θ: if, for every i, P [θ, i] satisfies the property
“for all executions, it is not the case that Ti occurs infinitely often from states
satisfying accept”, then the original property is true of the composition (||i :: Pi).

3.5 The Local Reasoning Algorithm

The algorithm is now easily stated. Given P = (||i :: Pi), with an embedded
Büchi automaton for a negated property, and acceptance condition accept .

1. Compute a split invariant θ of P , ideally the strongest split invariant.
2. For each i, define the abstract program P [θ, i] (Def. 1). Form the product

of the abstract program with the property automaton. Check the property
stated in Theorem 3.

3. If each check succeeds, by Theorem 4, the property holds of P .

Computing the split invariant, and checking the property, are operations that
are polynomial in the number of processes and the size of each process and the
automaton.

What if the check fails for some i? By Theorem 2, if the strongest split invariant
was used, it is either the case that the property is false, or that a refinement step
is needed to expose more of the local state and rule out a false counter-example.

3.6 Modifications

Quantified Properties For parameterized protocols, it is common to have quanti-
fied liveness properties (e.g., “every waiting process eventually enters its critical
section”). Fortunately, such protocols typically have a high degree of symme-
try. Under symmetry, a composition (||i :: Pi) satisfies a quantified property
(∀i :: ϕ(i)) if, and only if, it satisfies ϕ(1) [16]. Hence, making the local variables
of P1 part of the shared state suffices to meet the requirement that the property
is defined over the shared variables. Symmetry can also be exploited to reduce
the computations for the split invariance calculation, and to reduce the number
of checks needed in step 2 above to the abstract processes for P1 and P2.

Fairness For an unconditional fairness assumption, it suffices to annotate each
transition with the index of the process making the transition. These indices
are carried over to the abstract processes. To express stronger fairness assump-
tions, it is necessary to shadow the local predicates mentioned in the fairness
assumption with auxiliary shared variables.

4 A Refinement Strategy

The local reasoning algorithm defined above is necessarily incomplete. If the
property cannot be proved, a local proof requires exposing more of the local
state. We describe a simple, yet effective, strategy to choose the portions of the
local state to be exposed. This strategy is based on examining counter-example
executions for those abstract processes which fail to model-check.

A failure for P [θ, i] implies that there is a finite, “lasso” shaped counter-example:
a path ending in a cycle which contains at least one Ti transition from an accept
state. By construction, in P [θ, i], the Ti transitions are exact, while the tran-
sitions of other processes may be approximate. Recall that the definition of
Tj [θ, i] (Def. 0) has an ∃Lj∃L′j form. In terms of language used in branching-
time abstraction methods [12], this is a may-transition. It is a must-transition
if, for every value of Lj that satisfies θj , there is a Tj transition from (X,Lj) to
(X ′, Lj). The distinction between may- and must-transitions is useful in deter-
mining whether a counterexample lasso represents a real execution.

Theorem 5 Let π be a counterexample for P [θ, i]. If every abstract transition
along π is also a must-transition, there is an induced global counterexample for
the full program P .

This theorem leads to the refinement procedure below.

1. If, for some abstract program P [θ, i], the transitions on a counterexample
path, π, meet the condition of Theorem 5, HALT(“the property is false”),
and provide the induced global path as a counterexample.

2. Otherwise, let t = (u, Tk[θ, i], v) be a non-must transition on π. Define pk by

pk(Lk) := θk(X(u), Lk) ∧ ¬(∃L′k :: Tk(X(u), Lk, X(v), L′k))

For local state a of Pk, pk(a) is true if a is an obstacle to forming a must-
transition, since there is no transition to X(v) from (X(u), a) in Pk. Pred-
icate pk is non-trivial: it is not valid, as t is a may transition; neither is it
unsatisfiable, as t is not a must transition. As required for local reasoning,
pk is a local assertion for Pk. A shared boolean variable, bk, is added to
the program, such that bk ≡ pk(Lk) is an invariant, and the local reasoning
algorithm is repeated for the augmented program. The initial value of bk is
the initial value of pk; the constraint (b′k ≡ pk(L′k)) is conjoined to Tk, and
(b′k ≡ bk) to Tj , for j 6= k.

Theorem 6 For finite-state programs, this procedure eventually terminates.
Proof. First, we show that each refinement step discovers at least one new
predicate. Existing predicates are preserved by the split invariance calculation
(Lemma 1 of [9]). Thus, any existing predicates have the same value for all
local states a of Pk that satisfy θk(X(u), a); and this is not true of pk by its
definition. As there are a bounded number of predicates, the refinement process
cannot continue forever. �

Theorem 7 The combination of local reasoning with refinement is complete for
finite-state programs.

Proof. Consider first the case where the property holds. Thus, any counterex-
amples are not real, so the hypothesis of Theorem 5 does not apply, and the
procedure will not terminate with an incorrect answer. As termination is guar-
anteed by Theorem 6, the procedure must terminate with success.

Next, consider the case where the property does not hold. By the contrapositive
of Theorem 4, at every stage, at least one of the abstract processes fails the
check. Thus, the procedure cannot terminate with success. As termination is
guaranteed by Theorem 6, the procedure must terminate with failure. �

While the termination argument relies on exhausting the set of available predi-
cates, the hope is that, in most cases, termination occurs before the problem is
transformed back into a global model checking question. It is important to note
that the procedure is sound—but not necessarily terminating—for all programs.

5 Experiments

We implemented our method in tlv [33], a bdd-based model checker. The ex-
periments use parameterized protocols, as the global state space can be varied
simply by altering the number of processes. We do not use symmetry to optimize
the calculations, as the intent is to compare local with global reasoning, as rep-
resented by algorithm temp entail, based on [27]. The experiments show that
local reasoning can have significantly better performance than global reasoning.

Method Processes BDDs Time (sec) BDDs [variant] Time (sec) [variant]

Local Reasoning 2 433 0 7.6k 0
Global Reasoning 2 440 0 6.2k 0
Local Reasoning 10 10k 0.1 19k 1.3
Global Reasoning 10 10k 0.05 248k 294
Local Reasoning 20 15k 1.28 62k 4.6
Global Reasoning 20 23k 1.53 - >2hrs
Local Reasoning 50 88k 21.7 330k 46.8
Global Reasoning 50 141k 53.5 - >2hrs

Table 1. Test results for the property 01 x = 0.

We checked two different properties for mux-sem, the motivating example of
Figure 1(a). For the first property, 01x = 0 (“infinitely often x = 0”), our
method does not require any refinement step. Compared to temp entail, it
runs significantly faster and requires nearly half the amount of bdds (Table
1). A variant of the protocol models the situation where there is some state
irrelevant to the property (in this case, a counter in each process). The locality
of the analysis results in this excess state being eliminated from the abstract
processes. The effect is shown in the two final columns of Table 1.

The second property is 0(P [1].at l1 → 1P [1].at l2) (“if process P [1] is at
location 1 it eventually enters its critical section”), which is not satisfied by mux-
sem under unconditional fairness. Expressing the property requires exposing
the location variable of P [1]. The method detects a counter example after one
refinement step, during which one bit of information per process (whether the
process is waiting) is exposed. The results are provided in Table 2.

Method Processes BDDs Time (sec) Refinements New Variables

Local Reasoning 3 2.6k 0.02 1 1
Global Reasoning 3 1.6k 0.01 - -
Local Reasoning 10 10k 0.22 1 8
Global Reasoning 10 16k 0.13 - -
Local Reasoning 20 37k 1.2 1 18
Global Reasoning 20 66k 1.46 - -
Local Reasoning 50 215k 13.5 1 48
Global Reasoning 50 414k 30.6 - -
Local Reasoning 100 852k 382 1 98
Global Reasoning 100 1.6M 586 - -

Table 2. Test results for the property 0(P [1].at l1 →1P [1].at l2).

6 Related Work and Conclusions

Compositional reasoning about concurrency has a long history, going back 30
years to the seminal papers of Owicki and Gries, and Lamport. Early work
focuses on deductive proof methods for safety [4, 26] and liveness [32, 13]. Tools
such as Cadence SMV support guided compositional proofs [29, 25]. “Thread-
modular” reasoning[18, 19, 24, 23] uses per-process transition relations to prove
safety, but the method is incomplete. The split invariance method was introduced
in [30], with completeness obtained by a refinement method [9].

The new contribution here is the mechanization of an Owicki-Gries style proof
rule for liveness properties, coupled with a refinement procedure. The procedure
is fully automatic, and complete for finite-state processes. It has a simple im-
plementation, and the experimental results support the hypothesis that local
reasoning is often significantly faster than global reasoning. To the best of our
knowledge, this is the first fully automated and complete method of its type for
general linear-time temporal properties of asynchronous programs.

Recent work [22, 11] has shown that local reasoning can be effective for proving
termination properties. However, the algorithms do not include a mechanism to
expose additional local state, which is necessary for completeness.

In [35], Shoham and Grumberg propose a complete compositional method, cou-
pled with refinement, for proving mu-calculus properties. Our methods have
several points of commonality, including the use of the may-must distinction for
refinement, but also some important differences: the method in [35] operates on

synchronous compositions, rather than the asynchronous compositions consid-
ered here, and has as a key step the global analysis of a composition of abstract
processes, which differs from the separate analysis of individual abstract pro-
cesses in our method. Earlier work [1] uses per-process invariants to constrain
abstractions (in the synchronous setting) as is done in Definitions 0 and 1.

Automata learning algorithms have been used for compositional analysis of safety
properties [21, 36, 20, 2], and recently extended to liveness properties [17]. The
algorithms are complete, but can be expensive in practice [8]. Our completion
procedure is based on a form of counter-example guided refinement [7], which
may be viewed as a process of learning from failure.

Acknowledgements This research was supported in part by the National Sci-
ence Foundation under grant CCR-0341658.

References

1. R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular
verification. In CONCUR, volume 1664 of LNCS, pages 82–97, 1999.

2. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. In CAV, volume 3576 of LNCS, pages 534–
547, 2005.

3. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

4. K.M. Chandy and J. Misra. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4), 1981.

5. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of LNCS. Springer-Verlag, 1981.

6. E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal
logic model checking. In PODC, pages 294–303, 1987.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

8. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: an
investigation of decomposition for assume-guarantee reasoning. In ISSTA, pages
97–108, 2006.

9. A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. In CAV,
volume 4590 of LNCS, pages 55–67. Springer, 2007.

10. A. Cohen and K. S. Namjoshi. Local proofs for linear-time temporal proper-
ties of concurrent programs. Technical report, Bell Labs, 2008. Available at
http://www.cs.bell-labs.com/who/kedar.

11. B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In PLDI,
pages 320–330. ACM, 2007.

12. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems.
TOPLAS, 19(2), 1997.

13. W-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

14. E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. CACM, 18(8), 1975.

15. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer Verlag, 1990.

16. E.A. Emerson and A.P. Sistla. Symmetry and model checking. In CAV, volume
697 of LNCS, 1993.

17. A. Farzan, Y. Chen, E. M. Clarke, Y. Tsan, and B. Wang. Extending automated
compositional verification to the full class of omega-regular languages. In TACAS,
LNCS, 2008.

18. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

19. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, volume
2648 of LNCS, pages 213–224, 2003.

20. D. Giannakopoulou and C. S. Pasareanu. Learning-based assume-guarantee veri-
fication (tool paper). In SPIN, volume 3639 of LNCS, pages 282–287, 2005.

21. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In ASE, pages 3–12, 2002.

22. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
In PLDI, pages 266–277. ACM, 2007.

23. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In PLDI, pages 1–13, 2004.

24. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstrac-
tion refinement. In CAV, volume 2725 of LNCS, pages 262–274, 2003.

25. R. Jhala and K. L. McMillan. Microarchitecture verification by compositional
model checking. In CAV, volume 2102 of LNCS, pages 396–410. Springer, 2001.

26. C.B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University, 1981.

27. Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model checking with strong fairness.
Formal Methods in System Design, 28(1):57–84, 2006.

28. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2), 1977.

29. K.L. McMillan. A compositional rule for hardware design refinement. In CAV,
volume 1254 of LNCS, 1997.

30. K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized
systems. In VMCAI, volume 4349 of LNCS, 2007.

31. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976.

32. A. Pnueli. In transition from global to modular reasoning about programs. In
Logics and Models of Concurrent Systems, NATO ASI Series, 1985.

33. A. Pnueli and E. Shahar. A platform for combining deductive with algorith-
mic verification. In CAV, volume 1102 of LNCS, pages 184–195, 1996. web:
www.cs.nyu.edu/acsys/tlv.

34. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the 5th International Symposium on Programming, volume
137 of LNCS, 1982.

35. S. Shoham and O. Grumberg. Compositional verification and 3-valued abstractions
join forces. In SAS, volume 4634 of LNCS, pages 69–86, 2007.

36. O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu. Automated environment genera-
tion for software model checking. In ASE, pages 116–129, 2003.

37. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In IEEE Symposium on Logic in Computer Science, 1986.

