
Local Proofs for Global Safety Properties

Ariel Cohen1 and Kedar S. Namjoshi2

1 New York University, arielc@cs.nyu.edu
2 Bell Labs, kedar@research.bell-labs.com

Abstract. This paper explores the concept of locality in proofs of global
safety properties of asynchronously composed, multi-process programs.
Model checking on the full state space is often infeasible due to state
explosion. A local proof, in contrast, is a collection of per-process invari-
ants, which together imply the global safety property. Local proofs can
be compact: but a central problem is that local reasoning is incomplete.
In this paper, we present a “completion” algorithm, which gradually ex-
poses facts about the internal state of components, until either a local
proof or a real error is discovered. Experiments show that local reasoning
can have significantly better performance over a reachability computa-
tion. Moreover, for some parameterized protocols, a local proof can be
used to show correctness for all instances.

1 Introduction

The success achieved by model checking [5, 24] in various settings has always
been tempered by the problem of state explosion [3]. Strategies based on ab-
straction and compositional analysis help to ameliorate the adverse effects of
state explosion. This paper explores a particular combination of the two, which
may be called “local reasoning”. The context is the analysis of invariance prop-
erties of shared-variable, multi-process programs. Many protocols for cache co-
herence and mutual exclusion, and multi-threaded programs, fit this program
model. Other, more complex, safety properties can be reduced to invariance by
standard methods.

Model checking tools typically prove an invariance property through a reacha-
bility computation, computing an inductive assertion (the reachable states) that
is defined over the full state vector. In contrast, a local proof of invariance for an
asynchronous composition, P1//P2// . . . //Pn, is given by a vector of assertions,
{θi}, one for each process, such that their conjunction is inductive, and implies
the desired invariance property. Locality is ensured by syntactically limiting each
assertion θi to the shared variables, X, and the local variables, Li, of process Pi.
The vector θ is called a split invariant.

In recent work [20], it is shown that the strongest split invariant exists, and
can be computed as a least fixpoint. Moreover, the split invariance formulation



is nearly identical to the deductive proof method of Owicki and Gries [21] for
compositional verification.

Intuitively, a local proof computation has advantages over a reachability compu-
tation. For one, each component of a split invariant can be expected to have a
small BDD representation, as it is defined over the variables of a single process.
Moreover, as the local assertions are loosely coupled—their only interaction is
through the shared variables—BDD ordering constraints are less stringent.

On the other hand, a central problem with local reasoning is that it is incom-
plete: i.e., some valid properties do not have local proofs. This is because a
split invariant generally over-approximates the set of reachable states, which
may cause some unreachable error states to be included in the invariant. The
over-approximation is due to the loose coupling between local states, as a joint
constraint on Li and Lj can be enforced only via X, by θi(X,Li) ∧ θj(X,Lj).
Owicki and Gries showed that completeness can be achieved by adding auxiliary
history variables to the shared state. Independently, Lamport showed in [18]
that sharing all local state also ensures completeness. For finite-state processes,
Lamport’s construction has an advantage, as the completed program retains
its finite-state nature, but it is also rather drastic: ideally, a completion should
expose only the information necessary for a proof.

The main contribution of the paper is a fully automatic, gradual, completion
procedure for finite-state programs. This differs from Lamport’s construction
in exposing predicates defined over local variables, which can be more efficient
than exposing variables. The starting point is the computation of the strongest
split invariant. If this does not suffice to prove the property, local predicates
are extracted from an analysis of error states contained in the current invariant,
added to the program as shared variables, and the split invariance calculation
is repeated. Unreachable error states are eliminated in successive rounds, while
reachable error states are retained, and eventually detected.

The procedure is not optimal, in that it does not always produce a minimal
completion. However, it works well on a number of protocols, often showing a
significant speedup over forward reachability. It is also useful in another setting,
that of parameterized verification. In [20], it is shown that split invariance proofs
for small instances of a parameterized protocol can be generalized (assuming
a small model property) to inductive invariants which show correctness of all
instances. Completion helps in the creation of such proofs.

In summary, the main contributions of this paper are (i) a completion proce-
dure for split invariance, and (ii) the experimental demonstration that, in many
cases, the fixpoint calculation of split invariance, augmented with the comple-
tion method, works significantly better than forward reachability. Parameterized
verification, while not the primary goal, is a welcome extra!

An extended version of the paper, with complete proofs, and full experimental
results, is available from http://www.cs.bell-labs.com/who/kedar/local.html .



2 Background

This section defines split invariance and gives the fixpoint formulation of the
strongest split invariant. A more detailed exposition may be found in [20]. In
the following, we assume that the reader is familiar with the concept of a state
transition system.

Definition 0 A component program is given by a tuple (V, I, T ), where V is a
set of (typed) variables, I(V ) is an initial condition, and T (V, V ′) is a transition
condition, where V ′ is a fresh set of variables in 1-1 correspondence with V .

The semantics of a program is given by a transition system (S, S0, R) where S is
the state domain defined by the Cartesian product of the domains of variables
in V , S0 = {s : I(s)}, and R = {(s, t) : T (s, t)}. We assume that T is left-total,
i.e., every state has a successor. A state predicate is a Boolean expression over
the program variables. The truth value of a predicate at a state is defined in the
usual way by induction on formula structure.

Inductiveness and Invariance A state predicate ϕ is an invariant of program
M if it holds at all reachable states of M . A state assertion ξ is an inductive
invariant for M if it is initial (1) and inductive (2) (i.e., preserved by every
program transition). Here, wlp is the weakest liberal precondition transformer
introduced by Dijkstra; the notation [ψ], from Dijkstra and Scholten [8], indicates
that ψ is valid.

[IM ⇒ ξ] (1)
[ξ ⇒ wlp(M, ξ)] (2)

An inductive assertion is adequate to show the invariance of a state predicate ϕ
if it implies ϕ (condition (3)).

[ξ ⇒ ϕ] (3)

From the Galois connection between wlp and the strongest post-condition oper-
ator sp (also known as post), condition (2) is equivalent to

[sp(M, ξ) ⇒ ξ] (4)

The conjunction of (1) and (4) is equivalent to [(IM ∨ sp(M, ξ)) ⇒ ξ]. As
function f(ξ) = IM ∨ sp(M, ξ) is monotonic, by the Knaster-Tarski theorem
(below), it has a least fixpoint, which is the set of reachable states of M .

Theorem 0 (Knaster-Tarski) A monotonic function f on a complete lattice
has a least fixpoint, which is the strongest solution to Z : [f(Z) ⇒ Z]. Over
finite-height lattices, it is the limit of the sequence Z0 = ⊥; Zi+1 = f(Zi).



Program Composition The asynchronous composition of programs {Pi}, written
as (//i : Pi) is the program P = (V, I, T ), where the components are defined as
follows. Let V = (∪ i : Vi), and I = (∧ i : Ii). The shared variables, denoted X,
are those that belong to Vi ∩ Vj , for a distinct pair (i, j). The local variables of
process Pi, denoted Li, are the variables in Vi that are not shared (i.e., Li =
Vi \X). The set of local variables is L = (∪ i : Li). The transition condition Ti

of program Pi is constrained so that it leaves local variables of other processes
unchanged. I.e., Ti is extended to Ti(Vi, V

′
i ) ∧ (∀j : j 6= i : L′

j = Lj). Then T can
be defined simply as (∨ i : Ti), and wlp(P,ϕ) is equivalent to (∧ i : wlp(Pi, ϕ)).

2.1 Split Invariance

For simplicity, we consider a two-process composition P = P1//P2; the results
generalize to multiple processes. The desired invariance property ϕ is defined over
the full product state of P . A local assertion for Pi is an assertion that is based
only on Vi (equivalently, on X and Li). A pair of local assertions θ = (θ1, θ2) is
called a split assertion. Split assertion θ is a split invariant if the conjunction
θ1 ∧ θ2 is an inductive invariant for P .

Split Invariance as a Fixpoint The conditions for inductiveness of θ1 ∧ θ2 can
be rewritten to the simultaneous pre-fixpoint form below, based on the (sp,wlp)
Galois connection and locality. In particular, the existential quantification over
local variables encodes locality, as θi is independent of Lj , for j 6= i.

[(∃L2 : I ∨ sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2)) ⇒ θ1] (5)
[(∃L1 : I ∨ sp(P1, θ1 ∧ θ2) ∨ sp(P2, θ1 ∧ θ2)) ⇒ θ2] (6)

Let Fi(θ) refer to the left-hand side of the implication for θi. By monotonicity
of Fi in terms of (θ1, θ2) and the Knaster-Tarski theorem, there is a strongest
solution, θ∗, which is also a simultaneous least fixpoint: [θ∗i ≡ Fi(θ∗)]. For
finite-state programs, Fi(θ) can be evaluated using standard BDD operations.

Theorem 1 A split invariance proof of the invariance of ϕ exists if, and only
if, [(θ∗1 ∧ θ∗2) ⇒ ϕ].

Early Quantification For a program with more than two processes, the general
form of F1(θ) is (∃L \L1 : I ∨ (∨ j : sp(Pj , (∧m : θm)))). This expression
may be optimized with early quantification, as follows. Distributing ∃ over ∨
and over sp, and using the fact that the θi’s are local assertions, F1(θ) may be
rewritten to (∃L \L1 : I) ∨ (∨ j : lsp1(Pj , θ)), which quantifies out variables as
early as possible. In this expression, lsp1(Pj , θ) is defined as follows: for j 6= 1,
it is (∃Lj : sp(Pj , θ1 ∧ θj ∧ (∧ k : k 6∈ {1, j} : (∃Lk : θk)))), and for j = 1, it is
sp(P1, θ1 ∧ (∧ k : k 6= 1 : (∃Lk : θk))).



x: boolean initially x = 1 x: boolean initially x = 1
last : 0..N initially last = 0

N

‖
i=1

P [i] ::

loop forever do26664
I : Non-Critical
T : request x

C : Critical
E : release x

37775
N

‖
i=1

P [i] ::

loop forever do26664
I : Non-Critical
T : request x

last := i;
C : Critical
E : release x

37775
(a) protocol mux-sem (b) protocol mux-sem-last

Fig. 1. Illustration of the (In)Completeness of Local Reasoning.

3 The Completion Procedure

The completeness problem, and its solution, is nicely illustrated by the mutual
exclusion protocol in Figure 1(a). For a 2-process instance, the strongest split
invariant is (true, true). This includes (unreachable) states that violate mutual
exclusion, making it impossible to prove the property. On the other hand, mod-
ifying the program by adding the auxiliary variable last, which records the last
process to enter the critical section (Figure 1(b)), results in the strongest split
invariant given by θi = ((Ci ∨ Ei) ≡ ((¬x) ∧ last = i)). This suffices to prove
mutual exclusion. The completion algorithm, completion, defined below, au-
tomatically discovers auxiliary variables such as this one.

A second route to completion, which we refer to as completion-pairwise, is to
widen the scope of local assertions to pairs of processes. A split invariant is now
a matrix of entries of the form θij(X,Li, Lj). The 1-index fixpoint algorithm is
extended to compute 2-index θ’s as follows. Instead of n simultaneous equations,
there are O(n2) equations, one for each pair (i, j) such that i 6= j. The operator,
Fij , is defined as (∃L \ (Li ∪ Lj) : I ∨ (∨ k : sp(Pk, θ̂))), where θ̂ is (∧m,n : m 6=
n : θmn). For the original program from Figure 1(a), completion-pairwise
produces the solution θij(X,Li, Lj) = ((x ⇒ ((Ii ∨ Ti)∧¬Cj))∧ ((¬x∧Ci) ⇒
¬Cj)), which suffices to prove mutual exclusion. It is interesting that, in some of
our experiments, pairwise split invariance outperformed both single-index split
invariance (with completion) and reachability.

3.1 The Completion Algorithm

We first provide a description of the main steps of the algorithm completion.
The input is a concurrent program, P , with n processes, {Pi}, and a global
property ϕ. We use θi to represent the i’th approximation θi

1 ∧ θi
2 ∧ . . . ∧ θi

n.
The refinement phase (steps 3 and 4) can be optimized without violating the
correctness argument; this is discussed in the extended version of the paper.

1. If the initial condition violates ϕ, halt with “Error”.
2. Compute the split invariant using the fixed point algorithm. If, at the i’th

stage, θi violates ϕ, go to step 3. If a fixpoint is reached, halt with “Verified”
and provide the split invariant as proof.



3. Let viol = θi ∧ ¬ϕ. For each state in viol , find new essential predicates and
add auxiliary variables for these to the program. If new predicates are found,
return to step 1, which starts a new split invariance calculation; otherwise,
continue to step 4.

4. Add the immediate predecessors of viol to the error condition—i.e., modify
ϕ to ϕ ∧ ¬EX(viol)—and return to step 3.

3.2 The Refinement Phase

As θ1 ∧ θ2 ∧ ... ∧ θn is always an over-approximation of the reachable states,
completion may detect states that violate ϕ but are not actually reachable.
Those states should be identified and left out of the split invariant. To do so, once
a violating state is detected, completion computes essential predicates using a
greedy strategy. For each local variable (from some process), the algorithm tests
whether it is relevant to the error for that state; this is considered to be the case
if an alternative value for the variable results in a non-error state. (Sometimes,
a group of variables may need to be considered together.) For example, mutual
exclusion is violated for a global state if two processes are at the critical location,
but the locations of other processes are not relevant, since they could be set to
arbitrary values while retaining the error condition.

For each relevant variable v in an error state s, a predicate of the form v = v(s)
is added to the program. This is a local predicate, as v is a local variable for some
process. To add a predicate f(Li), a corresponding Boolean variable b is added
to the shared state, and initialized to the value of f(Li) at the initial state. It is
updated as follows: for process Pi, the update is given by b′ ≡ f(L′

i), and for
process Pj , j 6= i, the update is given by b′ ≡ b. This augmentation clearly does
not affect the underlying transitions of the program: the new Boolean variables
are purely auxiliary, and the transitions enforce the invariant (b ≡ f(Li)).

Each component θi is now defined over X, Li, and the auxiliary Boolean vari-
ables. The auxiliary variables act as additional constraints between θi and θj ,
sharpening the split invariant. A rough idea of how the sharpening works is
as follows. (A precise formulation is in Section 3.4.) Consider a state s to be
“fixed” by the values of the auxiliary variables b1, . . . , bn (one for each pro-
cess) if the local state components in s form the only satisfying assignment for
(∧ i : bi(s) ≡ fi(Li)). The correctness proof shows (cf. Lemmas 1 and 2) that
an unreachable error state with no predecessors is eliminated from the split in-
variance once it is fixed. However, a fixed, but unreachable, error state may be
detected for the second time, if it has predecessors (which must be unreachable).
In this case, the predecessors need to be eliminated, so they are considered as
error states by modifying ϕ, and predicates are extracted from them.

Adding predecessors continues until (i) at least one new predicate is exposed,
and a new computation is initialized, or (ii) the modified ϕ violates the initial
condition – an indication that a state violating the original ϕ is reachable.



3.3 Illustration

We illustrate some of the key features of this algorithm on the mux-sem example
from Figure 1(a). For simplicity we have only two processes; thus, the safety
property is ϕ ≡ ¬(C1 ∧ C2).

Iteration 0
Step 1 The initial condition is x = 1 ∧ I1 ∧ I2. ϕ does not violate it.
Step 2 completion computes the split invariant until θ1 ∧ θ2 violates ϕ. At
this stage,

θ1 ∧ θ2 ≡ x = 1 ∧ ((I1 ∨ T1) ∧ (I2 ∨ T2))
∨ x = 0 ∧ ((I1 ∨ T1 ∨ C1) ∧ (I2 ∨ T2 ∨ C2))

Step 3 Let viol be the set of states that satisfy θ1 ∧ θ2 ∧¬ϕ. The only state in
viol is the one which satisfies x = 0∧C1 ∧C2. The global predicate variables b1
and b2, which are associated with the essential predicates C1 and C2, respectively,
are added to the program, as described previously.

Iteration 1
Step 2 A new computation of the split invariant sets off. Once again it is
computed until θ1∧ θ2 violates ϕ. The description of θ1∧ θ2 is long, and is omit-
ted, but the important point is that x = 0 ∧ C1 ∧ C2 ∧ b1 ∧ b2 satisfies it.
Step 3 Since (x = 0, C1, C2) was already detected, the negations of its prede-
cessors that satisfy θ1∧θ2 are added to ϕ, i.e. ϕ is augmented by ¬(x = 1∧C1∧T2)
and ¬(x = 1∧ T1 ∧C2) and the corresponding states are analyzed as well. Since
both predecessors satisfy θ1 ∧ θ2, violate ϕ, and are detected for the first time,
new global predicate variables b3 and b4, which are associated with the essential
predicates T2 and T1, respectively, are added to the program.

Iteration 2
Again, the split invariance calculation does not succeed. This time, the error
states (x = 1, C1, T2, b1,¬b2, b3,¬b4) and (x = 1, T1, C2,¬b1, b2,¬b3, b4) are part
of the split invariant.
Step 3 Since both of these states were already detected, the negations of their
predecessors that belong to θ1 ∧ θ2 are added to ϕ, i.e. ϕ is augmented by
¬(x = 1 ∧C1 ∧ I2) and ¬(x = 1 ∧ I1 ∧C2), and they are analyzed as well. Since
both predecessors belong to θ1∧θ2, violate ϕ, and are detected for the first time,
new global predicate variables b5 and b6, which are associated with the essential
predicates I2 and I1, respectively, are added to the program.

Iteration 3
The split invariance calculation succeeds, establishing mutual exclusion.

3.4 Correctness

The correctness argument has to show that the procedure will eventually termi-
nate, and detect correctly whether the property holds. The theorems are proved



for the 2-process case, the proof for the general case is similar. Lemmas 0, 1,
and 2 make precise the effect that adding auxiliary boolean variables has on
subsequent split invariance calculations. Lemma 3 shows that a split invariant
is always an over-approximation to the reachable states.

To represent the state of a 2-process instance, we use variables X, b1, b2, L1, L2,
where X represents the shared variables, L1, L2 are the local variables of pro-
cesses P1, P2 respectively, and b1, b2 are auxiliary Boolean variables added for
predicates f1(L1) and f2(L2), respectively. For a variable w, and a state s, let
w(s) denote the value of w in s.

Define states s and t to be equivalent, denoted s ∼ t, if they agree on the values
for X, b1, and b2. A set of states S is closed under ∼ if, for each state in S, its
equivalence class is included in S. A set of states is pre-closed if all predecessors
of states in S are included in S.

Lemma 0 (Invariance Lemma) The assertion (b1 ≡ f1) ∧ (b2 ≡ f2) holds
for all states in θi

1 ∧ θi
2, for all approximation steps i.

Lemma 1 If state s is in the (i + 1)’st approximation to the split invariant,
there is an equivalent state t that is also in the (i + 1)’st approximation, and
either t is initial, or it has a predecessor in the i’th approximation.

Lemma 2 (Exclusion Lemma) Let S be a set of states that is pre-closed, closed
under ∼, and unreachable. Then S is excluded from the split invariant.

Lemma 3 (Reachability Lemma) The split invariant fixpoint is always an over-
approximation of the set of reachable states.

Theorem 2 (Soundness) (a) If ϕ is declared to be proved, it is an invariant.
(b) If ϕ is declared to fail, there is a reachable state where ϕ is false.

Proof. Part (a): If the split invariant implies ϕ, by Lemma 3, ϕ is true of all
reachable states, and is therefore invariant.
Part (b): This follows as the error states, which are initially a subset of ¬ϕ, are
enlarged by adding predecessors. Thus, if an initial state is considered to be an
error, there is a path to a state falsifying ϕ. �

Theorem 3 (Completeness I) If the property ϕ is an invariant for P1//P2, it
is eventually proved.

Proof. If ϕ is an invariant, any states in the first split invariant that do
not satisfy ϕ are unreachable. Call this set error . The procedure used to add
predicates (steps 3 and 4), in the limit, extracts predicates from all states in
EF(error), as it adds predecessors to the error set. The set EF(error) is pre-
closed, and unreachable. If this set is not ∼-closed, there are states s and t such
that s ∼ t, but s is an error state, while t is not—this triggers the addition



of a new predicate in Step 3 of the algorithm. As there are only finitely many
predicates, eventually, enough predicates are added so that the set is ∼-closed.
By Lemma 2, once ∼-closure is obtained, the set is excluded from the split
invariant. At this stage, the split invariant has no error states, and the property
is declared proved. �

Theorem 4 (Completeness II) If ϕ is not an invariant of P1//P2, this is even-
tually detected.

Proof. If the property is not invariant, there is a reachable state on which it
fails. By the Reachability Lemma, the split invariant always includes these states.
The completion procedure, at each step, will enlarge the error set, effectively
computing EF(error). At some stage (defined by the length of the shortest path
to an error state) this has a non-empty intersection with the initial states, at
which point the error is detected. �

Theorems 3 and 4 also show termination of the procedure.

4 Experiments and Results

We implemented completion using tlv [23], a BDD-based model checker, and
tested it on protocols taken from the literature. The tests were conducted on a
2.8GHz Intel Xeon with 1GB RAM.

The primary aim of the experiments is to compare split invariance with the two
forms of completion against a forward reachability calculation on the full state
space. The split invariance calculation is uniformly faster (sometimes signifi-
cantly so) than forward reachability. We also compared it against model checking
using inverse reachability (i.e., AG). In three examples (peterson’s, bakery,
and an incorrect mutual exclusion protocol), split invariance performs signifi-
cantly better than the AG calculation; in other examples, the AG calculation is
somewhat faster.

For many of these protocols, including bakery and mux-sem, the split invari-
ance calculation also results in an inductive invariant that shows correctness for
all instances, using the results in [20]. Split invariance (as opposed to reachabil-
ity) is essential for obtaining this result.

As previously explained, completion consists of a loop with three main phases:
computing the split invariant, refining the system by exposing predicates over
local variables, and analyzing the predecessors of violating states. It is important
to point out that not all examples require the use of all three phases.

For two examples: peterson’s mutual exclusion protocol and algorithm bak-
ery, completion terminated much faster than traditional forward or backward
model checking. It appears that these examples contain sufficient global informa-
tion for computing the split invariant, without having to employ any refinements.
Table 1 compares completion, forward reachability and inverse reachability for



Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 2k 524k 0 - -
Backward Reachability 2 1.7k 524k 0 - -

completion 2 2k 524k 0 0 0
Forward Reachability 5 23k 917k 0.05 - -

Backward Reachability 5 42k 1.2M 0.29 - -
completion 5 20k 852k 0.04 0 0

Forward Reachability 10 194k 3.7M 0.94 - -
Backward Reachability 10 13M 211M 680 - -

completion 10 173k 3.4M 0.26 0 0
Forward Reachability 20 1.8M 30M 127 - -

Backward Reachability 20 - - >2hrs - -
completion 20 1.7M 29M 9.9 0 0

Table 1. Test results for peterson’s mutual exclusion protocol.

peterson’s mutual exclusion protocol. The run times achieved by completion
are significantly better for larger instances.

Another tested example was protocol mux-sem, provided in Figure 1. When
running completion in its basic form, the obtained run times and the number
of bdds were not as good as those of traditional forward model checking, due
to the overhead of the multiple split invariance runs. However, when we use a
pairwise split invariant computation, as explained in the introduction of Section
3, the results turn over, and the run times are in completion’s favor. Backward
reachability obtained the best results for this protocol.

All examples provided before were of correct protocols, i.e they all satisfied their
safety properties. The next and last example is of an incorrect mutual exclusion
protocol, mux-sem-try, and it illustrates the ability of completion to cope
with systems that violate their own safety property and its ability to identify real
violations. In this case, when performing the computation all three phases had to
be employed, together with several refinements in which multiple new variables
where added and the predecessors of violating states had to be analyzed.

Table 2 compares forward and backward reachability to completion for mux-
sem-try. Both the number of bdds and the run times achieved by completion
are significantly better. When performing tests on 20 processes, what requires
more than 2 hours when using model checking is completed in 52 seconds when
using completion, and we can only assume that as the number of processes
increases - the difference increases as well.

5 Related Work

Early work on compositional reasoning is primarily on deductive proof methods
[7]. The pioneering methods of Owicki and Gries [21] and Lamport [18] are
extended to assume-guarantee reasoning by Chandy and Misra [2] and Jones [17].
The split invariance calculation can be viewed as mechanizing the Owicki-Gries
proof rule, while the completion algorithm is inspired by Lamport’s method.



Method Processes BDDs Bytes Time(s) Refinements New Variables

Forward Reachability 2 877 524k 0 - -
Backward Reachability 2 1.1k 524k 0 - -

completion 2 4.8k 589k 0.01 5 8
Forward Reachability 5 11k 720k 0.12 - -

Backward Reachability 5 10k 655k 0.26 - -
completion 5 10k 720k 0.16 7 14

Forward Reachability 10 337k 6M 27.7 - -
Backward Reachability 10 450k 7.8M 25.8 - -

completion 10 70k 1.7M 1.3 7 24
Forward Reachability 20 - - >2hrs - -

Backward Reachability 20 - - >2hrs - -
completion 20 1M 18M 35 7 44

Table 2. Test results for protocol mux-sem-try

Recent work on compositional reasoning is more algorithmic. Tools like Cadence
SMV provide support for compositional proofs [19, 16]. “Thread-modular” rea-
soning [9, 10, 14] computes a per-process transition relation abstraction in a mod-
ular way. In [13], this abstraction is made more precise by including some aspects
of the local states of other processes, and extended to parameterized verification.

Split invariance is based on a simpler, state-based representation. A key new
aspect of this paper is that it addresses the central incompleteness problem.
While a transition relation abstraction is more precise than one based on states,
it is incomplete nonetheless [10].

The “invisible invariants” method [22] heuristically generates quantified invari-
ants for parameterized protocols. This can prove correctness for many of the
protocols considered here, but it requires the user-guided addition of auxiliary
variables in several cases. One of the contributions of this paper is to automate
the addition of such auxiliaries.

The completion procedure is in the spirit of failure-based refinement meth-
ods, such as counter-example guided refinement [4]. Given a composition P =
P1// . . . //Pn, earlier refinement algorithms may be viewed as either (1) ab-
stracting P to a single process, which is successively refined; or (2) applying
compositional analysis to individual abstractions of each Pi. However, method
(2) is incomplete, though compositional; while method (1) is non-compositional,
though complete. The procedure given here achieves both compositionality and
completeness.

A different type of assume-guarantee reasoning applies machine learning to de-
termine the weakest interface of a process as an automaton [12, 25, 11, 1]. This
is complete, but the algorithms are complex, and may be expensive [6].

Hu and Dill propose in [15] to dynamically partition the BDD’s arising in a
reachability computation. The partitioning is not necessarily local. A fixed local
partitioning allows a simpler fixpoint procedure, and especially a simpler termi-
nation condition. Unlike split invariance, the Hu-Dill method computes the exact
set of reachable states. As the experiments show, however, over-approximation
is not necessarily a disadvantage.



6 Conclusions and Future Work

This paper provides an algorithm—the first, to the best of our knowledge—
which address the incompleteness problem for local reasoning. The local reason-
ing strategy itself computes a split state invariant, which is a simpler object than
the transition relations or automata considered in other work.

Conceptually, local reasoning is an attractive alternative to model checking on
the full state space. Our experiments show that this is justified in practice as well:
split invariance, augmented with the completion procedure, can be a valuable
model checking tool. In many cases, a split invariance proof can be used to show
correctness of all instances of a parameterized protocol.

The completion procedure is defined for finite-state components. Extending this
method to unbounded state components (e.g., C programs) would require a pro-
cedure that interleaves internal, per-process abstraction with split invariance and
completion. Other interesting questions include the design of a split invariance
procedure for synchronous composition, and the investigation of local reasoning
for liveness properties.

Acknowledgements This research was supported, in part, by NSF grant CCR-
0341658.

References

1. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarantee
reasoning for simulation conformance. In CAV, volume 3576 of LNCS, pages 534–
547, 2005.

2. K.M. Chandy and J. Misra. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4), 1981.

3. E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal
logic model checking. In PODC, pages 294–303, 1987.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

5. E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of LNCS. Springer-Verlag, 1981.

6. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: an
investigation of decomposition for assume-guarantee reasoning. In ISSTA, pages
97–108, 2006.

7. W-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

8. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer Verlag, 1990.

9. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

10. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, volume
2648 of LNCS, pages 213–224, 2003.



11. D. Giannakopoulou and C. S. Pasareanu. Learning-based assume-guarantee veri-
fication (tool paper). In SPIN, volume 3639 of LNCS, pages 282–287, 2005.

12. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation
for software component verification. In ASE, pages 3–12, 2002.

13. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference.
In PLDI, pages 1–13, 2004.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstrac-
tion refinement. In CAV, volume 2725 of LNCS, pages 262–274, 2003.

15. A. J. Hu and D. L. Dill. Efficient verification with BDDs using implicitly conjoined
invariants. In CAV, volume 697 of LNCS, pages 3–14, 1993.

16. R. Jhala and K. L. McMillan. Microarchitecture verification by compositional
model checking. In CAV, volume 2102 of LNCS, pages 396–410. Springer, 2001.

17. C.B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University, 1981.

18. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2), 1977.

19. K.L. McMillan. A compositional rule for hardware design refinement. In CAV,
volume 1254 of LNCS, 1997.

20. K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized
systems. In VMCAI, volume 4349 of LNCS, 2007.

21. S. S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976.

22. A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification with invisible
invariants. In TACAS, volume 2031 of LNCS, pages 82–97, 2001.

23. A. Pnueli and E. Shahar. A platform for combining deductive with algorith-
mic verification. In CAV, volume 1102 of LNCS, pages 184–195, 1996. web:
www.cs.nyu.edu/acsys/tlv.

24. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the 5th International Symposium on Programming, volume
137 of LNCS, 1982.

25. O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu. Automated environment genera-
tion for software model checking. In ASE, pages 116–129, 2003.


