
◆ Telco Meets the Web: Programming Shared-
Experience Services
Robert M. Arlein, Dennis R. Dams, Richard B. Hull,
John Letourneau, and Kedar S. Namjoshi

With current technology, it is relatively easy to create a new web service or a
mashup combining several Web services. On the other hand, it is considerably
more difficult to build services that combine telecommunications and Web
aspects. Our thesis is that this is primarily due to the lack of a simple, yet
expressive model for representing telco services. This paper presents a model,
called the session data type (SDT), for the particular class of shared-experience
services. The SDT model results in a considerable simplification of the design
and the implementation of “telco�web” mashups. This paper provides
several examples of such mashups and describes a prototype implementation.
© 2009 Alcatel-Lucent.

this process: the service is linked to a calendar

and sets up a bridge and calls the participants at

the specified meeting time. Other features may

include display of active participants’ names on a

Web page; the ability to switch at any point from

video to audio; and the ability to set up side-

conversations with other participants. (Note that

we assume “video” to include sound and use

“audio” for the audio-only case.)

2. Family chat-room. Any member of a family can call

at any time into a continuously active family chat

room. A child can get in touch with (call out to)

a parent by pressing a particular phone key.

Parents may choose to have a policy by which

children are not allowed to bring their friends into

a conversation unless a parent is present.

3. Coffee-room experience. In a coffee-room experience,

people drift in and out, join an ongoing conver-

sation, or start their own. A Web page might list

Introduction
A shared-experience service [1] is one in which

multiple participants share one or more media

streams. The participants can play, contribute to, and

control the shared media. The media can include

video, audio in a phone call, or instant messages.

The control of such services can be either through the

media devices, or via a Web interface. Thus, the con-

struction of a shared-experience service typically

requires 1) dynamic addition/removal of participants

to the experience, 2) multiple media, 3) reactivity to

control events at end devices, and 4) a combination of

Web and telecommunications interfaces. Our goal is

to define a framework which simplifies the design and

creation of such services. Before describing our design

decisions, it is illuminating to consider several exam-

ple services of this kind.

1. Active conference call. A typical conference call

requires all participants to call into an audio

bridge. An “active conference” service reverses

Bell Labs Technical Journal 14(3), 167–186 (2009) © 2009 Alcatel-Lucent. Published by Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com) • DOI: 10.1002/bltj.20395

168 Bell Labs Technical Journal DOI: 10.1002/bltj

ongoing conversations, perhaps featuring short

snippets of ongoing conversations to spark interest.

4. Virtual movie night. A virtual movie night includes

friends and family who watch a movie together

from far-flung locations. Participants can carry on

side-conversations and control the presentation

with pause, rewind, and fast forward controls.

In the telecommunications world, frameworks

such as Parlay*/Parlay X [5], Session Initiation

Protocol (SIP) [8], and Asterisk* [2] have been

defined for the purpose of developing services. While

these frameworks can indeed be used to create

shared-experience services, significant effort and a

deep knowledge of the telecommunications network

are required for their effective use.

Our main contribution is the development of a

simple, focused model, which we call the Session Data

Type (SDT for short). The SDT model has a small num-

ber of primitive concepts: bubble, which models a

shared conversation over a single medium; session,

which is a group of related bubbles, possibly over dif-

ferent media; and event triggers, which are used to

communicate device actions back to an application.

These basic primitives can be combined together in a

variety of ways to achieve shared experience services.

In particular, the services described above can be

expressed easily and succinctly in terms of the SDT

primitives.

The key motivation for our work, which underlies

the design decisions made for the SDT model, is that

a programmer should be presented with a simple,

abstract, yet accurate view of the telecommunications

network. By simplifying the authoring of the telco

part of a shared-experience service, the model also

simplifies the authoring of combined telco�web ser-

vices. As shown later in the paper, our current imple-

mentation of the SDT provides a Hypertext Transfer

Protocol (HTTP) interface to an application, resulting

in a further unification at the transport layer.

The paper is organized as follows. The following

section defines the SDT model and the abstract inter-

face provided to a programmer. Next, we describe rep-

resentative applications and illustrate how these

applications can be designed in terms of the SDT. The

subsequent section presents an abstract implementa-

tion architecture in which a server component, the

session manager (SM), mediates between applications

and an underlying communications network. This

architecture is based on an abstract model of the net-

work; the programming interface presented in the

earlier sections is ultimately defined in terms of this

model. Finally, we describe our current prototype,

which was built using various open-source compo-

nents; compare the SDT with other approaches; and

present directions for future work.

The Session Data Type
The SDT model is defined in terms of its struc-

tural concepts, which are sessions, bubbles, and end-

points, and its behavioral (i.e., run-time) concepts,

which consist of state changes and notifications. A shared

audio experience such as a conference call is modeled

as an audio bubble containing one or more partici-

pants, each represented by an endpoint. Every

Panel 1. Abbreviations, Acronyms, and Terms

AGI—Asterisk gateway interface
API—Application programming interface
CHSM—Concurrent hierarchical state machine
DS0—Digital signal level 0
FSM—Finite state machine
HTTP—Hypertext Transfer Protocol
IM—Instant message
IMS—IP Multimedia Subsystem
IP—Internet Protocol
ISDN—Integrated services digital network

NSF—National Science Foundation
OSA—Open systems architecture
PBX—Private branch exchange
POTS—Plain old telephone service
RMI—Remote method invocation
SDK—Software development kit
SDT—Session data type
SIP—Session Initiation Protocol
SM—Session manager
SMS—Short message service

DOI: 10.1002/bltj Bell Labs Technical Journal 169

participant can listen (read) or contribute (write) to an

audio bubble. An application can alter the state of a

conference in response to events which occur within

the bubble (such as telephone pad key presses) or

which arise through an alternative interface (such as

choosing a Web page link). A session groups together

multiple related bubbles, perhaps with different media

types. In combination, these simple concepts suffice to

program a rich variety of applications.

The bubble concept is not limited to audio: it can

also be used for participants sharing a whiteboard or

video. In addition, the SDT model does not prescribe

a particular method for combining media from multi-

ple participants in a bubble. For audio, the standard

method is to mix the audio streams; for text, the stan-

dard method is to tag and interleave the individual

contributions; for video, choices include tiling the

individual streams or selecting a particular stream to

display.

The run-time behavior for a bubble is defined in

terms of a base, or standard behavior, permitting mul-

tiple extensions. Each extension defines a particular

kind of bubble. The analogy here is with sub-typing:

the base behavior defines the base type; all others

arise as subtypes of the base.

The standard behavior considers a simple set of

actions for each endpoint, shown in Figure 1, from

the point of view of an entity interacting with an end-

point (a “mirror” to the view of the endpoint itself).

An endpoint responds to an incoming “invite” mes-

sage with a “pickup” or “reject”; it can “self-invite”

itself, which may be “accepted” or “rejected”; and it

can “drop” or be “dropped” at any time while in the

active state. The pickup and accepted actions imply

media connectivity.

Since this basic behavior is implemented by every

bubble, a programmer is freed from having to define

it explicitly and instead can focus on the logic of the

application that is being built. Such an application

may for example implement a Web-based service

which incorporates telecommunication features into

a Web page. Or, it can be more like a traditional

telecommunications service that responds to actions

(such as key presses) or events (such as incoming

calls) which take place within the telecom network.

Sessions, Bubbles, Parties, and Endpoints
A bubble models the notion of a communication

medium that is shared by a number of parties. A party

is a person (participant) with a device, e.g., a tele-

phone, or, if the communication medium is video, a

device that can capture and display video such as

a laptop with built-in camera. A device, as commonly

understood, can have multiple endpoints (e.g., a laptop

is a device with multiple ports). More precisely, a par-

ticipant in a bubble is represented by an endpoint.

A session is used to group bubbles.

An example is depicted in Figure 2. Bubble 1 is an

audio bubble, and the parties within it use various

types of devices. At the same time, within bubble 2,

Charles and Deborah are sending each other short

message service (SMS) messages. While Charles uses

his desktop computer for the audio connection, he

uses his cell phone for texting. Therefore, while in

bubble 1 Charles appears as �Charles, desktop-pc�,

in bubble 2 his presence is indicated by �Charles, cell-

phone�. Since these two bubbles are related by being

part of the same conversation, they are part of a sin-

gle session. In general, a session reflects the fact that

the bubbles it contains are related to each other,

but the nature of this relation is not constrained by

the SDT—it is defined by the application.

Different sessions can exist concurrently. As an

example, suppose that the participants in the confer-

ence described by session 1 in Figure 2 decide to split

* Indicates a default transition

Invited
(incoming)

Active

Invite

Idle

Reject

Self-invite

Pickup*

Accepted*

Drop/dropped

Self-inviting
(outgoing)

Rejected

Figure 1.
Finite state machine.

170 Bell Labs Technical Journal DOI: 10.1002/bltj

up into two separate groups: Alice and Bob on one

hand, and Charles and Deborah on the other. This

can be modeled by creating a new session with a new

audio bubble, and by moving Charles and Deborah

from bubble 1 into the new bubble.

Panel 2 details the most important structural

operations of the SDT model. These are illustrated by

code examples from our current Java* application

programming interface (API). Variable declarations

are not repeated across examples.

State Machines, Events, and Notifications
Once a session/bubble structure is created, there

is a basic behavior, as explained previously. For

instance, adding a party, “Joe,” to an audio bubble

results in a call being placed to Joe’s phone; if he picks

up, the default behavior is to add Joe’s endpoint to

the bubble.

Behavior is specified (as in language/automata

theory) by sets of allowed sequences of events which

may arise (such as “pickup” or “drop”). It is conven-

ient to represent the allowed behavior by a finite state

machine (FSM) over events. While state machines can

be arbitrarily complex in general, those that define

participant behavior are rather simple. Figure 1 shows

a sample state machine for an endpoint. This state

machine represents both the set of allowed events at

each state (e.g., a pickup in the active state is disallowed)

and indicates the default action whenever a non-

deterministic choice is indicated. For example, in the

“idle” state, the default action on a “pickup” is to

move to “active.”

A key behavioral concept for the SDT is a simple,

yet flexible mechanism to alter this default behavior

by means of triggers. A trigger is a pair consisting of a

condition and a handler. A trigger is defined by an

application and is activated when the associated con-

dition becomes true. Conditions are specified through

associated code. Examples of triggers can be seen in

the code provided in Appendix A.

Formally, a condition is a conjunction of predi-

cates. Each predicate is either an event predicate (such

as “drop(b,Joe),” which is true when Joe disconnects

from bubble b by event “drop”) or a state predicate

(such as “active(b,Joe),” which is true if Joe is in state

active in bubble b). A well-formed condition has

exactly one event predicate. Thus, a well-formed con-

dition is true (“fires”) when its associated event occurs

and the state predicates in the condition are also true.

A condition is evaluated within the scope of a ses-

sion, a bubble, or a single party in a bubble, as deter-

mined by the application when it defines the trigger.

Whenever a condition fires, the application exe-

cutes the corresponding handler, which is code that

contains the intended response. For instance, if

the condition “pickup(b,Joe) && invited(b,Joe)” fires,

Deborah

Bubble 1

Bob

Alice
Deborah

Session 1

Charles

Charles

Bubble 2

Figure 2.
Sessions and bubbles.

DOI: 10.1002/bltj Bell Labs Technical Journal 171

the handler can test (with application-specific data)

whether Joe should be allowed to enter bubble b, and,

if not, prevent him from doing so by activating the

non-default action (reject) from state invited to state

idle. In this example, the trigger mechanism is used to

enforce an access control policy.

The SDT model requires that a handler (i.e., the

application response to a trigger) should appear to

execute atomically with respect to other processing in

the SDT. In our current implementation, this is

ensured by suspending processing for incoming events

for the affected session while a handler is executed.

The handler code is free to interact with the SDT

model to create new bubbles, for example, or to gen-

erate outgoing events, such as invitations to join a bub-

ble. Depending on the application structure, handlers

may execute asynchronously with the rest of the

application code; in such a situation, the application

programmer is responsible for proper synchronization

of accesses to data structures shared between a han-

dler and the rest of the application.

Predicates in conditions may contain free variables.

For instance, “drop(b,x)”, where x is a variable, is an

event predicate that is true whenever any endpoint

Panel 2. Structural Operations of the SDT Model

Creating and removing sessions and bubbles.

AudioSession s;
AudioBubble b, b2;

s � new AudioSession(this.getSessionManager()); // this is a
SessionManagerClient

b � s.getBubble(); // retrieve the pre-allocated bubble that comes with
session s

b2 � s.addBubble(); // create another bubble in s
s.drop(); // clean up s and its bubbles

Adding and removing parties from bubbles, moving a party from one bubble to another

PartyInBubble pb;
PartyURI caller;

pb � b.addParty(caller,Role.ReadWrite);
pb.moveTo(b2);
pb.drop();

Merging bubbles within a session
b.merge(b2); // merge b2 into b

Manipulating endpoint connectivity
(each endpoint can be in “read-only,” “read-write,” or “write-only” mode)

pb.setRole(Role.Read);

Connecting one bubble to another
The source is viewed as an endpoint by the target bubble.

Additional media operations
Depending on the media type and source, additional media operations such as “fast forward” might be

available on a bubble

Queries to find the set of parties currently in a bubble, and to inquire about parties’ state and
media connectivity
java.util.Set<PartyInBubble> ps;
ps � b.getParties();

172 Bell Labs Technical Journal DOI: 10.1002/bltj

in bubble b generates the “drop” event; the particular

endpoint for which this is true which is then assigned

to x (e.g., “x� Joe”) and this value is reported to the

application.

In our prototype implementation, trigger condi-

tions are optimized by having the SDT evaluate them

rather than the application. For this reason, defining

a trigger may be viewed as subscribing to a notifica-

tion mechanism; when the trigger condition fires, the

subscribed application receives a notification, possi-

bly including bindings of free variables from the con-

dition. The precise timing of the notification is

unspecified.

The final behavioral concept is the idea that an

application may be prompted from within the telco

network. The prompt contains the identity of the

endpoint(s) involved in generating the prompt. In

the SDT view, these endpoints are considered to be

part of a fresh bubble. A programmer has to design a

handler for such incoming prompts. This handler is

unconstrained by the SDT model, but a typical action

is to move one or more of the endpoints into an appli-

cation bubble. This concept is useful for applications

that are either initiated or controlled by calls made

inside the network, as opposed to those where appli-

cation control is managed via a Web interface. An

example is the speed-conference application described

in more detail in the next section.

Applications
In this section, we describe how applications can

be built from the SDT primitives. This includes some

of the potential applications discussed in the intro-

duction, along with others which we have imple-

mented. These examples are representative in that

they combine aspects of the SDT with Web servers

and database access. The descriptions are necessarily

brief and focus on the use of the SDT primitives over

supporting code, such as auxiliary databases or table

entries. Appendix A contains a listing of the actual

code required to program the speed-conferencing

application described below.

A common thread in these designs is that book-

keeping and access control is performed primarily

by the non-SDT part of the application, while the

SDT model is used to set up and control the telco

entities. This arrangement results in considerable

flexibility and ease of implementation. “Control”

actions, which result in state changes both to the

SDT and the non-SDT parts, originate either from

the SDT (for instance, key-presses originating

from the network via the SDT), or from outside it

(for instance, clicking on a Web link). Changes to

the SDT state (for instance, a participant accepting or

dropping from a call) are communicated to the appli-

cation through the trigger mechanism. This is illus-

trated in Figure 3.

SDT

Application

Web
network

SDT operations
and notifications

SDT—Session data type

Telecom
network

Figure 3.
SDT and the Web.

DOI: 10.1002/bltj Bell Labs Technical Journal 173

Click-to-Call
Click-to-call is a particularly simple application.

Users select a group of phone numbers from a Web

page and set up a conference call. This application can

be modeled as a session with a single bubble; the call

is set up by issuing invitations to the phone numbers

in the selection.

Active Conference Call
The active conference call mentioned in the

introduction is modeled as a single session with a sin-

gle bubble. The initial set of participants is invited into

the bubble at the time specified in the meeting calen-

dar. The list of active participants is displayed on a

Web page. This page is kept up-to-date by handling

notifications sent to the application whenever an

invited participant accepts (condition “pickup(b,x)”)

or when a current participant drops out (condition

“drop(b,x)”).

Family Chat-Room
The family chat-room concept is modeled as a

single session with a single bubble. The application is

triggered by prompts from the network generated by

family members calling a pre-set phone number. The

identity of the caller is included in the prompt; if it is

a family member, the application moves the caller

from the bubble associated with the prompt to the

chat-room bubble and requests notification of key

presses. By recognizing particular sequences of

key presses as phone numbers, the application can

enable friends and other family members to enter the

bubble. Access policies, such as one where children

cannot invite others unless a parent is present, can

be enforced by querying the list of participants in the

family bubble or by responding to notifications about

add and drop events.

Coffee-room. The coffee-room experience is

related to the family chat-room experience, where

the “family” is now a dynamic group of people. Here,

we expect multiple conversations to be active simul-

taneously, which can be represented as a session

containing multiple bubbles. Conversations may be

tagged as “public,” where a recording of, say, the pre-

vious two minutes is posted on a group Web page.

Either through links on this Web page or through key-

presses the coffee-room application can be instructed

to add someone to a conversation, to start a new one,

or to switch from one conversation to another.

Virtual Movie Night
A virtual movie night application attempts to

replicate the experience of viewing a movie in a room

with friends and family who may actually be in far-

flung locations. It can be realized as a session with a

video bubble, which carries the movie, and at least

one audio bubble, where a conversation takes place.

The client software that displays the movie on each

participant’s viewing device might have the capability

to send control commands (such as pause or fast for-

ward), which are interpreted and implemented within

the movie bubble by the application. This control fea-

ture is analogous to the use of key-presses in the pre-

vious examples. Policies regarding who can exercise

control can be set up through the application, as in

the family portal example.

Web-Based Configuration of Speed-Conferencing Keys
Through a Web page, phone keys can be config-

ured to add/drop parties in an ongoing multi-party

call. In the sample configuration shown in Figure 4,

key 1 is configured to add (or drop, when pressed a

second time) the user’s home phone, and key 2 to

add/drop an office phone. Since the conference bridge

resides in the network, this application allows uses

that go beyond conferencing capabilities implemented

on the phone itself. A sample scenario might play out

as follows: Suppose a user is talking on his cell phone

when he arrives home and would like to continue

the conversation on his landline home phone. To do

so, he would press key 1 on his cell phone and pick up

his home phone (which will ring); now both phones

are part of the bubble. The cell phone can then be

dropped, and the conversation can continue on the

home phone. Notice that the transfer occurs without

disruption to the conversation.

Whisper Conversations: Linking the Phone With Email
A group of students from Columbia University

has implemented an application which combines sev-

eral of the features described earlier and adds a new

one: issuing invitations for a conference call via

e-mail or instant messaging (IM). The application,

which is programmed as a Web server, creates a Web

174 Bell Labs Technical Journal DOI: 10.1002/bltj

page for each user, with a list of contacts, and active

and suspended conversations. The Web page displays

the list of participants for each active conversation.

An invitation from, say, Alice to Bob is sent to Bob’s

Web page if he is currently logged in, or to Bob’s

e-mail address if he is not. This is accomplished by

creating a unique, time-limited key sent as a Web link.

In either case, acceptance results in Bob’s phone’s

being invited to the bubble.

This invitation mechanism can be used to create a

“whisper” conversation between Alice and Bob,

which proceeds in parallel with a larger conversation

in which both are members. A second bubble is cre-

ated for the whisper conversation—connected as

read-only into the main bubble—and Alice and Bob

are moved (after Bob accepts Alice’s e-mail invite, and

in a manner invisible to the larger conversation) from

the larger bubble. A key-press notification can be used

to toggle a participant in and out of a whisper con-

versation, in a manner similar to that described in the

previous examples.

These descriptions, while necessarily brief, show

that rather elaborate conversation settings, with non-

trivial control policies, can be created using the sim-

ple session/bubble/trigger primitives. The current

implementation defines a Java API whose methods

correspond directly to the primitives of the SDT

model. Thus, each of the actions described above,

such as inviting a participant, moving a participant

from one bubble to another, creating a notification

trigger, and constructing a handler, can be pro-

grammed easily, often with a single line of code. In

fact, for the speed-conferencing and whisper session

applications, the majority of the code handles non-

telco aspects such as database access and the Web

interface.

Figure 4.
SpeedConf Web page.

DOI: 10.1002/bltj Bell Labs Technical Journal 175

Architectural Design
In this section, we describe in abstract terms an

implementation of the SDT model. This implementa-

tion provides a programming interface for the crea-

tion and management of telecommunication sessions

that involve multiple participants and multiple com-

munication media, as described previously. It pre-

sents the programmer with a collection of concepts

like bubbles, parties, and state machines; manipulat-

ing these entities causes the network state to change.

In order to define these effects more precisely, we

need to consider the context of the implementation:

the telecommunication network. It suffices to con-

sider an abstraction of the network that presents its

relevant features and leaves out details that are of no

concern to the SDT implementation. This abstract

network is defined using a small number of relatively

simple concepts; Figure 5 provides an overview. The

network and the session manager are described in

more detail below. A third component shown in the

figure, the resolver database, stores and manages

information about participants (people) and their

communication devices, names, numbers, prefer-

ences, rights/permissions, and billing criteria. This

database is outside the research focus of our work.

A Model of the Network
We model the network as consisting of network

elements and links. A network element may correspond

to a single physical device, e.g., a telephone or a net-

work switch that provides voice conferencing, but

the mapping need not be one-to-one. Inside every

API—Application programming interface
FSM—Finite state machine
SDT—Session data type

Application

Network

Network element

Network element

Signaling
channel

SDT API

Session,
bubble,

FSM,
notification

(Ports)

Controller
Session

manager

Resolver
database

Network interface

Box

Network element registered
with the session manager

Figure 5.
SDT architecture.

176 Bell Labs Technical Journal DOI: 10.1002/bltj

network element, we distinguish the traffic plane

from the signaling plane. Media traffic enters and

leaves the element via links. A box inside the element

serves as a connector for several links and acts as a

“mixer” that outputs some combination of its in-ports

on each out-port. A single element has, in general, a

collection of boxes available. Allocation of these

boxes, connecting links to them, manipulation of the

particular kind of mixing performed by a box (which

may include temporarily “muting” a port), and free-

ing boxes upon completion are operations that are

carried out by the element’s control unit, called the

controller. Operations on boxes and links include

mechanisms to:

• Allocate and release a box.

• Request and release a link with certain proper-

ties (e.g., quality, bandwidth, or encryption level).

• Connect and disconnect a link to/from a port on

a box.

• Set and retrieve box and port properties, e.g., in

order to “mute” a connection.

The controller receives and sends signaling mes-

sages, which travel over signaling channels that are sepa-

rate from the traffic links. Operations performed on

boxes and links are the result of some request on a

channel coming into the controller from another ele-

ment or from an entity outside the network (such as

the session manager). The exchange of signaling mes-

sages between the elements takes place according to a

protocol that defines the intended meaning (effect) of

individual messages, as well as the order in which they

are exchanged. The SDT design is protocol-independent

in the sense that it does not presuppose any particular

protocols and can be instantiated to handle any pro-

tocol. Note that here we use the term protocol to refer

to both the general notion of an “exchange of mes-

sages” and particular schemes like SIP.

The establishment of a link between one of an

element’s boxes and (a box of) some other element

may involve a protocol that is dependent on the par-

ticular box, e.g., on its media type, or even on an indi-

vidual port of the box. Thus, the element’s controller

may implement several protocols, each of them asso-

ciated with a box or port.

Network groundings. The abstract network has

been conceived so as to provide a simplified, yet

precise view of various possible concrete networks.

We refer to each such concrete network as a ground-

ing of the abstracted network (Figure 5); we also use

this terminology when referring to individual net-

work components (elements, boxes, or links). One or

more network elements register with the session

manager upon its initialization. The session manager

interfaces with the network grounding by controlling

and receiving notifications from the registered net-

work elements.

For example, in our current implementation, a

single, registered network element is grounded to an

instance of the Asterisk softPBX, through which our

session manager connects to the network. Thus, this

Asterisk instance provides the grounding for the reg-

istered network element. Since Asterisk handles SIP as

well as public switched telephone network (PSTN)

calls, the “network” as depicted in Figure 5 grounds to

a network that encompasses both SIP and PSTN capa-

ble devices. Asterisk can create so-called bridges that

act as boxes for voice conference calls. It is connected

to the PSTN by a gateway that connects to a T1 trunk.

This trunk carries both the voice traffic and the sig-

naling messages, using in-band signaling.

Alternatives. Alternative groundings also can be

considered, e.g., using an IP Multimedia Subsystem

(IMS)-based product such as the Alcatel-Lucent 5420

Voice Call Continuity server, or H.323 technology [4],

to interface with the network. In order to keep the

session manager as independent as possible from

the particular grounding chosen, a network interface

mediates between the session manager and the regis-

tered network elements. This interface provides opera-

tions to control and receive notifications from the

elements, such as notifications of the progress of calls

at the elements. Porting the SDT implementation to a

new grounding requires the implementation of a net-

work interface for the grounding.

Session Manager
Network access is provided by having the SDT

control one or more network elements through the

session manager. The network elements under its

control are said to be registered with the SM. The reg-

istered elements are the only ones that the SM

directly interacts with. Any effect that the SDT may

DOI: 10.1002/bltj Bell Labs Technical Journal 177

exert on other elements occurs as a result of message

exchange (signaling) that is initiated, at the request of

the SM, by a controller of a registered element.

Messages from the SM to a registered controller rep-

resent requests to establish, manipulate, and drop

connections to other network elements. Messages

from the controller to the SM are responses to such

SM-initiated requests, or they represent notifications

about events that originate in the network.

As an example, consider the creation of an audio

bubble with two participants. The session manager

directs a registered element to create a box that will

act as the “communication bridge.” It then requests

the controller of the registered element (the registered

controller) to establish links from this bridge to both

of the participants’ devices. These devices are also

viewed as network elements. Thus, the registered

controller engages in a message exchange with the

device controllers. In a simple instance, the notifica-

tion from the registered controller back to the SM

might be just success or failure, depending on

whether the links have been successfully connected.

In a more elaborate instance, there might be inter-

mediate notifications informing the SM, for each

device, that it has been successfully alerted, that a

pickup has occurred, or, alternatively, that a timeout

occurred after alerting. After the call setup succeeds,

in-call notifications may notify the SM about the

occurrence of key presses or hang-up events initiated

at the devices.

Of particular interest to the SM is certain infor-

mation about the states of protocols that are imple-

mented in the controllers, such as the stage of call

setup within a controller (e.g., on-hook, alerted, or

in-call, in the case of a telephone), or, while in-call,

whether any in-call events such as key presses have

occurred. This information can be represented con-

veniently by a finite state machine. Therefore, as part

of the SM, a collection of FSMs is maintained, each of

which provides an abstract view of (or “mirrors”) the

controller of some network element that is relevant to

the SM. The triggers (condition/handler pairs) of an

application are in fact evaluated against the FSMs.

The SM has the responsibility to keep the FSMs in

sync, as far as possible, with the actual controllers that

they represent.

Prototype SDT Implementation
This section describes a concrete prototype, built to

the specifications described in the previous section.

Figure 6 illustrates the SDT environment from the

application developer’s point of view. For most appli-

cations, the SDT interface is just one of the many used

by the application developer. For example, the appli-

cations described in the Applications section use a Web

interface and database access, in addition to the SDT.

The internal implementation of the SDT (in its

current form) is described in abstract terms in Figure 7.

The SDT has two interfaces: one to the application and

one to the underlying network. The application inter-

face is responsible for acting on API requests and for

delivering notifications for triggered predicates. The

network interface is responsible for receiving events

from the network (such as a phone “pickup”), for

media connections (such as allocating a media bridge),

and for connectivity with endpoints (such as sending

an invite to a phone). Our implementation uses sev-

eral open source products. The various components

are capable of executing in a distributed environment

and are interconnected via an Internet Protocol (IP)

network.

The application interface is structured as a set of

processes, one for each session. The session process, in

turn, contains the state for each bubble and main-

tains the state machine for each endpoint in the bub-

ble. The state machine is programmed using the

concurrent hierarchical state machine (CHSM) pack-

age [3]. Predicates and notifications are handled

through a rule-based execution environment called

Drools [6]. Each predicate is compiled into the guard of

a Drools rule; the action invoked once the guard is

enabled is to notify the application. This, of course,

requires a tight coupling between the state machines

and the Drools rule engine, to make the engine aware

of each state change. As a call is being set up, termi-

nated, and during mid-call events, the state machine

engine allows for an orderly progression between

states, while invoking appropriate actions with each

step. Notifications to the application can be either

asynchronous (notify-only) or synchronized (notify-

wait). In the latter case, network events destined for

the specific session are queued until the application

handler signals completion.

178 Bell Labs Technical Journal DOI: 10.1002/bltj

Service creation environment

Application

Session management
framework

Session data typeSession data type

IMS IPTVCircuit

IMS—IP Multimedia Subsystem
IP—Internet Protocol
IPTV—IP television

Figure 6.
Deployment architecture.

Events and triggers

Session management

Grounding actions

Per-session
state

Abstract layer

Application

Network

Application
customization

Figure 7.
Framework architecture.

DOI: 10.1002/bltj Bell Labs Technical Journal 179

On the network interface, we use an Asterisk PBX

[2], connected to a Cisco* gateway. Asterisk provides

two important capabilities: media (voice-only) bridges

can be allocated using Asterisk (bridging is imple-

mented in software), and calls can be made and

received through Asterisk via the gateway. The

Asterisk layer interface hides the details of the gate-

way configuration and access.

The Asterisk module is responsible for grounding

the framework to this specific type of communication

system. The Asterisk dial plan within the PBX is fairly

simple and straightforward, but its details are tightly

coupled with the Asterisk module. The module uses

Asterisk APIs to react to network events, as well as

to manage actions used to perform call set up and

control.

Comparison to Related Approaches
We compare the SDT application interface to the

interfaces provided by Parlay [5], SIP Lite [9], and

Asterisk [2]. In this comparison, we look at the

amount of knowledge required to develop a simple

application (the steepness of the learning curve), and

with Parlay and Asterisk we look for difficulties in

building apps that are easy to build with SDT. Because

of the complexity of those interfaces, we do not

expect SDT to match their expressiveness.

Parlay
Several other efforts exist that aim at facilitating

the integration of telecommunication functionality into

(Web) programming. A recent example is British

Telecom’s Web21C development kit, which is being

merged with the facilities offered by the Ribbit* software

development kit (SDK) [7]. Together, this software pro-

vides APIs for different kinds of telecommunication func-

tions such as setting up two-way and conference

(multimedia) calls, messaging, authentication, and

phone book services. A richer set of functions can be

accessed by the Parlay X Web service API, which also

includes third-party call control, billing, and presence.

Even more power is enabled by the Parlay open sys-

tems architecture (OSA) API, from which Parlay X was

derived. The general rule here is that more power

comes with more complexity and a steeper learning

curve. Indeed, these difficulties, as perceived by Web

service developers, have driven the simplification of

APIs starting from Parlay (or TINA, which came before

it), via Parlay X and Web21C, to Ribbit. Each of these

can be seen as derived from the previous by removing

complexity in the API, e.g., by limiting the number of

method parameters or by using fixed values for sup-

pressed arguments.

Compared to Parlay X, the SDT offers a much

more integrated view of multimedia communication.

In the Parlay X API, there are different “islands” for

two-way calling, multi-party calls, SMS, and multi-

media messaging, each with its own set of methods.

Illustrative of this is that with Parlay X, it is not pos-

sible to convert a two-way call into a conference call

without dropping the connections and setting them

up anew.

Another key difference is that the SDT framework

is based on explicit finite state machine code that

describes the behavior of endpoints involved in com-

munication sessions, and applications have access to

states and events at run-time.

Furthermore, the complete information and man-

agement of sessions can be handled by SDTs, whereas

when using Parlay/Parlay X, the application has to

explicitly manage different subsessions of the rich ses-

sion as individual Parlay/Parlay X sessions. The SDT

subscription language is richer than that of Parlay X,

because it is based on FSMs and can include con-

junctions of atomic predicates.

While it remains to be seen how our SDT API will

be received by Web developers, one advantage it has

is that there is a relatively simple model underlying

the API. This can be illustrated by drawing a parallel to

a programming library for, say, a stack. Apart from a

set of method declarations, such an API comes with a

model of what a stack is. Otherwise, operations like

“pushing” and “popping” cannot be understood by

the programmer. Since the API is supposed to allow

for different implementations of stacks, e.g., by arrays

or by linked lists, explaining what a stack is should

be done in abstract terms that do not refer to the con-

cepts (e.g., arrays) used in a particular implementa-

tion. The box-link-controller model that underlies our

SDT fulfils a similar role as the abstract stack descrip-

tion. In contrast, a look at the specification documents

that accompany Parlay X reveals that the meaning of

180 Bell Labs Technical Journal DOI: 10.1002/bltj

a method in Parlay X can only be understood in terms

of the underlying Parlay implementation. In other

words, Parlay X is a collection of convenience macros

that may shorten the programming of services, but

not the learning curve that is required.

SIP
A pair of SIP endpoints can exchange messages

for the purpose of negotiating media streams between

the pair which compose a session. Additional mes-

sages can be exchanged to modify or tear down the

session. A SIP request and one or more responses

compose a transaction. Each transaction occurs in a

dialog. The messages involved in setting up and tear-

ing down a session compose a dialog. Dialogs and

transactions are modeled by a state machine, with

messages effecting state transitions. Even using the

high-level SIP Lite API [9], a SIP application writer

must be aware of these state machines.

SIP services such as third-party call control or a

conference call are built up from component sessions.

Moreover, the standard supports multiple ways of cre-

ating these services. So, for example, a conference call

may be built from multiple sessions from the confer-

ence endpoints to a central endpoint that has been

customized to mix the component media streams. A

full mesh conference call can be built from sessions

between each pair of participant endpoints. In this

case, software at the endpoints must mix the media

streams.

It should be clear from the discussion that writing

a SIP application requires a lot of knowledge. The

information from well over 200 pages of SIP stan-

dards is required to write basic SIP applications.

Additional lengthy standards are required to write

conferencing or other types of applications.

Asterisk
The Asterisk PBX software is well known and

broadly used by many small companies. It provides a

means by which the business can specify the topology

of their network and perform many basic call process-

ing capabilities. Asterisk also provides a means to inter-

act with external software, the goal being to foster the

development of more sophisticated call processing

applications. The PBX supports connections to various

types of phone lines (digital signal level 0 [DS0], inte-

grated services digital network [ISDN], and plain old

telephone service [POTS]) and provides SIP registrar

and proxy services over an IP network.

The basic call processing capabilities are specified

in a proprietary language in what is termed a dial plan.

These capabilities include development of interactive

voice response navigation, as well as conference

calls, voice mail box control, and call queuing. The

API to external software is split into two categories: a

management interface and an Asterisk Gateway

Interface (AGI). Both are proprietary. These APIs

allow a developer to perform various low level manipu-

lations of the call flow by directing the PBX to take

certain actions or by directing the caller to various

features available though the dial plan. Developers

need to know which capabilities are coded into the

dial plan in order to make use of them. They must

also be aware of the channels being used to carry the

user’s voice and other state information presented on

the interfaces. In addition, there are also various com-

mands, variables, and processing logic within the lan-

guage of the dial plan itself which make coding for

any non-trivial, well-behaved application a fairly

sophisticated task.

The language of the dial plan is reminiscent of

Basic. Each of the network’s extensions requires a

series of steps that specify what must transpire in

order to process a call to that extension. This may

include adding a person to a conference bridge or per-

forming other treatments. Invocation of application

logic on the AGI interface is one such step. Each of

these Asterisk sub-modules has its own set of options

and behaviors that make for a rich programming envi-

ronment for those who choose to learn the intrica-

cies of dial plan programming.

One particular aspect of coding that can be non-

trivial is the ability to deal with mid-call user input,

typically taking the form of a key press on the phone.

This level of sophistication is necessary for applica-

tions that provide the ability for changes to the con-

figuration of ongoing communication among multiple

parties. In the case of Asterisk, such events require

special coding within the dial plan. Programmers must

make use of special switches for the conference call

DOI: 10.1002/bltj Bell Labs Technical Journal 181

module directing it to exit upon detecting such a mid-

call event. The dial plan must also collect the input

that is keyed in and send it via the AGI API to the

application process. The dial plan logic is then sus-

pended awaiting a return from that AGI call. It is pos-

sible that the next step in the dial plan is not executed,

as the application has the ability to direct the dial plan

to resume execution at some other location. The

application then assumes more responsibility and

must manipulate the channel of the user who hit the

key so as to send him or her back to the conference

bridge, if that is what the intent of the scenario dic-

tates. Otherwise it is free to take any other action as

outlined by its service logic.

Conclusions
We have designed a framework for building

“shared experience services.” These services can be

built as a combination of a simple Web service and

the SDT primitives. The SDT implementation appears

to an application much like that of a Web service: the

application interacts with it through HTTP or remote

method invocation (RMI) connections to a session

manager. The session manager handles the telecom-

munication aspects via its grounding in the net-

work. We have built a single grounding based on

Asterisk. While the SDT model necessarily limits

access to a grounding, the SDT primitives are rich

enough to build the wide range of applications

described in the paper. In the sections of the paper

that compare our framework to others, we show

that it can be significantly easier to build services

with our framework. Finally, the experience we

have gained with our prototype implementation

has allowed us to improve both the SDT and the

grounding interfaces.

It is anticipated that future work will proceed

along several dimensions. First, the design of the SDT

model necessarily strikes a balance between expres-

siveness (full access to a grounding) and simplicity.

We continue to look for ways of expanding expres-

siveness without compromising the simplicity of the

SDT model. Secondly, our current implementation

with Asterisk is based on audio media. We are experi-

menting with other media, such as video and text

messaging. A third dimension is to experiment with

different grounding layers such as SIP to validate the

soundness of our grounding API. Another dimension

is the scalability and performance of an implementa-

tion. Our focus so far has been on the model itself,

and the implementation is a prototype built for experi-

mentation with the concepts in the model.

Appendix A. Speed Conferencing Application Implementation Code.
The code below implements the speed conferencing application discussed in this paper. Some code, such as

accessing the database with the users’ speed settings, has been omitted. Comments between ellipses indicate all

such places. All exception and error handling code also has been omitted.

package speedConf;

import sdt.mediator.SessionManager;

import sdt.mediator.PartyInBubble;
// ... more imports ...
// SpeedConf is the main class. It creates a SessionManagerClient object (see
// below) to deal with network interaction, and provides functionality for
// database access and interpretation of key presses.

public class SpeedConf {

// ... static variable declarations ...

public static void main(String[] args) throws Exception {
try {

182 Bell Labs Technical Journal DOI: 10.1002/bltj

// Create a new SDT client, then connect it to the Session
// Manager using the config. settings specified in
// speedConf/SpeedConf_config:

scc � new SpeedConfSdtClient();
SessionManager.connect(“speedConf/SpeedConf_config”, scc);
// ... connect to database, then wait for termination ...

} finally {

SessionManager.disconnect();

}

}

protected static void keypress(String k) {

//...database lookup of network endpoint (nep – e.g. a phone no.)
// and action to be performed (act)...
// nepStatus records for each endpoint, the corresponding
// PartyInBubble value,
// which is a pair that contains the party and the bubble.

PartyInBubble pb � nepStatus.get(nep);

if ((act.equals(“add”)||act.equals(“add_drop”)) && pb �� null) {

pb � scc.addToConf(nep); // add nep to conference
nepStatus.put(nep, pb); // record new status

return;
};

if (act.equals(“add”)&&pb!� null)||(act.equals(“drop”)&&pb �� null){

return;
};

if ((act.equals(“drop”)||act.equals(“add_drop”)) && pb !� null) {
scc.dropFromConf(pb); // drop nep from conference
nepStatus.remove(nep); // record new status

return;
};

}

// ... methods for setting up and accessing database ...

// Class SpeedConfSdtClient provides the functionality to interact with the
// telco network.
class SpeedConfSdtClient extends SessionManagerClient {

private AudioSession s;

private AudioBubble b;

private PartyInBubble initiator;

private void createConf(PartyURI caller) throws SDTException {

s � new AudioSession(this.getSessionManager());

b � s.getBubble(); // a newly created session, like s, always
// comes with a pre-allocated bubble, which is retrieved here

initiator � b.addParty(caller,Role.ReadWrite);

}

DOI: 10.1002/bltj Bell Labs Technical Journal 183

private void cleanupConf() {
s.drop();

}

// Method register() is called by the Session Manager when an incoming

// call into a registered (i.e., managed by the SM) network element

// occurs.

public void register(PartyURI caller) throws SDTException {
createConf(caller); // create a new conference for each in-call
// Create and add a rule that listens for key presses (“attention
// events”) by the initiator of the conference. The value of the
// key pressed will be bound to rule variable x. The handler for
// this trigger is defined below.

Expr

cond�initiator.mkEvent(AudioBubble.SM.Events.attention(“x”));

s.addTrigger(cond,new
attentionHandler(“x”),TriggerKind.NotifyWait);

// Create and add a rule that listens for a drop by the initiator

Expr cond2 � initiator.mkEvent(AudioBubble.SM.Events.drop());
s.addTrigger(cond2, new dropHandler(), TriggerKind.NotifyWait);

}

private class attentionHandler implements IHandler {

public Response run(TriggerBindings tb) {
String attn 5 tb.lookup_var(“x”);
SpeedConf.keypress(attn);

return Response.Continue;

}

}

private class dropHandler implements IHandler {

public Response run(TriggerBindings tb) {
SpeedConf.nepStatus.clear();
cleanupConf(); // cleanup session

return Response.Continue;

}

}

public PartyInBubble addToConf(String pid) {

PartyURI p;

p � new PartyID(““, pid); // name of party not relevant, using ““

PartyInBubble pb � b.addParty(p, Role.ReadWrite);

return pb;

}

public void dropFromConf(PartyInBubble pb) {

pb.drop();

}

}

184 Bell Labs Technical Journal DOI: 10.1002/bltj

Acknowledgements
We would like to thank Al Aho for many illumi-

nating discussions regarding the SDT model and for

suggesting the SDT programming project for his class

at Columbia University. Thanks go also to McClain

Braswell, Mohamed ElTahan, Ji Fang, Michelle Feng,

and Joseph Kaptur, the students who participated in

the class project in spring 2008, and to those who

continued work on SDT applications during the fall.

We are grateful to Rob Dinoff, Frans Panken, and

Mans van Tellingen for their considerable help in put-

ting together the prototype implementation. Richard

Hull, in addition, is grateful for partial support by

National Science Foundation (NSF) grants

IIS-0415195, CNS-0613998, and IIS-0812578 for

research described in this paper.

*Trademarks
Asterisk and Digium are registered trademarks of

Digium, Inc.
Cisco is a registered trademark of Cisco Systems, Inc.
Drools is a registered trademark of Red Hat, Inc.
Java is a trademark of Sun Microsystems Inc.
Parlay is a registered trademark of Information Builders

Inc.
PLoP is a registered trademark of The Hillside Group.
Ribbit is a trademark of Ribbit Corporation DBA Duality,

Inc.

References
[1] A.V. Aho, G. Bruns, D. Dams, R. Hull,

J. Letourneau, K. Namjoshi, F. Panken, and H. van
Tellingen, “Session Data Types: An Abstraction
Layer for Shared-Experience Communications in
Converged Applications,” Proc. 11th Internat.
Conf. on Intelligence in Service Delivery
Networks (ICIN ‘07) (Bordeaux, Fr., 2007).

[2] Digium, “Asterisk,” �http://www.asterisk.org/�.
[3] P. J. Lucas, An Object-Oriented Language System

for Implementing Concurrent, Hierarchical,
Finite State Machines, M.S. Thesis, University of
Illinois at Urbana-Champaign, 1993.

[4] Packetizer, “H.323 Standards,” �http://www.
packetizer.com/ipmc/h323/standards.html�.

[5] Parlay Group, �http://www.parlay.org/�.
[6] Red Hat, JBoss, “Drools,” �http://www.jboss.org/

drools/�.
[7] Ribbit Corporation, “Ribbit SDK,” �http://www.

ribbit.com/�.
[8] J. Rosenberg and H. Schulzrinne, “Session Initia-

tion Protocol (SIP): Locating SIP Servers,” IETF

RFC 3263, June 2002, �http://www.ietf.org/rfc/
rfc3263.txt�.

[9] Sun Microsystems, “JSR 125, JAIN SIP Lite,”
Java Spec. Request, �http://jcp.org/en/jsr/
detail?id�125�.

(Manuscript approved June 2009)

ROBERT M. ARLEIN is a researcher in the Services
Infrastructure Research Domain at Alcatel-
Lucent Bell Labs in Murray Hill, New Jersey.
He received a B.S. degree in mathematics
from the University of Wisconsin, Madison;
an A.M degree in mathematics from the

University of Michigan, Ann Arbor; and an M.S. degree
in computer science from New York University. He is
currently working on infrastructures for converged
services.

DENNIS R. DAMS is a member of the Computing and
Software Principles Research Department at
Bell Labs in Murray Hill, New Jersey. He
holds Ph.D. and M.S. degrees in computing
science from Eindhoven University of
Technology in the Netherlands. Prior to

joining Bell Labs, he held a position as assistant
professor at Eindhoven University. He has made
research contributions to the field of program analysis
and verification. Other interests include
telecommunication and, more broadly, the relation
between technology and interpersonal communication.

RICHARD B. HULL has broad research interests in the
areas of data and information
management, workflow and business
processes, and Web and converged services.
He is co-author of the book Foundations of
Databases (Addison-Wesley); has published

over 100 research articles in journals, conferences, and
books; and holds six U.S. patents. Dr. Hull worked at
Bell Labs Research, a division of Alcatel-Lucent,
between 1996 and 2008, eventually taking the role of
director of Computing and Software Principles
Research. While at Bell Labs, in addition to pursuing
research on semantic Web services, converged services,
personalization, and data management, he was
instrumental in developing and transferring new
technologies into Alcatel-Lucent’s product line,
including the VortexTM policy engine and the Datagrid
data integration tool. Before joining Bell Labs, he
served on the faculty of Computer Science at the

DOI: 10.1002/bltj Bell Labs Technical Journal 185

University of Southern California and was a frequent
visitor at INRIA in France. His research has been
supported in part by grants from NSF, DARPA, and
AT&T. He was named a Bell Labs Fellow in 2005 and an
ACM Fellow in 2007. He moved to the IBM T. J. Watson
Research Center as a Research Manager in 2008.

JOHN LETOURNEAU is a distinguished member of
technical staff with the Computing and
Software Principals Research Area at
Alcatel-Lucent Bell Labs in Murray Hill, New
Jersey. He received his B.S. in computer
science from Worcester Polytechnic Institute

in Massachusetts and joined Bell Labs shortly
afterward, participating in the One Year On Campus
program and receiving his M.S. in computer science
from the University of Southern California the
following year. His current interests include finding
ways to make a developer’s job easier and more
fulfilling without compromising quality and speed.
Mr. Letourneau’s career includes consulting as well as
software developer positions on significant
telecommunication products. He has conducted project
architecture reviews and consulted on performance
and reliability engineering and measurement for
projects throughout Alcatel-Lucent. He is also active in
the Pattern Languages of Programs, is a member of
The Hillside Group, and is a participant at PLoP*
conferences. He has co-authored two previous Bell Labs
Technical Journal papers on performance engineering.

KEDAR S. NAMJOSHI is a member of the Computing
and Software Principles Research
Department at Alcatel-Lucent Bell Labs in
Murray Hill, New Jersey. He holds Ph.D. and
M.S. degrees from the University of Texas at
Austin, and a B.Tech degree from the Indian

Institute of Technology (IIT), Madras, all in computing
sciences. His research interests span many topics in
program analysis and verification. ◆

