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Abstract. The explosion in the number of states due to several inter-
acting components limits the application of model checking in practice.
Compositional reasoning ameliorates this problem by reducing reasoning
about the entire system to reasoning about individual components. Such
reasoning is often carried out in the assume-guarantee paradigm: each
component guarantees certain properties based on assumptions about
the other components. Naive applications of this reasoning can be circu-
lar and, therefore, unsound. We present a new rule for assume-guarantee
reasoning, which is sound and complete. We show how to apply it, in a
fully automated manner, to properties specified as synchronous timing
diagrams. We show that timing diagram properties have a natural de-
composition into assume-guarantee pairs, and liveness restrictions that
result in simple subgoals which can be checked efficiently. We have im-
plemented our method in a timing diagram analysis tool, which carries
out the compositional proof in a fully automated manner. Initial applica-
tions of this method have yielded promising results, showing substantial
reductions in the space requirements for model checking.

1 Introduction

Compositional reasoning [7] — reducing reasoning about a system to reasoning
about its components — has been an active area of research for nearly three
decades. Recently, it has gained further importance as a way of ameliorating
the state explosion problem in model checking. For example, given programs P,
P, and specification T, we would like to check whether the composed system
satisfies T' (written as P;// P2 |= T'). Since reasoning about P; // P, directly only
exacerbates the state explosion problem, compositional reasoning techniques are
designed to reason about P; in isolation from P, (and vice versa) to draw con-
clusions about P;//P>. There are, however, several difficulties which must be
overcome, foremost among them are the task decomposition problem, the gen-
eration of auxiliary assertions and the general applicability of the compositional
method to the task at hand.
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Firstly, task decomposition is necessary since it is unlikely that P; by itself
satisfies all of T': we would like to decompose T into 77 and 75 such that 7 =
Ty ATz and then show that P; =T and P, = T5. Secondly, auxiliary assertions
are usually necessary, since P; may satisfy 77 only when its environment behaves
like P;. To solve this problem, assume-guarantee style reasoning adds auxiliary
assertions, Q2 (respectively Q1) which represent assumptions about the behavior
of P, (P;) as an environment for P; (P»). Such auxiliary assertions must often
be generated by hand, however. Finally, naive compositional rules based on this
style of reasoning, for instance, P;//P2 |= T holdsif P;//Q2 = T1 and P»//Q1 |=
T», are sound only for safety properties.

In this paper, we first present a new rule for assume-guarantee reasoning,
which generalizes several earlier rules (cf. [15,1, 3,12,13]), by removing the sour-
ces of incompleteness in some of these rules, by using processes, instead of tem-
poral logic formulas, as specifications, and by allowing more general forms of
process definition and composition. The new rule extends the naive rule above
with a check for soundness. As it deals uniformly with processes, it fits in well
with a top-down refinement approach to designing systems. We show that this
rule is also complete, in that if P;//P» =T, then it is possible to prove this fact
with our rule.

Next, we explore the benefits of applying this rule in the case where T is
specified as a timing diagram. Timing diagrams are visual descriptions of process
behavior that are widely used in the hardware industry. We show that not only
is task decomposition a relatively simple problem for timing diagrams, but also
that it is possible to automatically generate auxiliary assertions directly from the
specification. Furthermore, we identify a large class of timing diagrams for which
the soundness check of the rule is always satisfied, and the auxiliary assertion
generation and, therefore, the model checking process is efficient — linear in
the size of the diagram and the structure. We have implemented our method
in a timing diagram analysis tool, RTDT [4], which uses the tool COSPAN |[8]
to discharge model checking subgoals. We report here on its application to a
memory controller and a PCI Interface Core; in both cases, we obtain substantial
reduction in the space used for model checking.

The organization of the paper is as follows: we describe our new rule and prove
its soundness and completeness in Section 2. The theory behind the application
of this rule to timing diagrams is presented in Section 3. Our experiments with
applying this rule are described in Section 4. We conclude the paper with a
description of related work in Section 5.

2 Assume-Guarantee Based Compositional Reasoning

In this section, we first present the naive compositional reasoning rule and ex-
plain why it is unsound. We then present our new rule, and show that it is both
sound and complete. We begin by defining some basic concepts: processes, com-
position, and closure. Although the eventual application of our rule is to finite
state processes, we develop it in a more general setting.



2.1 Preliminaries

For a non-empty set of typed variables V', an assignment of values to variables
in V is called a V-state. A V-sequence x = zg, 1, ... iS a non-empty sequence
(finite or infinite) of V-states. The length of z (number of states in z) is written
as |z|. We write z[s..j], for j > ¢, to denote the subsequence ;,...,z; and z;y
to denote concatenation of a finite sequence z to y. A language L over V is a
set of finite or infinite sequences of V-states. A W-sequence z, where V C W,
satisfies L iff = projected on to V belongs to L. The term (3W : L) defines a
language over VA\W. A (V\W)-sequence z satisfies (3W : L) iff there exists a
sequence y, with the same length as z, such that y is in L and z and y differ
only on the values of variables in W. For a language L over V, let [L] mean
that every V-sequence (finite or infinite) satisfies L. Thus, for L; and Lo over
V, [L1 = Ls] denotes Ly C Ls.

A process P is specified by a tuple (V,I, R, F). V is a non-empty set of typed
variables, partitioned into three sets: private variables VP  interface variables
V', and external variables V¢. The variables V', which are in 1-1 correspondence
with V, represent values for V in the next state. The set of modifiable variables,
V™, is VPUV?, I(V™) is an initial condition, R(V,(V™)') is a transition relation
and F(V) is a fairness condition. A V-sequence z is an execution of P iff I(zg)
and for all ¢ such that i + 1 < |z|, R(z;, zi+1) holds. The set of finite executions
is denoted by finezec(P). The language of P, L(P), is the set of finite executions
of P together with those infinite executions of P that satisfy F. The observable
language of P, denoted by £°(P), is the projection of its language on V:UV®. In
the rest of the paper, we assume that private variables of a process are distinct
from the variables of all other processes, since this does not affect the observable
language.

For processes P and A, the relationship “P implements A”, denoted by P =
A, is defined only if V(A4) C Vi(P), and is defined as [L®(P) = L(A)], which
can be written as [L(P) = (IVP(A) : L(A))]. This matches the usual definition
when A is an automaton, since a sequence over V?(A) is a run of the automaton.

For a language L on variables V, the closure of L, denoted by cl(L), is a
language consisting of V-sequences z where, for every i < |z|, there exists a
sequence y such that z[0..7];y € L. For any process P, there is a process CL(P)
with the property [CP(CL(P)) = cl(L°(P))]. If P is finite-state, CL(P) is
formed from P by changing the fairness condition of P to true.

A process @ does not block process P iff (i) any initial state of P can be
extended to an initial state of P//Q, and (ii) for any reachable state of P//Q,
any transition of P from that state can be extended to a joint transition of
P//Q. A process is machine closed iff every finite execution can be extended to
an infinite fair execution.

The composition of the processes Py = (V1,11, R1, F1) and P> = (V3, I5, Rs,
F3), denoted by P, //Ps, is the process P = (V,I,R,F), where V = V; U V3,
Ve =VPUVF, Vi=ViuVi, I=1I AL R=R; A Ry,and F = F| A F>.
The disjunction of the processes P and P», denoted by P, + P», is defined as
the process P = (V,I,R,F), where V = V; UV, U {c}, V? = VP U VP U {c},



Vi=ViuVi,I=(cAL)V (~cAL),R=(c=¢c)A((cARi)V (mc A Ry)),
and F = (FG(c) A F1) V (FG(—¢) A F»). The private variable ¢ serves to choose
initially between the two processes. The following proposition summarizes the
properties of these constructions needed for the later proofs.

Proposition 0. For processes Py, P, P,

(a) [finezec(P1//P:) = finexec(Py) A finexec(Ps)],

[E(Pl//Pz) = E(Pl) N E(Pg)], and [EO(Pl//Pz) = EO(Pl) A EO(PQ)]
(b) [(3{c} : L(Py + Po)) = L(P) V L(Py)]

(c) [LO(CL(P)) = cl(LO(P))]

This definition of processes and of composition is quite general: it includes
Moore and Mealy styles of definition as special cases, and processes in a compo-
sition can modify shared variables. Interleaving composition can be defined by
adding a shared “turn” variable.

2.2 Compositional Reasoning Rules

To show that P;//Ps |= T1//T> holds, one may attempt to show that P, =T}
and P, E T,. This “non-circular” proof often does not work if the compo-
nents are tightly coupled, since P; may satisfy 77 only in the presence of Ps.
Hence, several so-called “circular” proof rules have been proposed, of which this
is an example: to show P, //Ps |= T1//T», show that (i) P,//T> | T, and (ii)
P,//T |= T>. This rule can be shown to be sound for non-blocking safety proper-
ties (i.e., for finite computations). It is, however, unsound for liveness properties.
To see this, consider the following instantiation.

process P1: var x: boolean; initially x=true or x=false; transition x’=y
process P2: var y: boolean; initially y=true or y=false; transition y’=x
property T1: eventually(x) , property T2: eventually(y)

Although both hypotheses hold, it is not true that Py //Ps = T1//T>», as the
computation where z and y are always false is a valid computation of P;//Ps.
In an attempt to fix this problem, several proposed rules (cf. [1,3]) replace hy-
pothesis (ii) with, say, P»// CL(T1) = T». Using the safety closure of T} prevents
any possibility of circular reasoning amongst liveness properties. On the other
hand, this makes it difficult to apply the rule when liveness properties are needed
as assumptions. We adopt a different strategy to fixing the problem: we use an
additional hypothesis that checks if the circular reasoning is sound. For simplic-
ity, we present this rule for the composition of two processes; it can be easily
extended to apply to any finite composition.

Rule: To show that P,//P, = T, find Q; and @2 such that the following
conditions are satisfied.

CO0 Vi(Q,) C Vi(P,), Q1 does not block P;, and symmetrically for Q.
Cl P//Q2 F Qu,and P»//Q1 E Q2

C2 Q://Q:2FT

C3 Either P,//CL(T) = (T + Q1 + Qs), or Ps//CL(T) = (T + Q1 + Q2)



Note: Notice that hypothesis C3 need not be checked when T is a safety prop-
erty, as [CP(CL(T)) = L(T)] holds in this case.

Theorem 0 (Soundness). The rule is sound for arbitrary P;, P, and 7.
Proof. We have to show that P,//P; =T follows from the conditions C0-C3.
This, by definition, is equivalent to showing that [L(P1//P,) = L°(T)]. By
the results in [2], any language L can be can be written as a conjunction of
the safety property cl(L) and the liveness property (c/(L) = L). Based on this
characterization, we break up the proof into the following two parts.

Safety [C(P1//P:) = cl(£°(T))], and
Liveness [L(P1//P:) A cl(LO(T)) = L£O(T)]

In the following, let W be the private variables of Q1//Q2.

Lemma 0. [finexec(P;//P2) = (IW : finexec(Q1//Q2))]
Proof Sketch. This follows from conditions CO and C1 by induction on the
length of executions. [

First, we show the safety part by proving the equivalent (as cl(L(P)) is the
set of executions of P) statement [finezec(P//Ps) = cl(LP(T))]. Let U be the
private variables of T'.

finezec(Py /| Ps)
= ( by Lemma 0)
(AW : finezec(Q1//Q2))
= (‘as cl(L(P)) includes finezec(P) )
(W : d(£(Q1//Q2)))
= ( by C2; monotonicity of ¢l )
(3W : cl(£LC(T)))
= ( W contains private variables not occurring in 7' )
cl(£9(T))

Next, we show the liveness part.

L(P) N L(P2) A Cl(ﬁO(T))

= ( by Proposition 0(c) )
L(P1) N L(Py) A LO(CL(T))
= ( by condition C3)

L(P1) A L(P) A LO(T + Q1+ Q2)

( by Proposition 0(b); W UU U {c} consists of private variables )
@AW U U U{c}: L(P1) A L(P2) A (L(T) V L(Q1) V L(Q2)))

( distributing A over V; Proposition 0(a) and condition C1 )
AW UUU{c}: L(T) VvV LO(Q1//Q2))

( distributing 3 over V; condition C2 )
AW uUUU{c}:L(T)) v @GWUUU{c}: LO(T))

( W U {c} consists of private variables not in 7" )
LO(T)

b4 4

U



Theorem 1 (Completeness-1). The rule is complete for non-blocking pro-
cesses P;, P, that have disjoint interface variables.

Proof. Suppose that P;//P> = T holds. Let @; = P; and Q2 = P5. As @
is non-blocking and has disjoint interface variables from P, it satisfies the
condition CO; similarly for the symmetric case. Condition C1 is satisfied as
P //P, = P, and Pi//P, = P> holds trivially. Condition C2 is P,//P, E T,
which is true by assumption. Condition C3 holds as P, = (T'+ P, + P2) by
weakening. [

Theorem 2 (Completeness-2). The rule is complete for arbitrary processes.

Proof. Suppose that Py, P5, T are processes such that P, //P, |= T. Each P; can
be made non-blocking by adding a transition for each blocking condition to a
special state that has a self-loop. If P, P> have shared interface variables V', then
rename the variables V' to W7 and W> in the processes P, and P» respectively,
and modify T to T, which also accepts computations that diverge from T by
differing on the values of W7 and W5 or by entering a blocking state. The result
of the |= check is unchanged with the new processes. From the previous theorem,
therefore, there is a proof of P1//P, = T. O

3 Compositional reasoning with Timing Diagrams

In the previous section, we gave a sound and complete rule for assume-guarantee
based compositional reasoning. In this section we show how to apply that rule to
specifications in the form of timing diagrams. By focusing on timing diagrams,
which are a highly regular specification formalism, we obtain several benefits.
Firstly, for a large class of timing diagrams the soundness check C3 in the rule
follows directly as a consequence of the expressiveness of the formalism and so
can be dispensed with. Secondly, we take advantage of the fact that many timing
diagrams have efficient model checking procedures. Finally, we also show that
the generation of helper assertions is not only automatic but efficient for a large
class of timing diagrams.

Timing diagrams are a graphical notation commonly used to specify timing
behavior of hardware systems. Synchronous Regular Timing Diagrams (SRTD’s)
[4] are a class of timing diagrams that correspond to a subset of the w-regular
languages. SRTD’s have a formal syntax and semantics and there are efficient,
polynomial time algorithms for model checking SRTD’s (see [4] for details).
These facts make SRTD’s an effective formal specification notation.

An SRTD is specified by describing a number of waveforms with respect to a
given clock. The clock waveform is a sequence of boolean values ({0,1}), where
the value toggles at consecutive points. A change in the clock value from 0 to 1
is called a rising edge, while a change from 1 to 0 is called a falling edge. The
waveforms are sequences of values over {0,1, X, D}, where X indicates a don’t-
care value, and D a don’t-care transition. A change in value of a waveform (e.g.,
0 — 1) must occur at rising or falling edges of the clock. The waveforms of an
SRTD are partitioned into an initial precondition part that does not contain any



don’t-care transitions and the following postcondition part. In turn, the post-
condition may be partitioned using pause markers. For example, in the SRTD
of Figure 1, there are three signals, A.p, B.q and A.r, the clock, a precondition
marker, etc.

A don’t care value (X) is used to specify that the value at a point is unknown,
unspecified or unimportant. A maximal sequence of don’t-care transition values
(D) on a waveform must be preceded by a definite boolean value b, and followed
by the value —b. The sequence of D values indicates that the transition from b
to —b occurs exactly once in the specified interval. A pause specifies that there
is a break in explicit timing at that point, i.e. the value of the signals, except
the clock, remains unchanged for an arbitrary but finite period of time. At each
pause point, there must be at least one signal whose waveform has a definite
change of value relative to the following point. This signal indicates the end of
the pause. One such signal is designated as the “owner” of the pause.

precondition marker

precondition postcondition

Clock 7

Ap Vo

B.q

Ar (IO,

N

don’t-carevalue  pause marker don’t-caretransition

Fig. 1. Annotated Synchronous Regular Timing Diagram

An SRTD defines an w-regular language. In [4], it is shown that we can
construct regular expressions for the precondition Tp,. and the postcondition
Tpost of an SRTD T. In the remainder of the paper, we use Tpre (Tpost) tO
denote both the syntactical definition of precondition (postcondition) and its
associated regular expression.

An infinite computation o satisfies an SRTD T (written ¢ |= T') if and only if
every finite segment of o that satisfies the precondition is immediately followed
by a segment that satisfies the postcondition of the diagram. The precondition,
however, may be satisfied in an overlapping manner, which leads to two distinct
notions of satisfaction, overlapping and non-overlapping semantics.

Definition 0 (Overlapping Semantics). An infinite computation o satisfies
an SRTD T under the overlapping semantics (o |, T) iff every occurrence



of Tpre in o is followed by an occurrence of Tp,s¢. Formally, this is true iff
0 & (X% Tpre; 7 Tpost), where X is the set of valuations to the signals in T'.

To define non-overlapping semantics, it is convenient to assume that there
is an auxiliary proposition p such that for all sequences o, p is true at the ith
point iff T}, is satisfied by a prefix of the suffix sequence starting at point 4.

Definition 1 (Non-overlapping Semantics). An infinite computation o sat-
isfies an SRTD T under the non-overlapping semantics (¢ |=,, T) iff every occur-
rence of T}, that does not overlap an occurrence of Ty or Tpest is immediately
followed by an occurrence of Tp,s:. This is true iff o € ((=p)*; Tpre; Tpost)” +

((_'p)*; Tp're; Tpost)*; (_'p)w'
Proposition 1. For any SRTD T, ¢ |=, T implies o |=,, T'.

3.1 Translation Algorithms

In order to use SRTD’s as a specification language in a compositional model
checking paradigm we need to augment the above definitions of SRTD’s with
some information about the modularity of the design being verified. This is
achieved by defining an ownership function O : S — N that maps each signal
to the implementation module that controls it, where S is the set of signals and
N is a set of module names. The ownership function O can be used to partition
the SRTD T into fragments, T1,...,T,. The fragment T; consists of Ty, and
only those waveforms in T}, that are owned by module ¢. An SRTD fragment
may not be a well-formed SRTD since a fragment may contain a pause whose
pause owner is in another fragment. In Figure 1, the ownership function O maps
signals A.p and A.r to module A and B.q to module B, and we have one fragment
consisting of waveforms p and r and another with waveform gq.

We present an algorithm that translates an SRTD into a non-deterministic
w-automaton (w-NFA) for the complement of the SRTD property under the non-
overlapping semantics — the construction for the overlapping case is similar and
is described in [4]. Then, we give an algorithm that constructs a process that
generates the non-overlapping language of the SRTD fragments.

To construct an w-NFA Af for the complement of the timing diagram lan-
guage of T', we proceed as follows. First, we construct a deterministic automaton
Apre from T, that accepts at the first point on a string where the precondi-
tion holds. We do so by creating a non-deterministic automaton that accepts
the language X*; Ty, and determinizing it, so that it enters an accepting state
at every point on an input string where T}, holds. We then eliminate outgoing
edges from accepting states of this automaton. The number of reachable states
in the resulting DFA can be exponential in the length of the precondition if
the precondition has don’t-care values. Otherwise, there are only linearly many
reachable states, as the reachable part of the DFA is just the automaton for the
string matching problem, which can be constructed efficiently (cf. [6]).

Next, for each signal i, we construct an w-DFA Am that tracks the wave-
form for signal 7 over the length of the postcondition. This automaton checks



at each clock point that the waveform has the specified value. For a don’t-care
transition, the automaton maintains an extra bit that records whether the tran-
sition has occurred. For a pause, the automaton goes into a “waiting” state,
where it checks that the value of the signal remains unchanged, and which it
leaves when the pause owner signal changes value. The automaton for signal 7
accepts a computation iff either the waveform pattern is incorrect at some point,
or if signal 7 is the owner of the kth pause in 7" and the automaton stays in the
waiting state for pause k forever.

The automaton As works in the following manner: from the initial state, it
runs Apre on the input until this accepts; then it guesses a failing postcondition
signal 7 and runs Am, accepting if this accepts. If Am terminates (so the
postcondition holds for signal i), A returns to its initial state.

Theorem 3. (Correctness) For any SRTD T and infinite sequence o, o =, T
iff o & L(A7).

The size of an SRTD T is product of the number of signals and the number
of clock points.

Theorem 4. (Model Checking Complexity) For a process M and an SRTD
T, under the non-overlapping semantics, the time complexity of model checking
is linear in the size of M and Tp,s:, and exponential in the size of Tj.

Theorem 5. For a process M and an SRTD T such that 7}, does not con-
tain don’t-care values the time complexity of model checking under the non-
overlapping semantics is linear in the size of M and T.

Theorem 6. For a process M and an SRTD T, the time complexity of model
checking under the overlapping semantics is linear in the size of M and T'.

These constructions can be modified easily to construct similar automata for
SRTD fragments; the modification consists of choosing the failing postcondition
signal only amongst the postcondition signals of the fragment.

3.2 Automatic Construction of Helper Processes

We now present an algorithm that constructs a helper processes (); that gen-
erates the non-overlapping language corresponding to the fragment 7; of the
diagram. The process @); works as follows. It sets each signal ¢ in T} nondeter-
ministically until the precondition holds, then it generates values for the signals
of T}; as specified in the postcondition. For a don’t-care value, the output is chosen
nondeterministically. For a don’t-care transition, the point at which the transi-
tion occurs is chosen nondeterministically as well. If the process is the owner of
a pause, it non-deterministically decides when to generate this event and main-
tains the current value till that point. The process has a fairness constraint that
forces this event to occur within a finite period. Otherwise, it maintains its value
until the event that signals the end of the pause occurs, without any requirement
for termination.



Proposition 2. (Correctness) For any SRTD fragment T}, the corresponding
helper process @Q; is non-blocking, and ¢ is a computation of (//j : Q;) iff
okE=nT.

The key feature of this construction is that, for every pause k, only the
process that includes the signal owning the pause has a fairness constraint en-
forcing the occurrence of the pause breaking event. This ensures non-interference
between the fairness conditions, which is the essence of the soundness check in
our compositional rule.

Theorem 7. (Non-interference) For SRTD T under the non-overlapping se-
mantics, the corresponding processes @1, - .., @, where n > 1, and computation

0,0 €c(LP(Q1//...]/Qn)) implies o0 € LO(Q1 + ... + Qy).

Proof Idea. If o is in cl(£9(Q1//...//Qn)), it must satisfy the waveform
pattern at each point. If it is not in £L°(Q1 +. ..+ @»), this can only be because
o never produces the pause breaking event of a pending pause. But such a pause
is owned by a particular @;; hence, o is a computation of the @;’s, j #4. O

Theorem 8. For SRTD T with corresponding processes Q1,-..,Q,, the num-
ber of states of Q1//...//Qn can be exponential in the size of T'.

For linear timing diagrams, those with no overlapping don’t-care transitions,
no don’t-care values at any pause and no don’t-care values in the precondition,
we have the following theorem.

Theorem 9. For linear SRTD T and the corresponding processes @1, ..., Q@n,
the number of states of Q1//...//Qx is bounded by O(|T|).

3.3 Compositional Model Checking of SRTD’s

In this section, we will describe a proof methodology that uses SRTD’s as
the property T in the proof rule in Section 2. We would like to show that
P //P, =, T, where T is an SRTD (respectively, Pi//Ps =, T). By our con-
struction in Section 3.2, we know that any SRTD T can be automatically de-
composed into helper processes ()1 and (> relative to an ownership function. In
order to apply the compositional rule with these choices for the @;’s, we need
only check condition C1 and C3, as conditions C0O and C2 are true by construc-
tion. In the non-overlapping case, condition C3 need not be checked, as it follows
from Theorem 7. Thus, the only condition to be checked is C1. The details of
this check are described in the following section.

4 Applications

We have incorporated the algorithms described in the previous sections into
the RTDT tool [4]. RTDT has a user-friendly editor that allows a designer to



create and edit SRTD’s and a translator that complies the SRTD’s into w-
automata. RTDT forms an easy to use interface to the verification tool COSPAN
[8]. COSPAN is based on the automata-theoretic, language containment ap-
proach to model checking, where both the implementation and the specification
are specified as w-automata.

COSPAN checks A = B by considering only the infinite fair executions.
In order to check inclusion for the finite executions as well, we utilize machine
closure. If A is machine closed, any finite execution z of A can be extended to
an infinite fair execution; thus, if the COSPAN check is successful, z matches
some finite computation of B. The alternative is to use COSPAN’s facilities for
checking finite computations, but this requires the product of A and B to be
constructed twice — once for each check. The machine closure method turns out
to be better, as in some of our examples, processes are trivially machine closed.
We added the ability to check machine closure to COSPAN.

In our current implementation, we use the non-overlapping semantics since it
requires that we only check condition C1. We would like to take advantage of the
linear-time (Theorems 5,6) model checking algorithms to discharge the obligation
P1//Q2 E Q1 (similarly for the other obligation) in C1. We use Proposition 1 to
replace the more expensive check P, //P; =, T by the computationally cheaper
check Pl//Pg IZO T.

We used RTDT in conjunction with COSPAN to verify two systems. The first
is a synchronous memory access controller and the second is Lucent’s Synthesiz-
able PCI Interface Core.

4.1 Memory Access Controller

The memory access controller system has an arbiter that provides arbitration
between two user processes and a memory controller that controls three target
processes. The user processes may non-deterministically request a transaction
and the arbiter grants one user permission to initiate the transaction. That
user process may then issue a memory instruction by asserting either the read
or write line and setting the address bus. The target whose tag matches the
address awakens, services the request, then asserts the ack line on completion.
We verified that this system satisfied both read and write memory transac-
tions formulated as SRTD’s. Table 1 presents the verification statistics of both
the compositional and non-compositional approaches. In Table 1, Arb and Mem
refer to the arbiter and memory controller implementation processes and Arbd’
and Mem' are the automatically generated helper processes. mc(Arb/Mem')
and mc(Arb' //Mem) refer to the machine closure check performed by COSPAN.
T, (T},) is the SRTD fragment that corresponds to process Arb (Mem). Table
1 indicates that the compositional checks are more efficient than model check-
ing Arb//Mem |= T directly. The cost of checking Arb//Mem' |= T, is more
than checking Arb'//Mem |= T, and this is because most of the signals in the
SRTD’s for both the read and write transactions belonged to the arbiter.



Model Checking Number of Number of Bdd Size Space Time
Task Variables Reachable States (MBytes) (seconds)

SRTD for the read transaction

Arb//Mem = T 260 2.5e+06 50084 22 73
mc(Arb//Mem’) 114 1.9e+06 14772 0 2
mc(Arb'//Mem) 86 1.9e+04 14793 0 3
Arb'//[Mem = Tm 129 1.1e+05 17993 6 23
Arb//Mem’ = Ta 201 1.1e+06 34861 14 46

SRTD for the write transaction

Arb/iMem = T 258 2.6e+06 54834 22 77
mc(Arb/Men’) 112 1.0e+06 14551 0 2
mc(Arb' //Mem) 99 3.8e+04 15432 0 4
Arb'//Mem ETm 106 1.1e+05 16854 2 11
Arb/iMem’ ETa 220 7.3e+05 42844 17 67

Table 1. Verification Statistics for Memory Access Controller Design

4.2 Lucent’s PCI Synthesizable Core

The second example is the Lucent Technologies PCI Interface Core, which is a
set of building blocks that bridges an industry standard PCI Bus interface to a
high performance F-Bus. The F-Bus supports multiple masters and slaves and
there are separate master and slave interfaces to the PCI Bus. The PCI Interface
Core is designed to be fully compatible with the PCI Local Bus specification [14].

In previous work [4], we used Lucent’s PCI Bus Functional Model [5], which
is a sophisticated environment that was developed to test the PCI Interface
Core for functionality and compliance with the PCI specification. The Func-
tional Model consists of the PCI Core blocks and abstract models for both the
PCI Bus and the F-Bus. This model has about 1500 bounded state variables
and was too large for model checking directly. We, therefore, restricted our ver-
ification efforts to a part of this design called pcim-core that deals with basic
PCI functionality. The pcim-core process consists of a master controller mentrl, a
slave controller scntrl, a configuration process config and an address multiplexer
admuz. In addition there is an environment process pcim-ENV that contains
all the inputs to the pcim-core process. We added a number of constraints on



pcim-ENV to reduce the size of the state space. These constraints were property
specific and were different for each property we checked.

Model Checking Number of Number of Bdd Size Space Time
Task Variables Reachable States (MBytes) (seconds)

SRTD Burst Property 1

MC’//SC//Env F Ts 293 5.2e+05 158490 14 302
MC//SC’//Env = Tm 79 1.2e+07 44066 3 40
MC//SCI/Env = T 335 4.4e+08 273140 20 511

SRTD Burst Property 2

MC’//SC//Eny = Ts 291 3.86405 115488 9 124
MC//SC’//Env = Tm 74 9.9¢+06 42436 3 40
MC//SC//Env = T 331 1.8¢+08 241792 18 430

SRTD Non Burst Property 1

MC'//SC//Eny = Ts 127 2.5e+28 587771 93 5981
MC//SC’//Env = Tm 58 1.4+09 77411 3 74
MC/SC//Env T * - - 6725219 342 138110

* did not complete due to shortage of space

Table 2. Verification Statistics for PCI Synthesizable Core Design

We formulated a number of properties as SRTD’s by looking at the timing
diagrams found in the PCI specification [14] and the PCI Core User’s manual
[6]. These SRTD’s were defined over signals controlled by mentrl and sentrl. We
used RTDT to automatically construct the helper processes MC' and SC' and
the property automata 7, and Ts. In Table 2, ENV refers to the composition
of pcim-ENV, config and admuz, while MC and SC refer to mentrl and scntrl
respectively. Machine closure was trivially satisfied since the pcim-core process
did not contain any fairness.

The basic bus transfer on the PCI is a burst, which is composed of an ad-
dress phase followed by one or more data phases. In the non-burst mode, each
address phase is followed by exactly one data phase. The data transfers in the
PCI protocol are controlled by three signals PciFrame, Pcilrdy and PciTrdy. The
master of the bus drives the signal PciFrame to indicate the start and end of



a transaction. Pcilrdy is asserted by the master to indicate that it is ready to
transfer data. Similarly the slave uses PciTrdy to signal that it is ready for data
transfer. Data is transferred between master and slave when both Pcilrdy and
PciTrdy are asserted on a rising clock edge. The PciStop signal is used by the
slave to indicate termination of the transaction and the PciDevsel signal is used
to indicate the chosen device. The first property in Table 2 stated that “in an on-
going transaction, once the PciStop signal is asserted, the PciTrdy and PciDevsel
signals remain constant until the data phase completes (Pcilrdy is deasserted)”.
The second property specified that “if PciFrame is deasserted when both Pcilrdy
and PciTrdy are asserted then the data phase completes successfully ”. The final
property specified the non-burst mode, “if PciFrame is asserted for exactly one
clock cycle and Pcilrdy, PciDevsel and PciTrdy are eventually asserted then in
the next clock cycle the transaction ends”. Table 2 indicates that the compo-
sitional checks are far more efficient than the corresponding non-compositional
checks. The non-compositional check for the non-burst property ran out of mem-
ory, the numbers shown in Table 2 are the BDD size, space and time just before
memory exhaustion. The slave controller scntrl has a lot of interaction with both
config and admux processes and this resulted in these processes being pulled into
the cone of influence. This is reflected in the significant disparity in the numbers
for the two compositional checks.

5 Related Work and Conclusions

As mentioned in the introduction, compositional reasoning for concurrently ac-
tive processes has been the subject of much work over the past three decades.
Our first contribution in this paper is the development of a sound and complete
rule for reasoning about arbitrary processes, including those with fairness con-
straints. Earlier work (cf. [15,1,3,12,13]) either applies only to restricted kinds
of processes or temporal logic formulas, or proposes incomplete rules. Our rule
extends a simple reasoning rule that is known to be sound for safety properties
with an additional soundness check for liveness properties. Thus, in a sense, the
rule isolates the difficulties with reasoning about liveness in the soundness check.

The possibility of using timing diagrams for compositional verification ap-
pears to have been first recognized in a paper by Josko [10] on modular reason-
ing. This paper, however, uses timing diagrams only for illustrative purposes. In
later work (cf. [9]), a compositional verification methodology proposed in [11] is
used to verify timing diagrams. This work uses timing diagrams as a convenient
notation for expressing temporal properties — the assume-guarantee reasoning
is left to the verifier. In contrast, our work shows how assume-guarantee pairs
can be generated mechanically from timing diagram specifications, resulting in
a completely automated compositional verification method.

In our work, we show that timing diagram specifications in the form of
SRTD’s are naturally decomposable into assume-guarantee properties about the
components of the system. We also show that, although timing diagrams can ex-
press liveness properties, the naive compositional reasoning rule can be applied



safely, as the additional soundness check always succeeds for the non-overlapping
semantics. We show how to apply the compositional rule in a fully automated
manner. Our experiments with the memory controller and the PCI interface core
show that compositional reasoning can indeed be done successfully in this way,
producing substantial savings in the time and space required for the verification.
Although, in these examples, the natural decomposition of the timing diagram
property suffices for generating the helper process, it is possible that this will not
true in some cases. Thus, heuristics for automatically generating helper processes
may be needed — which we leave for future work.
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