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Abstract. Compositional Reasoning – reducing reasoning about a con-
current system to reasoning about its individual components – is an es-
sential tool for managing proof complexity and state explosion in model
checking. Typically, such reasoning is carried out in an assume-guarantee
manner: each component guarantees its behavior based on assumptions
about the behavior of other components. Restrictions imposed on such
methods to avoid unsoundness usually also result in incompleteness –
i.e., one is unable to prove certain properties. In this paper, we con-
struct an abstract framework for reasoning about process composition,
formulate an assume-guarantee method, and show that it is sound and
semantically complete. We then show how to instantiate the framework
for several common notions of process behavior and composition. For
these notions, the instantiations result in the first methods known to be
complete for mutually inductive, assume-guarantee reasoning.

1 Introduction

A large system is typically structured as a composition of several smaller compo-
nents that interact with one another. An essential tool for the formal analysis of
such systems is a compositional reasoning method – one that reduces reasoning
about the entire system to reasoning about its individual components. This is
particularly important when applying model checking [10,25] to a concurrent
composition of interacting, non-deterministic processes, where the full transi-
tion system can have size exponential in the number of components. This state
explosion problem is one of the main obstacles to the application of model check-
ing. Compositional reasoning techniques (see e.g., [12,11]) are particularly useful
for ameliorating state explosion, since they systematically decompose the model
checking task into smaller, more tractable sub-tasks. A typical assume-guarantee
style of reasoning (cf. [9,17,2,6,21,23]), establishes that the composition of pro-
cesses P1 and P2 refines the composition of Q1 and Q2 if P1 composed with
Q2 refines Q1, and Q1 composed with P2 refines Q2. Here, Q1 and Q2 act as
mutually inductive hypotheses.
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However, existing methods for compositional reasoning can be hard to apply,
for a number of reasons. Firstly, they are often bound to a particular syntax for
describing processes, and particular notions of behavior and composition. Thus,
it is not clear if a reasoning pattern devised for one such choice also applies to
another. Another key factor is that several methods are known to be incom-
plete [23]. The completeness failure can usually be traced back to restrictions
placed to avoid unsound, semantically circular reasoning with assumptions and
guarantees. As argued in [11], completeness is an important property for a proof
method. An incomplete method can be a serious impediment in practice, since
it can make it impossible to prove that a correct program is correct. Moreover,
the completeness failures demonstrated in [23] all occur for simple and common
programming patterns. Lastly, safety and liveness properties are handled differ-
ently by most methods. For instance, the above method is not sound if both Q1
and Q2 include liveness or fairness constraints. It appears that there is a delicate
balance between adding enough restrictions to avoid unsound circular reasoning,
while yet allowing enough generality to ensure that the method is complete for
both safety and liveness properties.

This paper addresses these problems in the following way. First, we construct
an abstract, algebraic framework to reason about processes and composition. We
formulate a mutually inductive, assume-guarantee method that applies to both
safety and liveness properties, and show that it is sound and complete, all within
the abstract setting. The framework makes explicit all assumptions needed for
these proofs, uses as few assumptions as possible, and clarifies the key ideas used
to show soundness and completeness. Our proof method extends the one given
above with a soundness check for liveness properties. We show that a simple
extension of the proof method in [6], which replaces Q1 in the second hypothesis
with its safety closure, is also complete. The two methods are closely related,
but we show that ours is more widely applicable.

We then show how the abstract framework can be concretized in several dif-
ferent ways, obtaining a sound and complete method for each instantiation. In
this paper, we discuss interleaving and fully synchronous composition, and no-
tions of process behavior that include liveness, fairness, branching and closure
under stuttering. The resulting instantiations are the first mutually inductive,
assume-guarantee methods known to be semantically complete for general prop-
erties. That such diverse notions of composition and behavior can be handled in
a common framework may seem surprising. To a large extent, this is due to the
key property that, in each case, composition is represented as a conjunction of
languages (cf. [4,2]). The abstract framework thus provides a clean separation
between the general axioms needed for soundness and completeness, and the as-
sumptions needed for their validity in specific contexts. It simplifies and unifies a
large body of work, and allows one to easily experiment with – and prove correct
– different patterns of compositional reasoning.

Related Work: Methods for compositional reasoning about concurrent processes
have been extensively studied for nearly three decades. Assume-guarantee rea-
soning was introduced by Chandy and Misra [9] and Jones [16] for analyzing
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safety properties. These methods were extended to some progress properties in
the following decade (e.g., [24]; the book [11] has a comprehensive historical
survey). More recently, Abadi and Lamport [2] and McMillan [21] extended the
methods to temporal liveness properties. However, as shown by Namjoshi and
Trefler [23], these extensions are not complete, usually for liveness properties of
simple programs. Building on McMillan’s formulation, they present a complete
method for model checking of linear time temporal logic properties.

The methods presented in this paper apply to a process refinement methodol-
ogy. In this setting, the method of [2] for asynchronous composition is incomplete
[23]. Our methods are complete for asynchronous composition, both with and
without closure under stuttering. Alur and Henzinger propose a method in [6]
for the Reactive Modules language. We show that our new formulation, and a
slight extension of their method are complete for this setting. Henzinger et. al.
[15] showed how the same pattern of reasoning applies also to simulation-based
refinement of Moore machines. Our proof method is different, and applies some-
what more generally (e.g., to Mealy machines). A major contribution of this
paper, we believe, is the demonstration that all of these instantiations can be
obtained from a single abstract pattern of reasoning. There is work by Abadi
and Plotkin [4], Abadi and Merz [3], Viswanathan and Viswanathan [26], and
Maier [18] on similar abstract formulations, but none of these result in complete
methods. For a (non-standard) notion of completeness, Maier [19] shows that
sound, circular, assume-guarantee rules cannot be complete, and that complete
rules (in the standard sense) must use auxiliary assertions.

2 Abstract Compositional Reasoning

Notation. We use a notation popularized by Dijkstra and Scholten [13]. In the
term (Qx : r(x) : p(x)), Q is a quantifier, r(x) is the range for variable x, and
p(x) is the term being operated on. The operator [φ] (read as “box”) universally
quantifies over the free variables of φ. Proof steps are linked by a transitive
connective such as ≡ or ⇒ , with an associated hint. For convenience, we move
freely between set-based and predicate-based notations. For instance, a ∈ S may
be written as the predicate S(a), and [A ⇒ B] represents A ⊆ B.

2.1 Processes, Closure, and Composition

The abstract space of processes is denoted by P. The set of abstract process
behaviors, B, is assumed to be equipped with a partial order � (read as “pre-
fix”), and partitioned into non-empty subsets of finite behaviors, B∗, and infinite
behaviors, B∞. We make the following assumptions about the behavior space.

WF B∗ is downward closed under �, and ≺ is well-founded on B∗.

By downward closure, we mean that any prefix of a behavior in B∗ is also in
B∗. An initial behavior is a finite behavior with no strict prefix. The set of initial
elements, which is non-empty by the well-foundedness assumption, is denoted
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by B0. In our concretizations, behaviors are either computations or computation
trees, under the standard prefix ordering, so that the WF assumption is satisfied.
Initial behaviors then correspond to initial states of a process. The semantics of
an abstract process P is a subset of B. We call this the language of P and denote
it by L(P ). The finite behaviors in the language are denoted by L∗(P ) and the
infinite behaviors by L∞(P ). These subsets must satisfy the following condition.

L1 Every finite prefix of a behavior in L(P ) is a finite behavior of P .

This condition can be expressed succinctly by the notion of the limit of a set
of behaviors. For a set S, lim (S) = {x | (∀y : y � x ∧ y ∈ B∗ : y ∈ S)}. The
condition L1 is [L(P ) ⇒ lim L∗(P )]. The closure of a subset S of behaviors,
denoted by cl(S), is the set {x | (∀y : y ∈ B∗ ∧ y � x : (∃z : y � z : z ∈ S))}.
I.e., an element x is in cl(S) iff every finite prefix y of x has an “extension”
z that is in S. It is not hard to show that cl is monotonic, idempotent, and
weakening. We call a set S where [cl(S) ≡ S] a safety property, and a set
S where [cl(S) ≡ true] a liveness property in analogy with the definitions of
temporal safety and liveness in [5].

Lemma 0. (cf. [5,20]) Any set of behaviors, S, can be expressed as the inter-
section of the safety property cl(S) and the liveness property (¬cl(S) ∨ S). �

The main process composition operator is denoted by //, and maps a finite
subset of P to P. The process closure operator, CL, has signature CL : P → P.
The process choice operator, +, also maps a finite subset of P to P. We say that
process P refines process Q, written as P |= Q, provided that [L(P ) ⇒ L(Q)].
We assume that these operators enjoy the following properties.

P1 Composition is conjunction of languages: [L(// i : Pi) ≡ ( ∧ i : L(Pi))]. This
implies the corresponding assertions for L∗ and L∞.

P2 Choice is disjunction of languages: [L(+i : Pi) ≡ ( ∨ i : L(Pi))].
P3 Closure represents language closure: [L(CL(P )) ≡ cl(L(P ))].

Thus, // and + are associative and commutative. To state the circular reason-
ing method, we also need the concepts of behavior equivalence and non-blocking.

Behavior Equivalence: For each process P , we assume the existence of an
equivalence relation ∼P on B∗ . This relation is used to state when two behaviors
are to be considered equivalent relative to P – for example, in a concrete setting,
two computations that agree on values of the external variables of P would be
equivalent. We define the closure function, 〈∼P 〉, induced by this relation as
〈∼P 〉(S) = {x | (∃y : y ∈ S ∧ x ∼P y)}, for any subset S of behaviors. This must
have the property below.

BEQ For any process P , L(P ) is closed under ∼P : [〈∼P 〉(L(P )) ⇒ L(P )].
Non-blocking: Process Q does not block a process P iff

(a) for every initial behavior of P there is a matching initial behavior of P // Q.
Formally, [B0 ∧ L∗(P ) ⇒ 〈∼P 〉(B0 ∧ L∗(P // Q))] and
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P1:: var x: (0,1); trans. x’ = y
P2:: var y: (0,1); trans. y’ = x
T:: var x,y:(0,1); fair inf. often (x=1) and inf. often (y=1)
Q1:: var x:(0,1); fair inf. often (x=1)
Q2:: var y:(0,1); fair inf. often (y=1)

Fig. 1. Unsoundness for liveness

(b) every extension by P of a finite behavior of P // Q has a matching extension
by P // Q. Formally, for any x, y, if x ∈ L∗(P ) and y ≺ x and y ∈ L∗(P // Q),
then x ∈ 〈∼P 〉(L∗(P // Q)).

Note: This completes the list of postulates. It may also be interesting to know
what we do not postulate: we do not assume that process languages exhibit either
machine-closure or receptivity, and we do not require the behavior equivalence
relations to be a congruence relative to �. It is the lack of the latter restriction
that lets us concretize the framework to stuttering closed languages.

2.2 Compositional Reasoning

The aim of a compositional reasoning method is to provide a systematic way of
breaking down a proof that a composition (// i : Pi) refines a target process T
into proof steps that reason individually about each Pi. This is done by abstract-
ing the other processes into an environment for Pi. To uniformly handle such
environments, we generalize the original problem into showing that (// i : Pi) re-
fines T when constrained by an environment process, E. The choice composition
operator can be handled quite simply: E //(+i : Pi) |= T if, and only if, (from
P2), for every i, E // Pi |= T . We assume that, in the typical case, the compo-
sition (// i : Pi) is too large to be handled directly, by model checking methods,
but that T and E are small. Consider the two process case: E // P1 // P2 |= T .

A non-circular reasoning method shows that E // P1 // P2 |= T by finding Q
such that (a) E // P1 |= Q, and (b) Q // P2 |= T . Soundness follows immediately
from P1 and the transitivity of ⇒ . This method is most useful when the inter-
action between P1 and P2 is in one direction only. For bi-directional interaction,
it is often convenient to reason in a mutually inductive manner, as in the fol-
lowing (syntactically) circular reasoning method, where Q1 and Q2 supply the
mutually inductive hypotheses. For i ∈ {1, 2}, we write î for the other index.

Circular Reasoning I: To show that E // P1 // P2 |= T , find Q1, Q2 such
that (a) for some i, Qi does not block Pî, and [∼Pi ⇒ ∼Qi ], (b) P1 // Q2 |= Q1,
(c) Q1 // P2 |= Q2, and (d) E // Q1 // Q2 |= T .

This method is easily shown to be complete for processes P1 and P2 such
that one does not block the other: given that E // P1 // P2 |= T , choose P1 for Q1
and P2 for Q2. It is sound for finite behaviors – the non-blocking hypothesis (a)
enables a mutual induction on finite behaviors using (b) and (c).

However, this method is not sound in general – it is unsound when both Q1
and Q2 define liveness properties. Since it is difficult to exhibit the unsoundness
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in the abstract, consider the concrete setting of Fig. 1, where // is interpreted
as synchronous composition, and the behavior of a process is the set of its com-
putations. Each process is specified by its initial condition, a transition relation
(a primed variable refers to its next value), and a fairness constraint on infinite
computations (unspecified components are true, i.e., unconstrained).

The composition P1 // P2 does not refine T , since it has a computation where x
and y are both always 0. However, consider the processes Q1 and Q2 in Fig. 1. As
their initial and transition conditions are unconstrained, they are non-blocking,
satisfying hyp. (a). The fairness condition of Q2 requires that y = 1 is true
infinitely often in any computation of P1 // Q2, so the update x′ = y in P1 forces
x = 1 to be true infinitely often, ensuring that hyp. (b) holds. Hyp. (c) holds for
a similar reason. Hyp. (d) holds since Q1 and Q2 together satisfy T . Thus, the
method leads to the unsound conclusion that P1 // P2 does refine T .

2.3 A Sound and Complete Method

The previous example shows that a method based on mutual induction is not
always sound for liveness properties; however, it is hard to ascribe a reason for
the failure. One possible explanation is that the problem arises from the lack
of an inductive structure: in the example, both Q1 and Q2 restrict only the
“future” of a computation. This observation has led to several methods (e.g., [2,
21,23]) where a temporal next-time operator supplies the necessary well-founded
structure. Here, we adopt a different strategy, and augment the previous method
with an additional check to ensure that the reasoning is sound.

Circular Reasoning II: To show that E // P1 // P2 |= T , find Q1, Q2 such
that the conditions (a)-(d) from Circular Reasoning I hold, and additionally,
(e) for some i, E // Pi //CL(T ) |= (T + Q1 + Q2).

To gain some intuition for the new hypotheses (e), consider the earlier
soundness failure. The reasoning fails because the error computation π, where
x and y are both always 0, is ignored by hypotheses (b) and (c), since nei-
ther Q1 nor Q2 contain π. The “missing” computations are those, such as
π, that belong to L(P1 // P2), but not to either of L(Q1) or L(Q2). We want
these computations to also be part of L(T ). As is shown by the soundness
proof below, hypotheses (a)-(d) ensure that all computations of P1 // P2 be-
long to the safety part of the language of T . Thus, the missing computations
must belong to the liveness part of T . A direct statement of this condition is:
[L(E) ∧ L(P1 // P2) ∧ ¬(L(Q1) ∨ L(Q2)) ⇒ (¬cl(L(T )) ∨ L(T ))]. However,
this includes P1 // P2, which is just what we are trying to avoid reasoning about
directly.

We show in the soundness proof that one can replace P1 // P2 with a single
process, Pi, resulting in a stronger condition, but without sacrificing complete-
ness. Rearranging the new condition, we get that, for some i, [L(E) ∧ L(Pi) ∧
cl(L(T )) ⇒ (L(Q1) ∨ L(Q2) ∨ L(T ))]. Put in terms of the process operators us-
ing P1-P3, this is just condition (e). For our example, both L(E) and cl(L(T ))
are true (i.e., the set of all computations), and condition (e) does not hold – as
expected – for either P1 or P2, because π belongs to both processes, but not to
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either of T , Q1, or Q2. We show completeness first, which is the simpler half of
the proof.

Theorem 0. (Completeness) For processes P1, P2 such that one of the pro-
cesses does not block the other, and for any process T , if E // P1 // P2 |= T , then
this can be shown using the Circular Reasoning II method.

Proof. Choose Q1 = P1 and Q2 = P2. Condition (a) holds by the non-blocking
assumption. Condition (b) becomes P1 // P2 |= P1 which, by the definition of
|= and assumption P1, is equivalent to [L(P1) ∧ L(P2) ⇒ L(P1)], which
is trivially true. Conditions (c) and (d) can be dealt with in a similar manner.
Condition (e), for i = 1, simplifies, using P1-P3, to [L(E) ∧ L(P1) ∧ cl(L(T )) ⇒
L(T ) ∨ L(P1) ∨ L(P2)], which is true trivially. �

Note: The completeness proof, as may be expected, considers the worst
case, where Q1 = P1 and Q2 = P2. This is unavoidable in general, because it is a
manifestation of the state explosion problem. However, the language of a process
is usually given by its external input-output behavior, which can be much less
complex than its full behavior. Thus, Qi, which represents external behavior, can
be smaller than Pi, and yet be an adequate replacement for it in the method.

Soundness requires a more complex proof. First, we show, using well-founded
induction on ≺, and hypotheses (a)-(d), that the finite language of P1 // P2 is
contained in the finite language of Q1 // Q2. This is used to prove that any
behavior of E // P1 // P2 is a safe behavior of T . We then utilize hypothesis (e)
to conclude that all behaviors of E // P1 // P2 are behaviors of T .

Lemma 1. For processes P1, P2, Q1, Q2, and T satisfying the conditions of the
Circular Reasoning II method, [L∗(P1 // P2) ⇒ L∗(Q1 // Q2)].

Proof. This proof is based on well-founded induction on the set of finite behav-
iors. Both the base and inductive cases make use of the non-blocking hypothesis
(a), and the mutual induction supplied by hypotheses (b) and (c) on the pro-
cesses Q1 and Q2. Without loss of generality, we assume that hyp. (a) holds for
the pair (P1, Q2); the proof is symmetric in the other case.

(Base case: initial elements) For any initial behavior x, x is in L∗(P1 // P2) iff
(by P1), it belongs to both L∗(P1) and L∗(P2). As Q2 does not block P1, x is
in 〈∼P1〉(B0 ∧ L∗(P1 // Q2)). From Hyp. (b), x belongs to 〈∼P1〉(B0 ∧ L∗(Q1)).
As [∼P1 ⇒ ∼Q1 ] from Hyp. (a), using BEQ and the monotonicity of 〈∼P 〉, x
belongs to L∗(Q1). Since x belongs to both L∗(P2) and L∗(Q1), using P1 and
Hyp. (c), it belongs to L∗(Q2), and thus, (by P1) to L∗(Q1 // Q2).

(Inductive case) Consider any non-initial behavior x in L∗(P1 // P2). Let y
be a strict prefix of x. By WF, y is a finite behavior, so, by L1, it belongs to
L∗(P1 // P2). From the inductive hypothesis, y belongs to L∗(Q1 // Q2). It follows
from P1, that y belongs to L∗(P1 // Q2). As Q2 does not block P1 (Hyp. (a)), and
x belongs to L∗(P1), it follows that x belongs to 〈∼P1〉(L∗(P1 // Q2)). Reasoning
now as in the earlier case, it follows that x belongs to L∗(Q1 // Q2). �

Lemma 2. For any process P , [cl(L(P )) ≡ lim L∗(P )].
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Proof. For any x, x ∈ cl(L(P )) iff (by definition of closure) (∀y : y ∈ B∗ ∧ y �
x : (∃z : y � z ∧ z ∈ L(P ))). By condition L1, as [L∗(P ) ⇒ L(P )], this is
equivalent to (∀y : y ∈ B∗ ∧ y � x : y ∈ L∗(P )) – i.e., x is in lim L∗(P ). �

Theorem 1. (Soundness) For processes E, P1, P2, Q1, Q2, and T satisfying
the conditions of Circular Reasoning II, [L(E // P1 // P2) ⇒ L(T )].

Proof. The decomposition of L(T ) into safety and liveness components gives us
a natural decomposition of this proof into safety and liveness proofs. The safety
proof shows that [L(E // P1 // P2) ⇒ cl(L(T ))], while the liveness proof shows
that [L(E // P1 // P2) ⇒ (¬cl(L(T )) ∨ L(T ))].

(Safety)
L(E // P1 // P2)

⇒ cl(L(E // P1 // P2)) ( cl is weakening )
≡ lim L∗(E // P1 // P2) ( Lemma 2 )
⇒ lim L∗(E // Q1 // Q2) ( Lemma 1; monotonicity of lim )
≡ cl(L(E // Q1 // Q2)) ( Lemma 2 )
⇒ cl(L(T )) ( by hyp. (d); monotonicity of cl )

(Liveness)
L(E // P1 // P2) ∧ cl(L(T ))

≡ L(E // P1 // P2) ∧ L(CL(T )) ( by P3 )
≡ L(E) ∧ L(P1) ∧ L(P2) ∧ L(CL(T )) ( by P1 )
⇒ L(E) ∧ L(P1) ∧ L(P2) ∧ L(T + Q1 + Q2)

( by hyp. (e) (pick i) )
≡ L(E) ∧ L(P1) ∧ L(P2) ∧ (L(T ) ∨ L(Q1) ∨ L(Q2))

( by P2 )
⇒ L(T ) ∨ (L(E) ∧ L(P2) ∧ L(Q1)) ∨ (L(E) ∧ L(P1) ∧ L(Q2))

( ∧ over ∨ ; dropping conjuncts )
⇒ L(T ) ∨ (L(E) ∧ L(Q1) ∧ L(Q2)) ( by P1; hyp. (b) and (c) )
⇒ L(T ) ( by hyp. (d) )
�

Note: One can replace hyp. (e) with (e’): for some i,
E // Pi //CL(Q1) //CL(Q2) |= (T + Q1 + Q2), without losing either sound-
ness or completeness. Hyp. (e’) is weaker (by hyp. (d)) than (e), so it is more
likely to hold. However, it might also be more difficult to check in practice as
CL(Q1) //CL(Q2) could have size larger than CL(T ). Hyp. (e’) holds if either
L(Q1) or L(Q2) are safety languages, showing that the first circular reasoning
rule is sound in this case.

The new hypothesis also provides a direct link to the reasoning method pro-
posed by Alur and Henzinger in [6]. In our notation, it reads as follows: to show
that P1 // P2 |= Q1 // Q2, prove that (i) P1 // Q2 |= Q1, and (ii) P2 //CL(Q1) |= Q2
(non-blocking is assured by the language definition). This is incomplete as stated,
but it can be generalized to showing that P1 // P2 |= T by making a choice of
Q1, Q2 such that (i) and (ii) hold, as well as (iii) Q1 // Q2 |= T . This is sound,
by arguments in [6], as well as complete (choose Pi for Qi).
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Both methods are complete, but we may go further and compare their solu-
tion sets for {Qi} (i.e., those that satisfy the hypotheses), for fixed {Pi} and T .
In one direction, if (i)-(iii) hold for {Qi}, so do the hypotheses (a)-(e’) of Circu-
lar Reasoning II, for the same choice. Hyp. (a) is the non-blocking property.
Hyp. (b),(d) are identical to (i),(iii), respectively. Hyp. (c) holds using (ii) and
the weakening property of cl . Finally, Hyp. (e’) holds for P2 using (ii). The con-
verse “almost” holds (assuming non-blocking): from (e) (for P2) and (c), one can
derive that P2 //CL(Q1) |= Q2 + T , which is weaker than hyp. (ii). It turns out,
in fact, that there are specific {Pi}, {Qi}, and T for which the hypotheses of our
method hold, but those of the generalized [6] method do not. This implies that
our method is more widely applicable. Indeed, we had noticed in earlier work [7,
8] that it was not possible to use the generalized Alur-Henzinger rule for Qi with
liveness constraints that were automatically generated from property T . In [7],
we showed that conditions (a), (d), and (e) always hold for the generated Qi’s,
thus leaving one to (safely) apply the mutually inductive checks (b) and (c).

3 Concrete Compositional Reasoning

In this section, we show how the abstract framework can be instantiated for
a variety of composition operators and language definitions in shared-variable
concurrency. For each choice, we show that assumptions WF, L1, P1-P3, and
BEQ are met. For lack of space, detailed proofs are left to the full version.

We assume available a set of variable names, with associated domains of
values. For a variable w, the primed variable w′ is used to denote the value of
w in the next state. A process, P , is given by a tuple (z, ι, τ, Φ), where: z is a
finite set of variables, partitioned into local variables (x), and interface variables
(y), ι(z) is an initial condition, τ(z, z′) is a transition relation, relating current
and next values of z, and Φ(z) is a temporal fairness formula defining a fairness
condition on the states. A state of P is a function giving values to its variables.
We write states as pairs (a, b), where a is the value of x and b the value of y.
A path, π, is a finite or infinite sequence of states where for each i such that
0 < i < |π|, τ(πi−1, πi) holds; |π| is the length of π (the number of states on
it). A state t is reachable from state s by a path π of length n iff π0 = s and
πn−1 = t.

A process exhibits finite local branching (cf. [1]) if (i) for each b, there are
finitely many a such that (a, b) is an initial state, and (ii) for any state (a, b)
and any b′, there are finitely many a′ such that (a′, b′) is reachable from (a, b)
by a path where the value of y is b for all non-final states. We assume that all
processes satisfy this restriction. We use temporal logic to define the languages
of processes. We only need the operators G (always) and

∞
G (from some point

on). Formally, for a sequence π, and a predicate q on states (transitions), G(q)
holds of π iff q holds for every state (transition) on π. For an infinite sequence π,

and a predicate q,
∞
G(q) holds of π if, from some k ∈ N, the suffix of π starting

at point k satisfies G(q). The path operator A quantifies over all paths from a
state.
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3.1 Linear-Time Interleaving Semantics

In the interleaving semantics, the language of a process, Pi, is defined relative
to an external context for Pi. The context is represented by a set of variables,
wi, disjoint from zi (we write zi instead of zPi for clarity). The language is a
subset of the set of sequences, both finite and infinite, of valuations to zi ∪ wi.
We denote the language by the expression L�(Pi)(zi; wi), where “;” is used to
separate the process’ variables from its context. The set of finite computations
(L�

∗(Pi)(zi; wi)) is defined by the temporal logic formula below, where, for a set
X of variables, unch(X) ≡ (∀x : x ∈ X : x′ = x).

ιi(zi) ∧ G((τi(zi, z
′
i) ∧ unch(wi)) ∨ unch(xi))

This formula ensures that the first state is an initial one, every transition
is either that of Pi and leaves the context wi unchanged, or is an “environ-
ment” transition that leaves the local variables of Pi unchanged. The set of
infinite sequences in the language, denoted by L�

∞(Pi)(zi; wi), is defined by the
same formula (interpreted over infinite sequences), together with the constraint
Φi(zi) which ensures that the fairness condition of Pi holds. The full language,
L�(Pi)(zi; wi), is given by L�

∗(Pi)(zi; wi) ∪ L�
∞(Pi)(zi; wi). The external lan-

guage of process Pi for context wi is denoted by L�
ext(Pi)(yi; wi). It is defined

as the projection of the language of Pi on its interface and context variables:
i.e., L�

ext(Pi)(yi; wi) ≡ (∃xi : L�(Pi)(zi; wi)). Here, existential quantification
refers to the choice of a sequence of values for xi. Two computations are behavior
equivalent relative to Pi iff their projections on yi ∪ wi are identical. The order-
ing � is defined as the prefix ordering on finite sequences. This choice satisfies
WF. From the language definitions, every finite prefix of a sequence in L�

∞(P )
satisfies the initial and transition conditions, and is thus in L�

∗(P ), so that L1
holds for L�

ext(P ). As L�
ext(P ) is defined over the non-local variables of P , it

satisfies BEQ.

Interleaving Composition. For a set of processes {Pi}, their interleaving compo-
sition Q is denoted as (�i : Pi). It is defined provided that the local variables of
each process are disjoint from the variables of other processes; i.e., xi ∩zj = ∅ for
i �= j. The process Q has local variables (∪ i : xi), interface variables (∪ i : yi),
initial condition (∧ i : ιi(zi)), and fairness condition (∧ i : Φi(zi)).

For any i, let Xi be the set of local variables of the other processes; for-
mally, Xi = xQ \ xi. Let Yi be the set of interface variables of other pro-
cesses that are not shared with the interface variables of process Pi; formally,
Yi = yQ \ yi. Let Zi = Xi ∪ Yi. The transition relation of Q is defined to be
( ∨ i : τi(zi, z

′
i) ∧ unch(Zi)). This definition implies that a transition of process

Pi, leaves unchanged the values of all variables that are not shared with Pi.
It is important to note that we do not distinguish between the usage of shared

variables, such as read-only or write-only variables. All shared variables can be
both read and written to by the sharing processes. Since this is the most general
case, our results apply to more specific situations as well.
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Non-blocking: The condition [∼Pi
⇒ ∼Qi

] in hyp. (a) of the Circular
Reasoning II method is equivalent to saying that yQi is a subset of yPi . Fur-
thermore, only the first part of the non-blocking definition (for initial states) is
needed, because, for any x, y: if x is a finite computation in L�

ext(P ), y ≺ x and
y ∈ L�

ext(P � Q) then y can be extended to a computation z in L�
ext(P � Q) such

that z and x agree on the external variables of P by following the transitions in
x while keeping the local variables of Q unchanged.

Theorem 2. (P1 for L�) Let {Pi} be a set of processes such that Q = (�i :
Pi) is defined, and let w be a context for Q. Then, [L�(Q)(zQ; w) ≡ ( ∧ i :
L�(Pi)(zi; w ∪ Zi))]. �

The previous theorem shows that asynchronous composition corresponds to
conjunction of languages. We are usually interested only in the externally visible
behavior of a process. Abadi and Lamport showed in [2] that a similar theorem
applies to the external languages, under restrictions which ensure that the exter-
nal language is closed under stuttering (i.e., finite repetition of states). However,
there are applications such as the analysis of timing diagrams [8], where one
wants to count the number of events in an asynchronous system, and this is not
a stuttering-closed language. We therefore show the analogous theorem under a
different non-interference assumption on composition.

The mutex Assumption: A set of processes {Pi} satisfies this assumption
if in any jointly enabled transition, at most one process changes its local state.
This may be realized in practice by using a turn-based interleaving scheduler,
possibly implemented by the processes themselves, and guarding each transition
with a check that it is the process’ turn.

Theorem 3. (P1 for L�
ext) Let {Pi} be a set of processes such that Q = (�i : Pi)

is defined, and let w be a context for Q. Under the mutex assumption for {Pi},
[L�

ext(Q)(yQ; w) ≡ ( ∧ i : L�
ext(Pi)(yi; w ∪ Yi))].�

Stuttering Equivalence: Stuttering refers to finite repetition of identical values.
Two sequences are stuttering equivalent if they are identical up to such finite
repetition. The language of a process is closed relative to stuttering; however, its
external language is not, as existential quantification does not preserve closure
in general. The stuttering closed external language of Pi for context w is denoted
by L̃�

ext(Pi)(yi; w), and is defined as (∃̃xi : L�(Pi)(zi; w)). Here, ∃̃ is a stuttering
closed version of ∃, defined by: for a sequence π over a set of variables W ,
π ∈ (∃̃X : S(X, W )) iff there exists a sequence ξ defined over X ∪ W such that
π and ξ are stuttering equivalent on X, and ξ ∈ S.

The Sequencing Assumption: This is a semantic formulation of the syn-
tactic constraints considered by Abadi and Lamport in [2]. It holds if, for every
jointly enabled transition t of Q = (�i : Pi), there is a finite sequence σ that sat-
isfies the transition condition of Q on all transitions, and σ and t are stuttering
equivalent relative to the external variables yQ ∪ w.

Theorem 4. (P1 for L̃�
ext) (cf. [2]) Let {Pi} be a set of processes such that

Q = (�i : Pi) is defined, and let w be a context for Q. Under the sequencing
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assumption, and if ΦQ is stuttering-closed relative to yQ ∪ w,
[L̃�

ext(Q)(yQ; w) ≡ ( ∧ i : L̃�
ext(Pi)(yi; w ∪ Yi))]. �

Process Choice. For a set of processes {Pi}, the process C = (+i : Pi) is defined
whenever (�i : Pi) is defined, with local variables (∪ i : xi) ∪ {c}, where c is
a fresh variable not in (∪ i : xi), interface variables (∪ i : yi), initial condition
( ∨ i : c = i ∧ ιi(zi)) transition relation (c′ = c) ∧ ( ∧ i : c = i ⇒ τi(zi, z

′
i)), and

fairness condition (∨ i :
∞
G(c = i) ∧ Φi(zi)). The variable c records the initial

(fixed) choice of {Pi}. The following theorem is an easy consequence.

Theorem 5. (P2 for L�
ext and L̃�

ext) For a set of processes {Pi} such that C =
(+i : Pi) is defined, and a context w for C, (i) [L�

ext(C)(yC ; w) ≡ ( ∨ i :
L�

ext(Pi)(yi; w))], and (ii) [L̃�
ext(C)(yC ; w) ≡ ( ∨ i : L̃�

ext(Pi)(yi; w))]. �

Process Closure. For a process Q, let CL(Q) be the process (zQ, ιQ, τQ, true).
I.e., CL(Q) has the same transition structure as Q, but has a trivial fairness
constraint. The proof of the following theorem relies on the finite local branching
requirement and König’s Lemma.

Theorem 6. (P3 for L�
ext , and for L̃�

ext(cf. [1])) For any process Q and context
w for Q, [L�

ext(CL(Q))(yQ; w) ≡ cl(L�
ext(Q)(yQ; w))], and

[L̃�
ext(CL(Q))(yQ; w) ≡ cl(L̃�

ext(Q)(yQ; w))]. �

3.2 Synchronous Semantics

In the synchronous semantics, all processes in a composition make a transition
simultaneously. Synchronous semantics are appropriate for modeling hardware
systems, where several components are controlled by a single clock. The language
of a process, Pi, is a subset of the set of sequences, both finite and infinite,
of valuations to zi. The finite part of the language, denoted by L‖

∗(Pi)(zi), is
given by the temporal formula ιi(zi) ∧ G(τi(zi, z

′
i)). The infinite part, denoted

by L‖
∞(Pi)(zi) is given by sequences satisfying the same formula, but with the

additional fairness constraint, Φi(zi). The full language, denoted by L‖(Pi)(zi)
is L‖

∗(Pi)(zi) ∪ L‖
∞(Pi)(zi). The external language of the process, denoted by

L‖
ext(Pi)(yi), is defined, as before, by (∃xi : L‖(Pi)(zi)).

Synchronous Composition. For a set of processes {Pi}, their synchronous com-
position Q is denoted as (‖ i : Pi). The components of Q are defined as for
interleaving composition, except the transition relation, which is defined as
( ∧ i : τi(zi, z

′
i)), since transitions are simultaneous. Process choice and closure

are defined exactly as in the asynchronous case. Similarly, the behavior equiva-
lence relationship from Hyp. (a) of the method is given by yQi

⊆ yPi
. Completely

specified Moore machines are non-blocking by definition. Mealy machines can
be made non-blocking by syntactically preventing combinational cycles between
the input-output variables of the composed processes (e.g., as in Reactive Mod-
ules [6]). In [7], it is shown that these definitions enjoy the properties P1-P3 for
L‖

ext ; thus, the Circular Reasoning II method is applicable.
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3.3 Refinement through Fair Simulation

In this part of the paper, we interpret the relation |= as refinement through a
simulation relation that includes the effect of fairness constraints cf. [15]. Com-
position is synchronous, with the operators defined as in the previous section.
The difference is that the language of a process is now a set of trees instead of
sequences. We assume that each process has the finite branching property.

Tree Languages: A tree is a prefix-closed subset of N∗. We consider only finite
branching trees. Finite behaviors are finite depth trees. The � ordering on trees
is subtree inclusion. The finite branching condition ensures that this ordering is
well-founded on finite behaviors, since each finite-depth tree has finitely many
nodes. A labeled tree, u, is a triple (U, f, Σ), where U is a tree and f : U → Σ.

A computation tree of a process P is obtained, informally, by unrolling its
transition relation starting from an initial state. A computation tree fragment
(CTF, for short) of process P is obtained from a computation tree of P by
either dropping or duplicating some subtrees of the computation tree, while
satisfying its fairness constraint along all infinite branches. Formally, a CTF is
a labeled tree u = (U, f, Σ) where: Σ is the state space of P , f(λ) is an initial
state of P , (f(x), f(x.i)) is a transition of P for each x ∈ N∗ and i ∈ N such
that x, x.i ∈ U , and the fairness condition of P holds along all infinite branches
of U . Tree fragments represent the result of composing P with arbitrary, non-
deterministic environments. The set of CTF’s of P forms its (tree) language,
denoted by LT (P ). The finite language of P , LT

∗ (P ), is therefore, the set of
finite-depth trees satisfying the CTL-like formula ιP (zP ) ∧ AG(τP (zP , z′

P )). The
infinite language of P , LT

∞(P ), is the set of infinite trees satisfying, additionally,
A(ΦP (zP )). Let LT (P ) = LT

∗ (P ) ∪ LT
∞(P ). The external language of M , denoted

by LT
ext(P ), is obtained, as before, by projecting out the local variable component

of each node label: formally, this is represented as (∃xP : LT (P )).
In [14], it is shown (with different notation) that for non-fair processes P and

Q, Q simulates P (in the standard sense [22]) iff [LT
ext(P ) ⇒ LT

ext(Q)]. Based on
this correspondence, they propose using language inclusion as the definition of
simulation under fairness. We show that this choice satisfies conditions P1-P3.
Conditions P1 and P2 follow quite directly from the CTL formulation of process
language. From the prefix ordering, a tree is in the closure of a set of trees S iff
every finite depth subtree can be extended to a tree in S. This is called finite
closure in [20], where it is used to define “universally safe” branching properties.
The proof of P3 relies on the finite-branching property, and König’s lemma.

Theorem 7. (P1,P2,P3 for LT
ext) If Q = (‖ i : Pi) is defined, then

(i) [LT
ext(Q) ≡ ( ∧ i : LT

ext(Pi))], (ii) [LT
ext((+i : Pi)) ≡ ( ∨ i : LT

ext(Pi))], and
(iii) for any P , [cl(LT

ext(P )) ≡ LT
ext(CL(P ))].

4 Conclusions

This paper develops a general framework for designing sound and complete meth-
ods for mutually inductive, assume-guarantee reasoning. The key challenge is in
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balancing, on one hand, the restrictions needed to avoid unsound circular rea-
soning with liveness properties and, on the other, the generality necessary to
ensure completeness. Furthermore, we show how to instantiate this framework
for linear-time interleaving composition, and extend it to stuttering closed ex-
ternal languages. We then outline the instantiation for synchronous composition
in both linear and branching time semantics. We believe that the resulting rules
can be adapted without much difficulty to specific modeling languages.
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