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Abstract. Model checking is an automated approach to the formal ver-
ification of hardware and software. To allow model checking tools to be
used by the hardware or software designers themselves, instead of by
verification experts, the tools should support specification methods that
correspond closely to the common usage. For hardware systems, timing
diagrams form such a commonly used and visually appealing specifica-
tion method. In this paper, we introduce a class of synchronous timing
diagrams with a syntax and a formal semantics that is close to the infor-
mal usage. We present an efficient, decompositional algorithm for model
checking such timing diagrams. This algorithm has been implemented in
a user-friendly tool called RTDT (the Regular Timing Diagram Trans-
lator). We have applied this tool to verify several properties of Lucent’s
PCI synthesizable core.

1 Introduction

Model checking [8,24,9] is a fully automated method for determining whether a
hardware or software design, represented as a finite state program, satisfies a
temporal correctness property. Currently, many model checking tools are used
most effectively by verification experts. In order to make these tools accessi-
ble to the hardware or software designers themselves, the tools should support
specification methods that correspond closely to common usage. For hardware
systems, timing diagrams form such a commonly used and visually intuitive spec-
ification method. Timing diagrams are, however, often used informally without
a well-defined semantics, which makes it difficult, if not impossible, to use them
as specifications for formal verification. In this paper, therefore, we precisely
define a class of timing diagrams called Synchronous Regular Timing Diagrams
(SRTD’s) and provide a formal semantics that corresponds closely to the infor-
mal usage.

A key issue in using timing diagrams for model checking is whether the algo-
rithms that translate timing diagrams into more basic specification formalisms
such as temporal logic or ω-automata yield formulas or automata that are of
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small size. Previous work on model checking for timing diagrams, e.g., with
Symbolic Timing Diagrams [10,5,7], with non-regular timing diagrams [12] and
with Presburger arithmetic [3] provides algorithms that are, in the worst-case,
of exponential or higher complexity in the size of the diagram. Our timing dia-
gram syntax facilitates a decompositional, polynomial-time algorithm for model
checking. Our experience with verifying Lucent’s PCI synthesizable core and
other protocols indicates that the SRTD syntax can express common timing
properties and is expressive enough for industrial verification needs.

In previous work [1,2], we proposed a class of timing diagrams called RTD’s
(for Regular Timing Diagrams) that are particularly well-suited for describ-
ing asynchronous timing, such as that arising, for instance, in asynchronous
read/write bus transactions. It is also quite common to have a synchronous tim-
ing specification, where the changes in values along a signal waveform are tied
to the rising or falling edges of a clock waveform. While these specifications can
be encoded as RTD’s, the encoding introduces a large number of dependency
edges between each transition of the clock and each waveform, which results in
RTD’s that are visually cluttered and have (unnecessarily) increased complexity
for model checking. The SRTD notation proposed in this paper is, therefore,
tailored towards describing synchronous timing specifications in a visually clean
manner. More importantly, we exploit the structure of SRTD’s to provide a
model checking algorithm that is more efficient than that for RTD’s. We present
a decompositional model checking algorithm that constructs an ω-automaton of
size quadratic in the timing diagram size (compared with a cubic size complex-
ity in [2] for RTD’s). This automaton, which represents all system computations
that falsify the diagram specification, is composed with the system model and
it is checked if the resulting automaton has an empty language using standard
algorithms (cf. [26]). If the language is not empty, there is a system computation
that falsifies the specification; otherwise, the system satisfies the specification.

This algorithm is implemented in a tool - the Regular Timing Diagram Trans-
lator (Rtdt). Rtdt provides a user-friendly graphical editor for creating and
editing SRTD’s and a translator that compiles SRTD’s to the input language
of the formal verification tool COSPAN/FormalCheck [14]. The output of the
tool can be easily re-targeted to other verification tools such as SMV [21] and
VIS [6]. We used Rtdt to verify that Lucent’s synthesizable PCI Core satisfies
several properties encoded as SRTD’s; the SRTD’s were formulated by looking
at the actual timing diagrams in the PCI Bus specification [23] and the PCI
Core User’s manual [4].

The rest of the paper is organized as follows. Section 2 presents the syntax and
semantics of SRTD’s. In Section 3, we describe the decompositional translation
algorithm that converts SRTD’s into ω-automata. The features of the tool Rtdt
are described in Section 4. Section 5 illustrates applications of the Rtdt tool
to a Master-Slave memory access protocol and the synthesizable PCI Core of
Lucent’s F-Bus. We conclude with a discussion of related work in Section 6.
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2 Synchronous Regular Timing Diagrams

A Synchronous Regular Timing Diagram (henceforth referred to as an SRTD or
diagram), in its simplest form, is specified by describing a number of waveforms
with respect to the clock. A clock point is defined as a change in the value of the
clock signal. The clock is depicted as waveform defined over B = {0, 1} where
the value toggles at consecutive clock points. A clock cycle is the period between
any two successive rising or falling edges of the clock waveform.

In SRTD’s, an event, which is a change in the signal value, must occur at
either a rising edge of the clock (rising edge triggered) or at a falling edge (falling
edge triggered). In the SRTD in Figure 1, signals p and r are falling edge trig-
gered while q is rising edge triggered. Timing diagrams may either be unam-
biguous, where the events are linearly ordered, or ambiguous, where the events
are partially ordered with respect to time [11]. Synchronous timing diagrams are
generally unambiguous but the don’t-care transitions do introduce some degree
of ambiguity in SRTD’s.

2.1 Syntax

In most applications of timing diagrams, the waveform behavior specified by
the diagram must hold of a system only after a certain precondition holds. This
condition may be a boolean condition on the values of one or more signals (a
state condition), or a condition on the signal values over a finite period of time
(a path condition). To accommodate this type of reasoning, we permit the more
general form of path preconditions to be specified in an SRTD. Preconditions
are specified graphically by a solid vertical marker that partitions the SRTD
into two disjoint parts, a precondition part that includes all the events at and
to the left of the marker and a postcondition part that contains all the events to
the right of the marker. The precondition of the diagram in Figure 1 is a path
precondition, given by the path 〈p̄(q + q̄)r〉;〈p̄(q + q̄)r̄〉;〈p̄q̄r̄〉 (the angle brackets
indicate the constraints on signal values at a clock edge, while “;” indicates
succession in time, measured by clock edges).

A common feature in synchronous timing diagrams is a way to express that
the value of a signal during a certain period is not important. We use don’t-care
values to specify that the value at a point is unknown, unspecified or unimpor-
tant. In Figure 1, the don’t-care values on waveform q are used to state that q
should not be considered in the precondition. With the addition of preconditions,
one can express properties of the form “if B rises then A rises in exactly 5 time
units”. In order to specify richer properties such as “if B rises then A rises within
5 time units”, we need a way of stating that the exact occurrence of the rising
transition of A is not important as long as it is within the specified time bound.
In SRTD’s, we use a don’t-care transition to graphically represent this temporal
ambiguity. The don’t-care transition is defined for a particular waveform over
one or more clock cycles; its semantics specifies that the signal may change its
value at any time during the specified interval and that, once it changes, it re-
mains stable for the remainder of the interval. This stability requirement is the
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Fig. 1. Annotated Synchronous Regular Timing Diagram

only difference between don’t-care transitions and don’t-care values. In Figure
1, the don’t-care transition allows signal r to rise in either the third or fourth
clock cycle.

In addition, in loosely coupled systems, it may not be always necessary to
explicitly tie every event to the clock. This is useful in stating eventuality prop-
erties like “every memory request is eventually followed by a grant”, and is
represented diagrammatically by a pause marker. A pause specifies that there is
a break in explicit timing at that point, i.e. the state of the signals (except the
clock) remains unchanged (stutters) for an arbitrary finite period of time before
changing. In Figure 1 the pause at the end of the second clock cycle indicates
that the state 〈pq̄r̄〉 stutters for a finite period (until p changes at a falling edge).
The pauses allow us to express richer properties like “if A rises then eventually
B rises”.

We have observed that, in practice, both pauses and don’t-care objects occur
in timing diagrams, and that preconditions are often implicit in the assumptions
that are made with respect to when a diagram must be satisfied. In reviewing
many specifications and from our discussion with engineers, we are led to believe
that SRTD’s correspond closely to informal usage and are expressive enough for
industrial verification needs.

We now define SRTD’s formally. An SRTD is defined over a set of “symbolic
values” SV= B∪{X, D}, where X is a don’t-care value and D indicates a don’t-
care transition. The set SV is ordered by � , where a � b iff either a=b



Model Checking Synchronous Timing Diagrams 287

or a ∈ {X, D} and b ∈ B. The alphabet of an SRTD defined over n signals
is SVn={(a1a2...an)|a1 ∈ SV ∧ ... ∧ an ∈ SV}. Here, we have taken the set of
defined values to be the boolean set B but our algorithms and results also apply
when this is any fixed finite set, such as an enumeration of the possible values
of a multi-valued signal.

Definition 1 (SRTD). An SRTD T is a tuple (c,S,WF,M) where

– c > 1 is an integer that denotes the number of clock points.
– S is a non-empty set of signal names (excluding the clock).
– WF is a collection of waveforms; for each signal A ∈ S, its associated wave-

form is a function WFA : [0, c) → SV, while the associated waveform for the
clock is WFclk : [0, c) → B.

– M is a finite (non-empty) ascending sequence 0 ≤ M0<M1<...<Mk−1< c−1
of position markers. M0 is the precondition marker, while for each i > 0, Mi

is the i-th pause marker.

To facilitate defining the semantics as well as the algorithms it is also helpful
to view an SRTD as a collection of segments, where each segment is essentially
a vertical slice of the timing diagram, encompassing all waveforms between two
successive markers or a marker and the start/end of the diagram. The k markers
in M partition the interval [0, c) in an SRTD T into k + 1 disjoint sub-intervals
I0=[0, M0], I1=(M0, M1],...,Ik−1=(Mk−2, Mk−1], Ik=(Mk−1, c − 1]. The length
m0 of the interval I0 is M0+1, while for intervals Ii, with i ∈ [1, k), the length
mi of Ii is Mi − Mi−1, and the length of the last interval Ik is c − 1 − Mk−1.
The k markers, therefore, partition an SRTD into k + 1 segments.

Definition 2 (Segment). The segment Segi (i ∈ [0, k]) that corresponds to
the interval Ii of length mi is defined to be a function Segi : S × [0, mi) → SV ,
where for each j ∈ [0, mi) and A ∈ S, Segi(A)(j) = WFA(j) when i = 0 and
Segi(A)(j) = WFA(Mi−1 + 1 + j) when i > 0.

Any SRTD T = (c, S,WF , M) can be represented as the tuple of segments
(Pre, Post1, ..., Postk) as defined above. Segment Pre (Seg0) represents the pre-
condition, while segments Posti(Segi), for i > 0, represent successive post-
condition segments. For instance, the SRTD in Figure 1 has three segments,
one precondition segment and two postcondition segments. For each signal A,
Segi(A) is a function from [0, mi) → SV which describes the waveform for signal
A in the ith segment. This representation of an SRTD is useful in the sequel.

We impose certain well-formedness criteria on SRTD’s. In prepartion, we
define an event to be precisely locatable if it occurs at a clock point where the
signal value changes from 0 to 1 or vice versa. In Figure 1, the falling edge of
waveform p in the third clock cycle is precisely locatable while the don’t care
transition in waveform r is not a precisely locatable event.
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Definition 3 (Well-Formed SRTD). An SRTD T = (Pre, Post1, ..., Postk)
is well-formed iff

– The precondition segment Pre does not have any don’t-care transitions1.
Note that the precondition can have don’t-care values.

– There is at least one precisely locatable event in the clock cycle immediately
following each pause.

– Any maximal non-empty sequence of D’s (don’t-care transitions) must be
immediately preceded by a boolean value and followed by the negation of this
value.

– Every event in a waveform designated as rising(falling) edge triggered must
occur at a rising(falling) edge of the clock.

2.2 Semantics

An SRTD defines properties of computations, which are sequences of states,
where a state is an assignment of values from B to each of the n waveform
signals. A computation is defined over the alphabet Bn = {(a1a2...an)|a1 ∈
B ∧ ... ∧ an ∈ B}. For any computation y, we use yA to denote the projection of
y on to the coordinate for signal A.

Definition 4 ( �̇ ). For a finite waveform segment Segi(A) : [0, mi) → SV and
a projection yA of computation y with length mi (yA ∈ Bmi), Segi(A) �̇ yA iff
with length mi

– For every p ∈ [0, mi), Segi(A)(p) � yA(p).
– For every p, q, if Segi(A)[p..q] has the form (a; D+; ā) then yA[p..q] has the

form (a+; ā+), where a, ā ∈ B and ā 	= a.

Definition 5 (Segment Consistency). A segment Segi of length mi is
satisfied by a sequence y ∈ Bmi

n iff for each signal A, Segi(A) �̇ yA holds.

We will now construct regular expressions for the precondition PreT and the
postcondition PostT of a SRTD T . By the definition above of segment consis-
tency, any Pre or Posti segment can be represented as an extended regular ex-
pression of the form

∧
s∈S rs, where rs encodes the constraints for the waveform

for signal s in the segment. The regular expression for PostT is the concate-
nation of sub-expressions that correspond to each Posti segment separated by
an expression for each pause. Thus, PostT = (seg1; val∗1 ; seg2; val∗2 ; ...; segk−1),
where segi is the regular expression for segment Posti and vali is the vector
of values at the last position (mi − 1) in Posti, which is at the pause marker
separating it from Posti+1.

Definition 6 (Always Followed-By). G(p ↪→ q) holds of a computation σ
iff, for all i, j such that j ≥ i, if sub-computation σ[i . . . j] |= p, then there exists
k such that σ[j + 1 . . . k] |= q.
1 We can relax this requirement and our translation algorithm is still applicable. In

that case, however, we cannot guarantee an efficient translation.
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In the definition above, p and q are arbitrary path properties; however, when
p is a state property, G(p ↪→ q) is equivalent to G(p ⇒ Xq), where X is the next
time operator. An infinite computation σ satisfies an SRTD T (written σ |= T )
if and only if every finite segment that satisfies the precondition is immediately
followed by a segment that satisfies the postcondition of the diagram. This is
formalized in Definition 7.

Definition 7 (SRTD Semantics). An infinite computation σ satisfies an
SRTD T (σ |= T ) iff σ |= G(PreT ↪→ PostT ).

3 Model Checking SRTD’s

We first present an algorithm that translates an SRTD into an ω-automaton
for the negation of the SRTD property. We then present the model checking
algorithm that makes use of this automaton.

3.1 Translation Algorithm

The algorithm translates SRTD’s into ω-automata, which are finite state au-
tomata accepting infinite computations as input (cf. [17]). It proceeds by de-
composing T into waveforms and producing sub-automata that track portions
of each waveform. It consists of the following four steps.

1. Partition the diagram into the precondition part and the postcondition part.
2. Construct a single deterministic automaton AP for the precondition. This

automaton tracks the values of all signals simultaneously over the number
of clock cycles of the precondition. Since the precondition cannot contain
don’t-care transitions, this automaton has linearly many states in the length
of the precondition.

3. Construct a deterministic automaton Si for each signal i of the postcondition.
The automaton Si tracks the waveform for signal i over all the postcondition
segments. The automaton checks at each clock cycle that the waveform has
the specified value. For a don’t-care transition, the automaton maintains an
extra bit that records whether the transition has occurred. For a pause, the
automaton goes into a “waiting” state, which it leaves when the precisely
locatable (non-don’t-care) event signaling the end of the pause occurs. The
number of states of this automaton is thus linear in the length of the post-
condition. In our model, the pause condition is required to hold for only a
finite (but unbounded) number of cycles. Thus, Si has a fairness condition
which ensures that the automaton does not stay in a waiting state forever.

4. Construct an NFA AT̄ for the negation of the SRTD property of T that
operates as follows on an infinite input sequence: it nondeterministically
“chooses” a point where the precondition holds, runs the DFA AP at this
point and if AP accepts it then “chooses” a postcondition DFA Si and runs
this automaton at the point where AP accepted and accepts if this automa-
ton rejects.
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A ∀FA [20,25] is a finite state automaton that accepts an input iff every run
of the automaton along the input meets the acceptance criterion. An SRTD T
can be represented succinctly by a ∀FA AT that has the identical structure as
the NFA AT̄ but with a complemented acceptance condition.

The size of an SRTD is the product of the number of signals and the number
of clock cycles. The number of clock cycles does not include the indeterminate
amount of time represented by a pause; it refers only to the explicitly indicated
clock cycles in the diagram. The automata produced by the translation algorithm
all have linearly many states, in terms of the size of the SRTD.

Theorem 1. (Correctness) For any SRTD T and x ∈ Bω
n , x |= T iff x ∈

L(AT ).

Theorem 2. (Complexity) For any SRTD T and the equivalent ∀FA AT , the
size of AT is quadratic in |T |.
Proof. The size of an SRTD T=(Pre, Post1, ..., Postk) is n ∗ c, where n is the
number of waveforms and c is the number of clock points. We assume that the
transitions in AT are labeled with boolean formulas over the n signals. The size
of the transitions in AT is the sum of the length of the formulas labeling the
transitions. The size of AT is s + t, where s is the number of states and t is the
transition size.

The number of states s in the monolithic automaton for the precondition AP ,
is bounded by the number of clock points in the precondition, therefore s < c.
Since each transition encodes the values of the signals at each point, the size
of each transition is O(n) and the number of such transitions is bounded by c.
Thus, the transition size is linear in |T |.

The number of states s in Si is bounded by the number of clock points c,
therefore s ≤ c. Except for the pause transition, the transitions are labeled with
constant size formulae. The pause transition may be dependent on a number of
(simultaneous) signal value changes, so it can have size at most n. Thus, the
overall transition size for Si is of order |T |; hence, Si has size linear in the size
of T .

The size of the ∀FA AT is the sum of the sizes of the precondition and the n
postcondition automata and is thus (n + 1).|T | = O(|T |2).
�

3.2 Model Checking

Theorem 2 shows that an SRTD property can be represented succinctly by a
∀FA. A monolithic translation of the property yields an NFA that requires a
postcondition automaton that is essentially the product (intersection) of all the
Si automata. This monolithic NFA can be of size exponential in the size of the
SRTD, because it needs to take into account all possible interleavings of the
don’t-care transitions of the postcondition.

Recall that the property represented by the SRTD T is G(PreT ↪→ PostT ).
Since PostT =

∧
i Si , this property can be decomposed into the conjunction of
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individual checks G(PreT ↪→ Si). In a typical model checker, this check is per-
formed by determining if there is a computation of the system that satisfies the
negation of the property. The check can be done by determining if there is a
path to a point where AP accepts, followed by a computation where Si rejects.
Since Si is a DFA, it can be complemented to form an automaton of the same
size. Hence, model-checking can be done efficiently with this decomposed repre-
sentation of the postcondition. A similar observation was made for the analysis
of asynchronous timing diagrams in [2].

Theorem 3. For a transition system M and an SRTD T , the time complexity
of model checking is linear in the size of M and quadratic in the size of T .

Proof. The ∀FA AT , corresponding to T , is the automaton for G(PreT ↪→ ∧
i Si)

where PreT is the automaton for Pre and each Si is the automaton for the
postcondition segment of waveform i. The problem of checking M |= AT can be
decomposed into

∧
i M |= Ai, where Ai is the automaton for G(PreT ↪→ Si). We

can check M |= Ai in time linear in the size of M and Ai, which by Theorem 2
is O(|M |.|T |). But we have |S| such verification tasks, thus the time complexity
of checking M |= AT is O(|M |.|T |2).
�

4 The Rtdt Tool

Rtdt is a tool that translates SRTD’s into ω-automata definitions which are
input to the verification tool COSPAN [14]. The tool has an editor to cre-
ate SRTD’s and a translator that outputs the corresponding descriptions in
COSPAN’s input language.

The Rtdt editor is a graphical environment, written in Java, that enables
a user to create and edit SRTD’s. The editor is almost entirely mouse driven.
There are options to open, save and print existing SRTD descriptions. A user
may easily add or delete waveforms, clock cycles and pauses. The precondition
defaults to the initial clock point but the user can set the precondition to a path
condition. Editing a waveform is done by positioning the mouse on the waveform
and clicking either the left or right button. The editor is designed to ensure that
the diagrams created are well-formed SRTD’s by construction. The tool provides
a user-friendly interface for specifying SRTD’s. Figure 2 is a screen shot of the
interface.

The output of the tool is currently targeted to the formal verification tool
COSPAN/FormalCheck [14]. We use a macro in COSPAN/FormalCheck called
a strobe that recognizes a specified waveform. The Rtdt translator automati-
cally generates strobe definitions for the diagram using the algorithm outlined
in Section 3. The resulting strobe definition can be viewed through the editor as
in Figure 2 or saved in a file to be used as the specification in model checking
the system under verification.
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Fig. 2. Editing and Viewing Screens of Rtdt

Rtdt gives the user the option of invoking COSPAN/FormalCheck from
within the tool. When a property fails to hold of a system then COSPAN/Formal-
Check generates a failure trace. This trace corresponds to a bad path through
the system and is usually long and very hard to read. Currently many model
checkers display these traces graphically as synchronous timing diagrams. Rtdt
offers the added advantage of allowing the user to edit these error traces. One
can remove irrelevant signals and clock cycles. Furthermore the precondition
may be used to direct attention to erroneous regions of the design. This feature
allows the use of a relevant portion of the trace as a new property; this is useful
in debugging the system.

Although the output of the tool is currently targeted to COSPAN/Formal-
Check, with very little effort, the tool can be re-targeted to generate output
suitable for other formal verification tools such as SMV [21] or VIS [6].
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5 Applications

The true test of the efficiency of our algorithms is how they fare in prac-
tice on industrial examples of all sizes. Towards this end, we used Rtdt with
COSPAN/FormalCheck to verify two systems. The first is a synchronous master-
slave memory system and the second is the synthesizable Core of Lucent’s F-Bus.

5.1 Master-Slave Memory System

The Master-Slave memory system consists of one master module and three slave
modules. In the master-slave system, the master issues a memory instruction
and the slaves respond by accessing memory and performing the operation. The
master initiates the start of a transaction by asserting either the read or write
line. Next the master puts the address on the address bus and asserts the req
signal. The slave whose tag matches the address awakens, services the request,
then asserts the ack line on completion. Upon receiving the ack signal the master
resets the req signal, causing the slave to reset the ack signal. Finally, the master
resets the address and data buses.

Table 1. Verification Statistics for Master-Slave Design

BDD variables

−

13433

11405

22079

0.85

0.86 0.32

21915 1.45 2.51

11542

67

95

205

Design

master−slave

  read (C) 

  read (M) 

  write (C) 

  write (M) 

 Average Number of
BDD size

1.46205 3.19

0.86

95

0.31

 Average Space  Average  Time
 (seconds)(MBytes)

We verified that this system satisfied both read (see Figure 2) and write
memory transactions formulated as SRTD’s. The SRTD’s were created with
the Rtdt editor and the translator was used to generate the corresponding
COSPAN/FormalCheck descriptions. We used COSPAN/FormalCheck to model
check the system with respect to these descriptions.

Recall that a monolithic translation of an SRTD yields an NFA that is es-
sentially the product (intersection) of the DFA’s for each waveform. In order
to compare our decompositional algorithms with monolithic algorithms, we did
the verification checks both decompositionally and monolithically. In Table 1,
read(M) corresponds to the verification check on the master-slave design and
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the monolithic automaton for the read SRTD while read(C) corresponds to the
verification check done on the master-slave design and automata for a single
waveform. The numbers in Table 1 for BDD size, space and time for the decom-
positional check is the average over the individual verification checks for each
waveform. For example, the total amount of time taken to verify the read SRTD
decompositionally was 3.23 seconds and this is a little more than the time taken
for the single monolithic verification. Our verification numbers show that the
decompositional checks consistently use less space while generally taking more
time. Notwithstanding the Lichtenstein-Pnueli thesis [18], in practice, as one
reaches the space limitations of symbolic model checking tools, efficiency with
respect to space is of more importance. We observe that the decompositional
check, with respect to BDD size and space, is not much larger than the size
of the system itself. The monolithic verification is, however, significantly more
expensive.

5.2 Lucent’s PCI Synthesizable Core

Lucent’s

Model

PCI Bus

Core

PCI
Lucent’s

Synthesizable
Model

F−Bus

Lucent’s

Fig. 3. Block Diagram of Lucent’s F-Bus with PCI Core

The PCI Local Bus is a high performance, 32-bit or 64-bit bus with multi-
plexed data and address lines, which is now an industry standard. The PCI bus
is used as an interconnect mechanism between processor/memory systems and
peripheral controller components. Lucent Technologies’ PCI Interface Synthe-
sizable Core is a set of synthesizable building blocks that designers can use to
implement a complete PCI interface. The PCI Interface Synthesizable Core is
designed to be fully compatible with the PCI Local Bus specification [23]. The
Synthesizable Core bridges an industrial standard PCI bus to an F-Bus, which
is 32-bit internal buffered FIFO bus that supports a Master-slave architecture
with multiple masters and slaves.

We used Lucent’s PCI Bus Functional Model shown in Figure 3, which is
a sophisticated simulation environment that was developed to test the Synthe-
sizable Core for functionality and compliance with the PCI specification [23].
The Functional Model consists of the PCI Core blocks and abstract models for
both the PCI Bus and the F-Bus. The PCI Bus and F-Bus models were de-
signed to fully exercise the PCI Synthesizable Core in both the slave and master
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Fig. 4. SRTD for the Non Burst Transaction of the PCI Bus

modes. This model has about 1500 bounded state variables and was too large for
model checking. We had to perform some abstractions, like freeing variables and
removing variables from consideration for cone of influence reductions. These
abstractions were property-specific and had to be modified for each property
checked.

The Synthesizable Core design is synchronous to the PCI clock. The basic bus
transfer on the PCI is a burst, which is composed of an address phase followed by
one or more data phases. In the non-burst mode, each address phase is followed
by exactly one data phase. The data transfers in the PCI protocol are controlled
by three signals PciFrame, PciIrdy and PciTrdy. The master of the bus drives the
signal PciFrame to indicate the beginning and end of a transaction. PciIrdy is
asserted by the master to indicate that it is ready to transfer data. Similarly the
target uses PciTrdy to signal that it is ready for data transfer. Data is transferred
between master and target on each rising clock edge for which both PciIrdy and
PciTrdy are asserted. We verified that the PCI Core satisfied several timing
diagram properties for both the burst and non-burst modes. We formulated the
properties as SRTD’s by looking at the actual timing diagrams that occurred in
the PCI specification [23] and the PCI Core User’s Manual [4]. Figure 4 is one
of the properties that we verified for the non burst mode.

The verification was done both monolithically and decompositionally and
Table 2 presents the verifications statistics. In Table 2, the size, space and time
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Table 2. Verification Statistics for Lucent’s Synthesizable PCI Core

36.2

22.1 279

411715157

417816

740

664

Design (MBytes)
Average Space

(seconds)
Average Time

699

749 198.6 16793

2680421 171.7 5677

3742074

Average
BDD size

Number BDD 
variables

PCI Prop1 (M)

PCI Prop1 (C)

PCI Prop2 (M)

PCI Prop2 (C)

PCI Prop3 (M)

PCI Prop3 (C)

688424 23.9 2091036

996 554866 19.1 182

numbers for properties with the suffix (M) correspond to the verification check
on the abstracted PCI Core and the monolithic automaton for the property.
The suffix (C) refers to the average over the individual decompositional verifi-
cation checks on the abstracted system and the automata for each waveform.
Table 2 shows a savings of up to 30% in BDD size and corresponding savings
in space. In practice, as one reaches the space bounds of a model checking tool,
it may be beneficial to trade time for space. Our results demonstrate that our
decompositional approach is more space efficient than a monolithic one.

6 Related Work and Conclusions

Various researchers have investigated the formal use of timing diagrams. A ver-
ification environment for embedded systems, called SACRES [5,7], allows users
to graphically specify properties as Symbolic Timing Diagrams (STD’s) [10].
STD’s are, however, asynchronous in nature and cannot explicitly tie events to
the clock. Moreover, the translation algorithm is monolithic, and in general re-
sults in an exponential translation. Fisler [12] provides a procedure to decide
regular language containment of non-regular timing diagrams, but the model
checking algorithms have a high complexity (PSPACE). Cerny et al. present a
procedure [16] for verifying whether the finite behavior of a set of action dia-
grams (timing diagrams) is consistent. Amon et al. [3] uses Presburger formulas
to determine whether the delays and guarantees of an implementation satisfy
constraints specified as a timing diagram. This work uses Timing Designer2

to specify the constraints and delays. They have developed tools that generate
Presburger formulas corresponding to the timing diagrams and manipulate them.
2 Timing Designer is a commercial timing diagram editor from Chronology Corpora-

tion.
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This model cannot, however, handle synchronous signals, and the algorithm for
verifying Presburger formulas is multi-exponential in the worst case.

In contrast, for SRTD’s, we have presented a decompositional, efficient al-
gorithm for model checking, which has time complexity that is linear in the
size of the system model and quadratic in the size of SRTD. Our experience
with verifying the PCI core and other protocols indicates that the syntax of
SRTD’s suffices to express common timing properties, and is expressive enough
for industrial verification needs.

We have also developed a tool, Rtdt, which implements the translation from
SRTD’s to ω-automata and have used it to verify several timing specifications
from the PCI specification for Lucent’s Synthesizable Core. The output of Rtdt
is currently targeted to the COSPAN/FormalCheck tool, but it can be easily re-
targeted to produce output suitable for other model checkers (e.g. SMV, VIS). In
addition to editing and translating SRTD’s, the tool allows the user to view error
traces and convert these into timing properties. There are other timing diagram
editors [19,13,15,22] which employ the timing specifications for test generation,
simulation or synthesis but they do not, to the best of our knowledge, have a
formal verification capability.
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