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1 Introduction

Model checking [6,13] is an automated procedure for determining whether a fi-
nite state program satisfies a temporal property. Model checking tools, due to the
complex nature of the specification methods, are used most effectively by verifi-
cation experts. In order to make these tools more accessible to non-expert users,
who may not be familiar with these formal notations, we need to make model
checkers easier to use. Visually intuitive specification methods may provide an
alternative way to specify temporal behavior.

One such visual notation that is already widely used in industrial practice to
specify the timing behavior of hardware systems is timing diagrams. Synchronous
Regular Timing Diagrams (SRTDs) [1] are a class of timing diagrams that cor-
respond to regular languages. SRTDs are a very effective formal specification
notation since (1) they have a simple syntax and semantics that corresponds to
common usage, and (2) there are efficient linear-time model checking algorithms
[1] for SRTDs.

Compositional reasoning ameliorates the state explosion problem by reduc-
ing reasoning about the entire system to reasoning about individual components.
One flavor of compositional reasoning is assume-guarantee reasoning where each
component guarantees certain properties based on assumptions about other com-
ponents. There are several difficulties in applying assume-guarantee reasoning:
firstly, decomposing the specification is essential, and secondly, auxiliary asser-
tions are often necessary. These tasks require a non-trivial amount of manual
effort. The decompositional nature of SRTDs, however, makes it possible to do
assume-guarantee style compositional reasoning [2] in an efficient and fully au-
tomated manner.

The Regular Timing Diagram Translator (Rtdt) tool provides a user-friendly
graphical editor, that is used to create and edit SRTDs, plus a translator that im-
plements the compositional and non-compositional model checking algorithms.
Rtdt forms a formal and efficient timing diagram interface to the model checker
COSPAN [10].

? ? ? Supported in part by NSF 980-4736 and TARP 003658-0650-1999.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 387–390, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



388 Nina Amla et al.

2 Synchronous Regular Timing Diagrams

An SRTD is specified by describing a number of waveforms over a number of
clock cycles. The clock is depicted as a special waveform that is defined over
{0,1} where the value toggles at consecutive points. In SRTDs, any change in
the signal value must occur at either the rising edge or falling edge of the clock
waveform.
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Fig. 1. Annotated Synchronous Regular Timing Diagram.

A waveform at any point may be either 0 (low), 1 (high), or one of two don’t
cares. The don’t care value specifies that the value at that point is unimportant
and can be either 0 or 1. The don’t care transition specifies that the value of
the signal changes exactly once and remains stable for the remainder of the
specified interval. A pause specifies that all the signals, except the clock, remain
unchanged for an arbitrary but finite period of time until a definite change in
value of at least one waveform indicates the end of the pause.

The waveforms are partitioned into an initial precondition part and the fol-
lowing postcondition part. In [1] it is shown that we can construct regular ex-
pressions for the precondition Tpre and the postcondition Tpost of an SRTD T .
An infinite computation σ satisfies an SRTD T (written σ |= T ) if and only
if any finite sub-computation that satisfies Tpre is immediately followed by a
sub-computation that satisfies Tpost.

3 The Rtdt Tool

The main features of the Rtdt tool are described below.

– Rtdt has a user friendly editor for graphically creating and editing SRTDs.
– Non-compositional verification - The translation algorithm generates an ω-

NFA for the complement of the SRTD. This ω-NFA can be used as the
property in the automata theoretic approach to model checking, resulting in
a model checking procedure that is linear both in the size of the system and
the SRTD specification (see [1] for details).
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– Assume-guarantee reasoning - An SRTD can be partitioned into bundles of
waveforms called fragments such that each fragment contains all the wave-
forms controlled by an implementation module. The translation algorithm,
with a minor modification, is used to generate an ω-NFA for each such frag-
ment. There is also an algorithm to automatically generate auxiliary pro-
cesses from an SRTD such that the parallel composition of these processes
generates the language of the SRTD (see [2] for details). These algorithms
can be used, in a fully automated way, with an assume-guarantee proof rule
[2], that is sound and complete for both safety and liveness properties. The
model checking process is very efficient, linear in the size of the system and
the diagram.

– The user can execute COSPAN from within Rtdt. When a verification check
fails, Rtdt displays the resulting error trace as an SRTD and allows the
option of editing this diagram.

4 Case Studies

Rtdt has been used with COSPAN to verify timing diagram properties of a
number of interesting examples, such as a memory access controller and Lucent’s
PCI Interface Core. Rtdt was used to automatically generate the ω-NFA for
complement of the SRTD property and the auxiliary processes. COSPAN was
used to discharge the proof obligations in the assume-guarantee proof rule.

The verification checks were done compositionally and non-compositionally.
We observed significant reductions in BDD size, space and time required. In the
memory access controller example, we saw a savings of 21% to 69% in BDD size.
For the PCI Interface Core, we formulated the SRTD properties from the actual
diagrams found in the PCI Local Bus specification [12]. The PCI interface core
yielded more dramatic results; we observed a reduction in BDD size of 41% up
to 84%. Some non-compositional verification checks failed to complete due to a
shortage of memory but all the compositional checks completed successfully.

5 Conclusions and Related Work

Various researchers have investigated the use of timing diagrams in formal veri-
fication. SACRES [4,5] is a verification environment for embedded systems that
allows users to graphically specify properties as Symbolic Timing Diagrams
(STDs) [7]. The monolithic translation algorithms for STDs may be exponen-
tial. In later work (cf. [11]), a compositional verification methodology is used to
verify STD properties. This work uses timing diagrams as a convenient nota-
tion for expressing temporal properties, while the assume-guarantee reasoning
is left to the verifier. Fisler [8] provides a procedure to decide regular language
containment of non-regular timing diagrams, but the model checking algorithms
have a high complexity (PSPACE). They [9] have implemented a monolithic
translation algorithm that compiles a regular subset of these diagrams into ω-
automata. Unlike our work, however, they do not address temporal ambiguity.
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Another approach [3] uses Presburger formulas to determine whether the delays
and guarantees of an implementation satisfy constraints specified as a timing
diagram. The algorithm for verifying Presburger formulas is multi-exponential.

We have outlined the key features of the tool Rtdt, which is based on a visual
specification formalism called Synchronous Regular Timing Diagrams (SRTDs)
[1]. Rtdt consists of an editor that allows a user to graphically create and edit
an SRTD. The tool implements an efficient model checking algorithm that is
linear in both the size of the system and the SRTD specification. Rtdt also
implements a sound and complete assume-guarantee proof rule [2] that can be
applied to SRTDs in a fully automated way. Rtdt will be integrated into an
upcoming release of the industrial verification tool FormalCheck.
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